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Abstract: Narrow band imaging is an established non-invasive tool used for the early detection of
laryngeal cancer in surveillance examinations. Most images produced from the examination are
useless, such as blurred, specular reflection, and underexposed. Removing the uninformative frames
is vital to improve detection accuracy and speed up computer-aided diagnosis. It often takes a lot of
time for the physician to manually inspect the informative frames. This issue is commonly addressed
by a classifier with task-specific categories of the uninformative frames. However, the definition of
the uninformative categories is ambiguous, and tedious labeling still cannot be avoided. Here, we
show that a novel unsupervised scheme is comparable to the current benchmarks on the dataset of
NBI-InfFrames. We extract feature embedding using a vanilla neural network (VGG16) and introduce
a new dimensionality reduction method called UMAP that distinguishes the feature embedding
in the lower-dimensional space. Along with the proposed automatic cluster labeling algorithm
and cost function in Bayesian optimization, the proposed method coupled with UMAP achieves
state-of-the-art performance. It outperforms the baseline by 12% absolute. The overall median recall
of the proposed method is currently the highest, 96%. Our results demonstrate the effectiveness of
the proposed scheme and the robustness of detecting the informative frames. It also suggests the
patterns embedded in the data help develop flexible algorithms that do not require manual labeling.

Keywords: unsupervised learning scheme; manifold learning; deep convolutional neural networks;
laryngoscopic images; informative frame selection

1. Introduction

Laryngeal cancer (LC), grouped with head and neck squamous cell cancer (HNSCC),
is the 7th most common cancer (men 5th and women 13th) [1]. In Europe, it is the second
most common malignancy of the head and neck region [2]. A landmark report confirmed
the evidence of the association between tobacco smoke and cancer in the 1950s, explicitly
in the head and neck tumors, including the larynx [3,4]. Nearly 87% of LC patients are
tobacco users (central Europe), while 60–89% of LC is attributed to a combination of tobacco
smoking and alcohol drinking (South America). Fortunately, quitting cigarettes lowers the
probability of developing laryngeal cancer, especially for those who had smoked for more
than ten years [5]. The Surveillance, Epidemiology, and End Results (SEER) also reported
new laryngeal cancer cases fell by some 50% from 1975 to 2016, credited to lower smoking
rates in younger populations and the evolving tobacco-related marketing [1].

The 5-year survival rate is one of the most concerning indicators in the larynx com-
munity for computer-aided diagnosis (CADx) [6,7]. It notes the percentage of people still
alive more than five years after confirmed laryngeal cancer [8]. In recent cancer statistics,
laryngeal cancer is not one of the leading cancers in the United States [9]. Unfortunately,
the 5-year survival rate has dropped from 66 to 63% in the past 40 years [10], while

Diagnostics 2023, 13, 1151. https://doi.org/10.3390/diagnostics13061151 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13061151
https://doi.org/10.3390/diagnostics13061151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-3744-9701
https://orcid.org/0000-0003-1859-1411
https://doi.org/10.3390/diagnostics13061151
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13061151?type=check_update&version=1


Diagnostics 2023, 13, 1151 2 of 22

approximately 60% of patients present with advanced stage disease (stage III or IV) at
diagnosis [11].

1.1. Early Diagnosis and Narrow-Band Imaging

Nowadays, surgical techniques performed for laryngeal function preservation are
feasible. However, the early diagnosis of laryngeal cancer is still the primary means of
clinical intervention. Ref. [12] showed that patients with different levels of laryngeal
carcinomas (Tis, T1, and T2) have an 80–90% probability of healing in the early stage,
during an approximately 60% cure rate for more advanced tumors. Ref. [4] calls on
governments and social institutions to get involved in cancer prevention education, early
diagnosis, surveillance, and monitoring of public health interventions.

The current diagnosis of LC at the early stage is not out of the scope of an endoscopy.
The literature has well summarized the pros and cons of the two popular non-invasive
endoscopy techniques, narrow-band imaging (NBI) and white light endoscopy (WLE).
NBI is more expensive than WLE from a clinical perspective. However, it is beneficial for
adding more definition to the tumor margins and highlighting the features of submucosal
vascularization [7,13]. Additionally, ref. [14] reported that NBI is 21% more diagnostically
sensitive than conventional WLE.

1.2. Informative Frame Selection for CADx

Manually selecting the informative frames from the vast number of candidates avail-
able in endoscopy is tedious and time-consuming. It also requires experienced endoscopists.
More than 10,000 endoscopy frames are produced per patient during each examination.
It may cost the physician a lot of time (over 60 min) to read the images [15,16]. Not all
frames are helpful; most are redundant (blurred, bubbles, etc.), and only a tiny proportion
are related to lesions or abnormalities. Therefore, selecting the most informative instances
(images) is essential for the subsequent automatic diagnosis, such as classification and
segmentation of the lesions [17,18]. If the uninformative frames are removed, the accuracy
of the automatic detection of the abnormalities will be increased [19].

This issue seemed to be trivial with the emergence of deep learning techniques.
However, we examined several recent studies that employed artificial neural networks
for the computer-aided diagnosis of laryngeal cancer [7,20–23] and found that although
the datasets were labelled and well-structured, the number of images still ranged from
3000 to 25,000. Such samplings applied to clinical applications are still a considerable
workload for science, technology, engineering, and math (STEM) researchers willing to
cooperate with physicians [24].

On the other hand, collecting high-quality data is a critical research component,
ultimately improving laryngeal cancer patient management [1]. Interestingly, the public
datasets related to informative frame selection are rare, only 3% (3/97) compared to
vibration analysis, lesion recognition, etc. [24]. Our fundamental concern is that existing
algorithms are insufficient for extracting specific patterns of high-quality data in enormous
data with noise. The solution for informative frame selection should be close to a natural
and clinical setting, with unstructured and unlabeled data. Ref. [18] reported a similar
scenario in the field of biomedicine and biology.

1.3. Organization

The remaining paper is organized as follows. Section 2 illustrates the related works and
the missing part of the puzzle. Section 3 describes the proposed approach to select the in-
formative frames in an unsupervised fashion, a scheme combined with feature embedding,
dimensionality reduction methods, and the primary clustering methods. Section 4 presents
the experimental details, including the dataset and metrics. It includes the automatic
labeling algorithm and a cost function for hyperparameter tuning. Results are presented
in Section 5 and discussed in Section 6. Finally, the paper concludes with suggestions
in Section 7.
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Figure 1. The flowchart scheme.

2. Related Work

Many medical screenings include informative frame selection, such as image screening
for laryngeal disease detection and redundant image elimination. These are not imited
to laryngoscopy [17,25], e.g., gastrointestinal endoscopy [26], wireless capsule endoscopy
(WCE) [27,28], optical endomicroscopy [29], and colonoscopy [30]. We have grouped these
methods into two categories.

2.1. Criterion-Based Feature Extraction

This method’s main characteristic is based on observing basic information about the
image, such as color, texture, and geometric features. The statement is that the sharp images
respond to high-frequency content [31].

Ref. [26] found that the informative and uninformative frames can be distinguished
in the frequency domain according to an energy histogram. Later, the k-means algorithm
was employed in the endoscopic video manifolds to cluster the informative frames. How-
ever, the frequency spectrum contains superfluous information. Ref. [17] selected a set of
descriptors followed by a support vector machine to classify the NBI endoscopic frames.
Their method overcame the specific threshold. Similarly, ref. [17] observed that informative
frames have higher spatial frequencies than blurred ones. Refs. [27,32] extracted the features
with a local color histogram in the HSV space and isolated non-informative frames with a
support vector machine classifier. Refs. [25,33] employed the Shannon entropy to eliminate
the uninformative images in their specific endoscopic applications. Ref. [29] grouped pure
noise and motion artifacts into uninformative frames of optical endomicroscopy. They
used grey level cooccurrence matrix (GLCM) texture metrics, such as contrast, energy,
entropy, etc., to detect the uninformative frame in the video sequences. Ref. [34] proposed
four criteria for screening sharp laryngoscopic images, including sum-modulus-differences
and the energy Laplacian of the image, gradient magnitude maximization, and variance.
In their latest study, ref. [35] analyzed the hue and geometric features of the laryngoscopic
images and introduced the peak signal-to-noise ratio (PSNR) to calculate the nearest frames
in the video.
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2.2. Learning-Based Feature Extraction

The criterion-based methods focus on distinguishing informative frames with criterion
functions and are subjective and time-consuming. However, learning-based approaches
extract and represent features without any explicit method [16]. Such methods find rep-
resentations directly from the input frames without a specific feature set or descriptors.
Ref. [36] constructed two convolutional neural networks to detect the blurry and water
frames from colonoscopy videos.

Recently, several studies have adapted the idea of transfer learning, one of the emerg-
ing techniques in deep learning. Ref. [37] employed the pre-trained Inception-v3 network
to end-to-end classify the informative and non-informative frames from a colonoscopy.
Ref. [38] used the fine-tuned VGG16 networks to classify the different categories of the NBI
frames from laryngoscopic videos. Ref. [39] evaluated several state-of-the-art convolutional
neural networks in the NBI-InfFrames dataset and achieved state-of-the-art performance.
As of this writing, a study proposed a dataset to evaluate the pre-trained ResNet-18 model.
The dataset contains 22,000 laryngoscopic frames. It is the second dataset announced for
the problem of informative frame selection and the largest one [40].

Therefore, no matter what feature extraction methods are employed, considerable
research has been dedicated to employing supervised learning methods as the classifier
due to the types of uninformative frames defined. However, we cannot easily employ such
methods to detect uninformative frames for unknown types in clinical setting data. A rev-
olutionary study categorized the frames of WCE videos into four representative groups
without defining any frame types [28]. They employed non-negative matrix factorization
(NMF) and fuzzy C-means (FCM) to eliminate 85% of uninformative frames. However,
they did not take the cluster number determination into account.

2.3. Contributions

We try to answer whether informative frame selection can be conducted without
supervision or guidance from the labels. We hypothesised that informative frame selection
does not rely on data labels. Our proposed unsupervised framework (Figure 1) remains
competitive compared to the state-of-the-art methods in the NBI-InfFrames dataset. The
main contributions of this paper are summarized as follows:

• A new scheme couples the state-of-the-art dimensionality reduction techniques and
clustering methods for solving the issue. The proposed scheme extracts feature faster
than the baseline method [17] and require no effort on the labeling data. This ensures
the reliability and effectiveness of the proposed scheme in a clinical setting datasets.

• For the frame reduction or video summarization, the future direction for unsuper-
vised learning methods should involve cluster determination [28]. In this work, we
introduce a metric under our scheme, the Calinski-Harabasz Index, to automatically
determine cluster numbers.

• In this work, we propose an automatic cluster labeling algorithm using bijections
mapping for evaluating the classification performance of unsupervised methods. We
further propose a Bayesian optimization cost function algorithm to boost classification
performance.

• To the best of the authors’ knowledge, none of the existing works in the literature
on computer-aided diagnosis of laryngoscopy attempt to solve the problem using
an unsupervised scheme based on the feature learning method. In addition, our
methods achieved comparable performance to state-of-the-art supervised learning
methods [17,38,39].

3. Methods

The unsupervised learning algorithm is a typical process to find patterns in data
without labels [41]. It is usually used for clustering, feature extraction, or dimensionality
reduction [42].
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3.1. Feature Embedding

Two categories of feature extraction can be summarized: the methods that rely on
conventional machine learning and those that rely on neural networks. Ref. [16] illustrated
more specific divisions as spatial domain, frequency domain, and feature learning methods.
Considering this work, the dataset we use in Section 4.1 only contains 720 images. Thus,
we use a small architecture neural network. Another fact is that ref. [38] employed the
fine-tuned VGG16 succeeded on NBI-InfFrames, motivated by transfer learning.

The vanilla VGG16 network without any pre-trained weights is used in this work for
feature extraction. Moreover, the last two layers were dropped (Figure 2).
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Figure 2. The four images represent the four types of categories in the NBI-InfFrames. The neural
network consists of the vanilla VGG16 without the last two layers, the fully connected layer, and the
prediction layer. The generated feature embedding dimensionality is 4096.

3.2. Dimensionality Reduction

The dimensionality reduction technique is not rare in the area of medical imaging. It is
widely used for feature selection and visualization. In the area related to endoscopic images,
ref. [26] proposed a manifold learning method named EVM for projecting the endoscopic
video into the local structure of the manifold, and ref. [28] introduced an unsupervised
data reduction algorithm for the capsule endoscopy video segments, the non-negative
matrix factorization method. This work introduces the current state-of-the-art techniques
to compare with a recently proposed algorithm.

3.2.1. PCA

Principle components analysis (PCA) is a popular dimensionality reduction technique
that maps the data points from high- to low-dimensional space with the linear transforma-
tion. In mathematical terms, the transformation can be denoted as [43]

Y = XM, (1)

where X represents the original data or features, Y is the matrix of the transformed data
points yi, and the mapping relationship is represented by M. PCA aims to find the M
that maximizes the cost function trace tr(MTcov(X)M), where cov(X) is the sample covari-
ance matrix. Consequently, it is transferred to solve the eigenproblem of the d principle
eigenvectors (principal components),

cov(X)M = λM. (2)

In the experiment, d is decided by analysis of the variance. Nearly 80% of the variance
can be explained by the 50 principal components. Thus, we choose d = 50 in Section 5.1.

Minimizing the cost function forms of the Euclidean distance to find the M is com-
monly used in multidimensional scaling [43].

φ(Y) = ∑
ij

(
d2

ij −
∥∥yi − yj

∥∥2
)

, (3)
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where dij represents the Euclidean distance between the xi and xj in high-dimensional space,
and the ‖yi − yj‖2 is the square Euclidean distance between the low-dimensional space.

3.2.2. t-SNE

A stochastic neighbour embedding technique, t-SNE, was presented by Matten and
Hinton [44]. It is widely recommended due to its good visualizations. SNE aims to find the
optimal mapping relationship between high and low-dimensional space by minimizing
the mismatch between pj|i and qj|i. As the derivative version of SNE, t-SNE overcomes
the drawbacks of using the non-symmetric Kullback–Leibler divergence to measure the
faithfulness of the pairwise distance. The Student-t distribution is used to compute the
similarity between two data points in the low-dimensional space instead of a Gaussian,
thus named t-SNE.

To minimize the cost function of the conditional probabilities pj|i and qj|i, t-SNE turns
to minimize a single Kullback–Leibler divergence between the joint probability, P, in high-
dimensional space and a joint point probability, Q, in low-dimensional space. Thus, the
cost function is denoted as

Ct−SNE = KL(P‖Q) = ∑
i 6=j

∑
j

pij log
pij

qij
, (4)

where the low-dimensional pairwise similarity map by qij and the high-dimensional map
pij are given by

pij =
exp

(
−
∥∥xi − xj

∥∥2/2σ2
)

∑k 6=l exp
(
−‖xk − xl‖2/2σ2

) , qij =

(
1 +

∥∥yi − yj
∥∥2
)−1

∑k 6=l

(
1 + ‖yk − yl‖2

)−1 .

The pij is a Gaussian distribution to approximate the high-dimensional space, while
the qij is a Student-t distribution. The detailed optimization of the cost function using the
stochastic gradient descent is available in Section 3.3.4 of this article [44].

3.2.3. UMAP

Although the t-SNE is good at revealing important global structures, it cannot go beyond
locality-preserving limits. Uniform manifold approximation and projection (UMAP) [45]
takes a big step in preserving the global structure of the large dataset, as well as the small
one. It implies that the distance of the inter-class data points is more distinguishable
under the dimensionality reduction techniques with the globality-preserving properties.
This is the key to understanding that UMAP outperforms other dimensionality reduction
techniques. We will explain this finding further in Section 6.

Our interest in the UMAP came from visualising artworks of the Metropolitan Museum
of Art collection [46]. We observed that the artworks are widely distributed according
to the brightness and darkness of the average intensity after projection by UMAP. Also,
the distinguishable characteristic is embedded in the NBI-InfFrames dataset. The image
thumbnails of the informative video frames are well separated from the non-informative
frames (Figure 1 DIMENSIONALITY REDUCTION).

Since the mathematical language to understand the UMAP is similar to the t-SNE, we
present this part in Appendix B. It is also reported that the UMAP is nine times faster than
the t-SNE as evaluated on the MNIST dataset with the scikit-learn toolkit [47].

3.3. Clustering

We divide the clustering methods into four main categories in this work. They are
hierarchical methods, partitioning methods, graph-based methods, and density-based
methods [18]. Existing clustering methods, such as fuzzy and soft clustering, are not
included in the investigation.
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3.3.1. Agglomerative

Hierarchical clustering groups the data point into a binary tree called a dendro-
gram [48]. Agglomerative clustering is one of the two hierarchical clustering methods
widely used for its simplicity. Its history dates back at least to the 1950s. Agglomerative
clustering builds clusters in a bottom-up fashion, starting with each data point from its
cluster. In the subsequent step, the two closest clusters will be merged until all data points
are grouped into one cluster. Different from the iterative clustering algorithms, the data
points cannot be further merged adjustments or split once the building progress of the
agglomerative clustering is made. The property can be helpful for applications with an
unknown number of clusters, such as bioinformatics applications [49].

Factors such as similarity measures, criterion functions, and initial conditions, decide
the effectiveness of the clustering methods. For agglomerative clustering, there are three
definitions of the similarity between two clusters: single-link, complete-link, and average-
link [48]. Such linked strategies appear in the form of the hyperparameters (Section 4.4) in
our experiments.

3.3.2. K-Means

A partitional clustering method manipulates a single partition on the data points, while
the hierarchical clustering method holds a whole structure of the clustering, described as the
dendrogram [50]. Therefore, the computation time of the hierarchical clustering performed
on the large-size dataset is unbearable. K-means is one of the partitional clustering methods
with linear computational time employed in a wide range of applications.

A pattern x is defined as a singleton (observation, feature vector, or datum) on the
clustering algorithm, consisting of d dimensional measurements x = (x1, . . . xd). A pattern
set is denoted as X = {x1, . . . , xn}, which can be viewed as a matrix of samples and
features (n× d). The clustering L of the k-means can be established from the pattern set
X by employing a squared error criterion as follows

e2(X , L ) =
K

∑
j=1

nj

∑
i=1

∥∥∥x(j)
i − cj

∥∥∥2
, (5)

where the x(j)
i is the ith pattern of the jth cluster, and cj is the centroid calculated by the

mean of the member points in the jth cluster.
In summary, the algorithm of k-means starts with the initial position and relocates

patterns to the clusters according to the similarity measurement until the convergence
criterion is satisfied. This study was motivated by the classification performance of the
k-means outperforming the baseline work. In the implementation, the MinibatchKMeans
was employed due to the faster convergence and low difference in accuracy compared
to k-means.

3.3.3. Spectral Clustering

Until now, we can conclude that the goal of the clustering methods is to minimize
the differences in the same cluster and maximize the difference between the clusters.
Spectral clustering aims to achieve this by partitioning the similarity graph, consisting of
the eigenvalues of the similarity matrix of the data.

Spectral clustering is an algorithm that the k-means performed on the eigenvectors
of the graph Laplacian [26]. In addition, it can be viewed as a variant kernel k-means
overcoming the drawback of k-means in the non-linear space.

Given the undirected graph G = (V, E), it consists of two elements: the vertex vi ∈ V
and the edge eij ∈ E. Each vertex represents a data point xi. If the edge eij between
two points xi and xj is larger than a certain threshold, we denote they are connected and
weighted by the similarity sij, thus sij ≥ 0.
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Assuming the graph G is weighted, an adjacency matrix W = (wij)i,j=1,...,n. is then
generated, which describes the similarity between the vertices vi and vj. In addition, wij = 0
in the adjacency matrix W means there is no connection between the two points.

The degree di of the vertex vi is naturally introduced, as di = ∑n
j=1 wij. It counts all the

weights starting from the vertex vi, referred to as vij, but not including the vertices ending
at vi, referred to as vji. The degree matrix of D is referred to as the diagonal of the matrix
with the degree of vectors d1, . . . , dn.

An A is denoted as the subset of the vertices V, A ⊂ V; thus, we have the indicator
vector 1A= ( f1, . . . , fn)

′ ∈ Rn [51],

fi =

{
1, if vi ∈ A
0, otherwise

. (6)

The unnormalized graph Laplacian is generated from the components of the matrix of
D and the matrix of W. The defined matrix can be given as

L = D−W. (7)

Once the graph is constructed, the spectral clustering algorithm can be interpreted to
the k-means. Computing the first k eigenvectors of the L from the equation (Equation (7)),
denoted as the u1, . . . , uk. Using the terms of the k-means, a pattern U ∈ Rn×k, k is the
column number of the U. Later, the clustering Y = {yi|i = 1, . . . , n}, the rows i represent
the samples. Different criterion functions can be employed on the U and Y , such as
the Euclidean, Manhattan, cosine, etc. Finally, the algorithm outputs the cluster indices,
Ai = {j|yj ∈ Ci}.

3.3.4. DBSCAN

DBSCAN does not hold the common assumption that clusters can be decided by
minimizing and maximizing the difference between intra-clusters and inter-clusters. An
essential insight is the density of the points; the density of the points in each cluster is
higher than the density of the points outside the cluster, and vice versa. For the outliers,
the noise (points) density is lower than regular clusters.

Unlike the traditional clustering methods, which hardly assign each point to a clus-
ter, DBSCAN assigns the probability to each point, one of the density-based clustering
methods. It only requires a few input parameters (one input parameter used in [52]) and
computational efficiency compared to the other three algorithms (Appendix C). The shape
of the clusters made by the partitioning methods is convex, while the hierarchical algorithm
is prohibitive for the computational time, especially for the large data size. However, it
also brings the inconvenience of finding the intended number of clusters for aligning to
the number of the ground-truth classes of the dataset. Therefore, we propose Algorithm 1,
which helps to find the optimal result for the classification performance.

The algorithm starts from a radius of neighbours; the shape of the radius is determined
by the distance measurements. For example, two points, p and q, are neighbours in the
Manhattan space. It can be denoted as dist(p, q), and the shape of these two points is
rectangular. The definition of the neighborhood of a point p can be denoted as NEps(p),

NEps(p) = {q ∈ D|dist(p, q) ≤ Eps}. (8)

Other rules for DBSCAN are maintaining its arbitrary shape to discover the non-
convex clusters, such as the density-reachable, density-connected, cluster, and noise [52].
In our experiment, we only specify the minimum number of points (MinPts) and the radius
of the shape Eps.
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Algorithm 1 Cost function for the Bayesian optimization searching

Require: Srec, recall of the method; Spre, precision of the method; Sparams, parameter space
Ensure: number of clusters K=4

α← 100 . penalty the label counts deviation
β← 0.01 . weight for the impact of the variance
repeat

if method is MinibatchKMeans or Agglomerative or Spectral then
p← 0.1 · |Srec − Spre|
C← (1− Srec) + p, s.t. Sparams

else if menthod is DBSCAN then
count the outlier labels, -1 in the cluster, Nout
count the number of kinds of labels except for outliers in the cluster, Nin
calculate the variance of the counts of each group deviate from 180, σ
C← Nout + (1− β) · (α · |Nin − K|) + β · σ, s.t. Sparams

end if
minSparams C.

until stop-iteration criteria satisfied
return best parameters in Sparams

4. Evaluation

The experiments are performed on a Linux platform with a 2.00 Hz CPU, 16 GB Tesla
P100-PCIE GPU, and 16 GB RAM. The source code for this work is publicly available at
https://github.com/portgasray/UL-IFS-LC (accessed on 1 January 2023). In Section 4.1,
we describe the dataset and the definition of the categories. Section 4.2 illustrates the
evaluation metrics for analysis results. Section 4.3 presents an algorithm for automatically
delivering the intent label to the clusters. Finally, the cost function used for finding the
optimal result is described in Section 4.4.

4.1. Dataset

NBI-InfFrames is a dataset acquired with the NBI endoscopic system (Olympus Visera
Elite S190 video processor and an ENF-VH rhino-laryngo videoscope) with a frame rate of
25 fps and image size of 1920 × 1072 pixels [17]. It is the current known labelled dataset
that is access available in the laryngoscopy area.

The dataset contains 720 frames in 4 categories collected from 18 patients affected by
laryngeal squamous cell carcinoma (SCC). Each category consists of 180 frames, informative
(I), blurred (B), specular reflection (S), and underexposed (U), Table A1. The dataset was
manually labelled by three human evaluators and split into three folders according to the
following criteria [17]:

• B, frames should show a homogeneous and widespread blur.
• I, frames should have adequate exposure and visible blood vessels; they may also

present micro-blur and small portions of specular reflections (up to 10 per cent of the
image area).

• S, frames should present bright white/light-green bubbles or blobs, overlapping with
at least half of the image area.

• U, frames should present a high percentage of dark pixels, even though small image
portions (up to 10 per cent of the image area) with over or regular exposure are allowed.

Sample images for the four classes are shown in Figure 3. The color intensity bar range
from 0 to 255 of the whole dataset is shown at the bottom.

https://github.com/portgasray/UL-IFS-LC
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(a)B (b) I (c) S (d) U

Figure 3. Visualization of sampled examples in the NBI-InfFrames: (a) B: blurred frame; (b) I: in-
formative frame; (c) S: frame with saliva and specular reflections; (d) U: underexposed frame. The
intensity bar of the dataset is at the bottom.

4.2. Evaluation Metrics

The following metrics will be used to evaluate the classification performance of the
state-of-the-art models and our proposed methods.

Precision(Precclass) =
TP

TP + FP
(9)

Sensitivity(Recclass) =
TP

TP + FN
(10)

F1-score(F1class) =
2

1
Recclass

+ 1
Precclass

=
2TP

2TP + FP + FN
(11)

ROC/AUC, FPR = FP
FP+TN is the x-axis for the false positive rate. TPR = TP

TP+FN is
the y-axis for the true positive rate.

The Calinski–Harabasz Index [53] (Variance Ratio Criterion) is a ratio of the sum of the
inter-clusters (between-group) dispersion and the intra-cluster dispersion (within-group)
for all clusters.

BGSS =
K

∑
k=1

nk × ‖Ck − C‖2 (12)

The between-group sum of squares (BGSS) is a weighted sum of squared distances
between each cluster centroid and the centroid of the whole dataset, where Ck is the centroid
of the cluster k, C is the centroid of the whole dataset, and nk is the number of the data
points in the cluster k.

WGSSk =
nk

∑
i=1
‖Xik − Ck‖2 (13)

The within-group sum of squares (WGSS) calculates the distance between the data
points and the centroid of the same cluster. Xik is the data points in the cluster k, and Ck is
the centroid of the cluster k.

Calinski-Harabasz Index(CH) =
BGSS
K−1

WGSS
N−K

=
BGSS
WGSS

× N − K
K− 1

(14)

Finally, the Calinski–Harabasz Index is calculated from a ratio sum of BGSS and WGSS,
where N is the number of all data points and K is the number of clusters divided by the
algorithm, a big score (CH) indicates a well-separated performance.

The silhouette score [54] analyzes the separation distance between clusters, and the
number ranges from [−1, 1]. A value close to one means the clusters are far away from
each, and vice versa. A negative score [−1, 0] indicates that the data points are assigned to
the wrong clusters.

Silhouette Score(SC) =
(b− a)

max(a, b)
, (15)
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where a represents the mean distance between a sample point and other points in the same
cluster, while b represents the mean distance between a sample point and other points in
the nearest cluster.

4.3. Automatic Cluster Labeling

Evaluating the performance of a clustering algorithm is not as trivial as counting the
precision and recall of a supervised classification algorithm [55]. In this section, we propose
an automatic cluster labeling algorithm to close the gap that compares the two different
kinds of algorithms.

Since the cluster labels have no intention of understanding the ground-truth classes,
we manually assign the meaningful intent label to the clustering result by viewing the
images in the cluster, which is time-consuming and tedious. Before diving deep into the
algorithm, we need to recap some sets and map theories.

Given a set of N unlabeled image instances, which can be denoted as X = {x1, x2, ..., xN},
the N is 720 for the NBI-InfFrames in our experiments. Therefore, the intent classes XG, are
referred to as XG = {XI , XB, XS, XU}. Each class in the NBI-InfFrames can be represented
by XG = {Xj = {x1, x2, ..., x180}|j ∈ {I, B, S, U}}, where I, B, S, U are the categories of the
dataset. There are 180 image instances for each category.

A collection of labelled clusters XC is generated from the clustering methods in the
scheme, XC = {XCi |i ∈ {0, 1, 2, 3}}, where i refers to the four clusters with the inattentive
labels. We can conclude the solution for this problem into a bijections map problem. The
key is to find the mapping relationship from the inattentive labels generated from clusters
XC to the intent classes XG. The mapping function f : XC → XG can be denoted by

∀Xj ∈ XG, ∃!XCi ∈ XC such that Xj = f (XCi ), (16)

where ∃!XCi represents exactly one XCi exists.
The implementation of finding the mapping relationship between cluster pseudo

labels and the intent labels is proposed (Algorithm 2). In addition, we visualize one of the
possible results of the algorithm (Figure 1 EVALUATION).

Algorithm 2 Automatic cluster labeling

Require: XCi ,images grouped by cluster labels;XG,images with meaningful intent labels
Ensure: number of clusters is 4

i← {0, 1, 2, 3}
j← {I, B, S, U}
for each cluster XCi in XC do

for each class Xj in XG do
calculate intersection number of the XCi and Xj, n(XCi ∩ Xj)

end for
find the max intersection number of XCi in XG, max {n(XCi ∩ XG)}
update the mapping relationship, f : i→ j

end for
return f

4.4. Cost Function in Hyperparameter Tuning

Hyperparameter tuning contributes to the performance of the proposed methods,
which exceed the state-of-the-art supervised learning algorithms. As we introduced 4 clus-
tering methods and 3 kinds of dimensionality reduction methods, the Cartesian product of
the two kinds of methods is 12 possible hyperparameter spaces. The mission of the cost
function is to find the optimal combination among these spaces (Algorithm 1).

Bayesian optimization (BO) and random research (RS) are designed for this purpose.
Evidence shows BO 100× sample efficiency gains more than RS [56]. Our trial on the task
finding optimal average sensitivity demonstrated that the BO is faster than RS with 262 s in
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the 200 steps evaluation and 840 s in 500 steps evaluation. Meanwhile, the difference in
average sensitivity between BO and RS is less than 0.3%.

Several strategies are employed to optimize finding the results of the DBSCAN. For
the methods of MinibatchKMeans, agglomerative, and spectral clustering, the proposed
cost function aims to find the best sensitivity. Meanwhile, it penalizes a deviation. For the
DBSCAN, the cost function is used to find the number of clusters, which must be identical
to the ground-truth numbers of the classes.

5. Experiments and Results
5.1. Comparison of Dimensionality Reduction Methods

With the support of the ground-truth label from the NBI-InfFrames dataset, we visual-
ize the feature embeddings using three different dimensionality reduction methods. The
data points of different classes are distinguishable in (b) and (c). In contrast, the points
of class S and class U are overlapped in (a) (Figure 4). We cannot further infer from the
visual inspection that the UMAP is the most favourable. However, the t-SNE and UMAP
are better at visualization than PCA.
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Figure 4. The projections of the feature embedding using different dimensionality reduction methods:
(a) the original feature embeddings projected by PCA; (b) the original feature embeddings projected
by t-SNE; (c) the original feature embeddings projected by UMAP. The four different frame classes
classified by the ground-truth labels are reported (B: blurred frames, I: informative frames, S: frames
with saliva or specular reflections, U: underexposed frames).

To further evaluate the clustering preference of features projected from PCA, t-SNE,
and the UMAP, we introduced the silhouette score (SC) (Equation (15)) for the quantitative
analysis of the methods above. We observed that the original feature embeddings of the data
points in class S and class U are negative (Figure 5a). The situation changed while using the
PCA projection. However, classes B, I, and U are partly negative. Meanwhile, three classes
surpass the average SC, and one is left behind (Figure 5b). Unlike the first two analyses of
the silhouette score, the silhouette analysis of the projected features with t-SNE or UMAP
is beyond the average silhouette score (Figure 5c,d). Moreover, the negative part of the
classes is much less than the first two (Figure 5). Finally, based on the average silhouette
score, the clustering performance of the UMAP projected features is a little better than the
feature embeddings projected by the t-SNE (0.5 versus 0.48, average silhouette score).
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Figure 5. Silhouette analysis for K-means clustering on proposed dimensionality reduction methods.
Different frame classes (B: blurred frames, I: informative frames, S: frames with saliva or specular
reflections, U: underexposed frames) are in different colors. The red dotted line represents the average
silhouette score (avg_sc), and the negative part of the cluster indicates the incorrect clustering. (a) sil-
houette analysis for K-means clustering on vanilla feature embedding (avg_sc = 0.15); (b) silhouette
analysis for K-means clustering on PCA projected feature embeddings (avg_sc = 0.18); (c) silhouette
analysis for K-means clustering on t-SNE projected feature embeddings (avg_sc = 0.48); (d) Silhouette
analysis for K-means clustering on UMAP projected feature embeddings (avg_sc = 0.50).

We can deduce that the cluster performance of the introduced UMAP projected features
is most favourable via the visual inspection and silhouette analysis of the introduced
dimensionality reduction methods. In the subsequent experiments, we combine the cluster
methods and several introduced dimensionality reduction methods and further evaluate
their classification performance with precision, recall, and F1-score. Eventually, we want to
know whether the UMAP is most promising.

Take a typical clustering method as an illustration. The classification performance of
the K-means combined with UMAP is best compared to combine with PCA or t-SNE or
without projection (the median precision Precclass = 92%, recall Recclass = 94%, F1-score
F1class = 93% with respective smallest IQR = 7%, 7%, 5% are reported in Table 1). Mean-
while, the detection of class I is most robust (Recclass = 95%), too, from the perspective of
the task purpose. Such observation also can be found in other experiments (Tables 2 and 3).

Until now, we can conclude that UMAP is better than PCA or t-SNE or without
projection for clustering performance both from qualitative and quantitative analysis
perspectives. The classification performance of the clustering methods coupled with UMAP
is also better than the alternative dimensionality reduction methods, such as PCA and
t-SNE, in terms of precision, recall, and F1-score. Finally, we further compare the different
clustering methods combined with UMAP in the next section.
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Table 1. Classification performance of the feature embeddings using the state-of-the-art dimensional-
ity reduction approaches (PCA, t-SNE, UMAP). Results are evaluated under the K-means clustering
(KM). Precision (Precclass), class-specific recall (Recclass), and F1-score (F1class) are reported for the
different frame classes (B: blurred frames, I: informative frames, S: frames with saliva or specular
reflections, U: underexposed frames) of the NBI-InfFrames dataset. The three metrics’ median and
interquartile range (IQR) are also reported.

Vanilla K-Means PCA + K-Means t-SNE + K-Means UMAP + K-Means

Precclass Recclass F1class Precclass Recclass F1class Precclass Recclass F1class Precclass Recclass F1class
B 0.90 0.97 0.93 0.90 0.97 0.93 0.89 0.97 0.93 0.89 0.98 0.94
I 1.00 0.87 0.93 1.00 0.87 0.93 1.00 0.81 0.89 1.00 0.95 0.97
S 0.94 0.78 0.85 0.94 0.78 0.85 0.88 0.87 0.87 0.93 0.86 0.89
U 0.78 0.97 0.87 0.79 0.97 0.87 0.80 0.89 0.85 0.90 0.93 0.92

Median 0.92 0.92 0.90 0.92 0.92 0.90 0.89 0.88 0.88 0.92 0.94 0.93
IQR 0.13 0.15 0.07 0.13 0.15 0.07 0.11 0.09 0.05 0.07 0.07 0.05

Table 2. Classification performance of the feature embeddings using the state-of-the-art dimensional-
ity reduction approaches. Results are evaluated by Spectral clustering (Spec). Precision (Precclass),
class-specific recall (Recclass), and F1-score (F1class) are reported for the different frame classes (B:
blurred frames, I: informative frames, S: frames with saliva or specular reflections, U: underexposed
frames) of the NBI-InfFrames dataset. The three metrics’ median and interquartile range (IQR) are
also reported. The dash in the cells indicates the failure on the PCA projected features and the t-SNE
projected features.

Spectral Clustering PCA + Spectral Clustering t-SNE + Spectral Clustering UMAP + Spectral Clustering

Precclass Recclass F1class Precclass Recclass F1class Precclass Recclass F1class Precclass Recclass F1class
B 0.25 1.00 0.40 0.25 1.00 0.40 0.31 1.00 0.47 0.89 0.98 0.93
I 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.74 0.85 0.99 0.94 0.97
S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.85 0.88
U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.93 0.92

Median - - - - - - - - - 0.92 0.94 0.93
IQR - - - - - - - - - 0.06 0.07 0.05

Table 3. Classification performance of the feature embeddings using the state-of-the-art dimensional-
ity reduction approaches. Results are evaluated under agglomerative clustering (Agglo). Precision
(Precclass), class-specific recall (Recclass), and F1-score (F1class) are reported for the different frame
classes (B: blurred frames, I: informative frames, S: frames with saliva or specular reflections, U:
underexposed frames) of the NBI-InfFrames dataset. The three metrics’ median and interquartile
range (IQR) are also reported.

Agglomerative Clustering PCA + Agglomerative Clustering t-SNE + Agglomerative Clustering UMAP + Agglomerative Clustering

Precclass Recclass F1class Precclass Recclass F1class Precclass Recclass F1class Precclass Recclass F1class
B 0.89 0.98 0.93 0.91 0.94 0.93 0.89 0.99 0.93 0.89 0.98 0.93
I 1.00 0.83 0.91 1.00 0.83 0.91 0.95 0.92 0.93 0.99 0.94 0.97
S 0.99 0.88 0.93 0.90 0.91 0.91 0.99 0.60 0.75 0.99 0.89 0.94
U 0.84 0.99 0.91 0.84 0.95 0.89 0.71 0.93 0.81 0.94 0.97 0.95

Median 0.94 0.93 0.92 0.91 0.93 0.91 0.92 0.93 0.87 0.97 0.96 0.95
IQR 0.13 0.13 0.02 0.09 0.08 0.02 0.17 0.20 0.15 0.08 0.06 0.03

5.2. Classification Performance Comparison

Based on the prior observations, the clustering methods coupled with the UMAP pro-
jected feature achieved the best performance in clustering and classification. We compared
the different clustering methods (Section 3.3) coupled with UMAP under the ROC/AUC
curve. The comparison results suggest that the agglomerative clustering method obtained
the highest mean AUC score, followed by K-means, spectral clustering, and DBSCAN
(AUC = 96%, 95%, 95%, 94%, respectively, reported in Figure 6a). In addition, the agglom-
erative clustering obtained the best median recall with relatively the smallest IQR among
all clustering methods (Recclass = 95%, IQR = 6% in Table 3). Meanwhile, the proposed
clustering methods coupled with UMAP are beyond the baseline (Figure 6b).
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Figure 6. Classification performance comparison of the proposed methods: (a) receiver operating
characteristic (ROC) curves and area under ROC curve (AUC). The mean area under the ROC curve
(±standard deviation) of each method is reported in the legend; (b) The boxplot of recall (Recclass)
for comparison of the proposed clustering methods. The comparison in terms of Recclass for the
proposed methods and method proposed by [17].

It is worth noting the spectral clustering failed on the PCA and t-SNE projected
features while succeeding in the UMAP case (Table 2). We detailed the classification
performance of precision, recall, and F1-score of the proposed clustering methods coupled
with different dimensionality clustering methods in Tables 1 and 2. An exception is that
DBSCAN differs from the other methods since one cannot specify the number of clusters in
advance. Fortunately, we proposed a cost function in the Bayesian optimization searching
algorithm to approach the exact number of clusters.

In this section, we found that agglomerative clustering coupled with the UMAP
achieved the best classification performance in all clustering methods, and the proposed
methods achieved comparable performance compared to the baseline from the perspective
of statistical significance (p > 0.1, Wilcoxon signed-rank test).

5.3. Comparison with Benchmarks

The agglomerative clustering exceeded the baseline by 12% (Table 4). We were in-
spired to compare the best method in our scheme with several benchmarks on the NBI-
InfFrame [17,38,39].

We can infer from the statistical significance that our method (UMAP + Agglo) is
comparable to the performance benchmarks (Figure 7). Our method (UMAP + Agglo)
achieves identical performance to the current best benchmark in terms of the complete
statistics of recall (p = 1, Wilcoxon signed-rank test).

So far, we can conclude the best method in our scheme, the agglomerative clustering
coupled with UMAP (UMAP + Agglo), obtained a mean AUC = 96% with a standard
deviation (±0.01). For detecting the informative frame (class I), the method achieved a 97%
mean AUC (Figure 8a). In addition, we illustrated the relative confusion matrix of the
method for visualization of the classification results (Figure 8).
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Figure 7. Boxplot of recall (Recclass) for comparing with benchmark studies. We compared our
method (UMAP + Agglo) with [17,38,39] quantitatively using the NBI-InfFrame dataset for evalua-
tion. The difference between the class-specific recall from ours and the other three methods is not
statistically significant (relative p-value is 0.125, 1.000, 0.625, Wilcoxon signed-rank test). The overall
median recall of the proposed method (UMAP + Agglo) outperformed Moccia et al. by 12% absolute.

Table 4. Classification performance of the state-of-the-art methods and our proposed method.
Precision (Precclass), class-specific recall (Recclass), and F1-score (F1class) are reported for the four
frame classes (B, I, S, U). Results from Moccia et al., (2018) [17] proposed SVM with the manually
selected feature set, Patrini et al., (2020) [38] proposed VGG16 fine-tuned method, and Galdran et al.,
(2019) [39] proposed SqueezeNet-based method. The three metrics’ median and interquartile range
(IQR) are also reported.

SVM [17] Fine-tuned SqueezeNet [39] Fine-tuned VGG16 [38] Ours (UMAP + Agglo)

Precclass Recclass F1class Precclass Recclass F1class Precclass Recclass F1class Precclass Recclass F1class
B 0.76 0.83 0.79 0.94 0.94 0.94 0.92 0.96 0.94 0.89 0.98 0.93
I 0.91 0.91 0.91 0.97 1.00 0.98 0.97 0.97 0.97 0.99 0.94 0.97
S 0.78 0.62 0.69 0.93 0.91 0.91 0.93 0.88 0.91 0.99 0.89 0.94
U 0.76 0.85 0.80 0.97 0.94 0.95 0.92 0.93 0.93 0.94 0.97 0.95

Median 0.77 0.84 0.80 0.96 0.94 0.95 0.93 0.95 0.94 0.97 0.96 0.95
IQR 0.09 0.16 0.12 0.04 0.05 0.04 0.03 0.06 0.04 0.08 0.06 0.03
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Figure 8. Classification performance of the proposed method (UMAP + Agglo): (a) for quantitative
analysis, the receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC);
the mean (±standard deviation) area under the ROC curve is reported by the solid blue lines (a grey
area) in the legend. The area under the ROC (AUC) for each class is reported, too; (b) confusion
matrix for the proposed method (UMAP + Agglo); the color bar on the right represents the number
of frames in each class (B: blurred frames, I: informative frames, S: frames with saliva or specular
reflections, U: underexposed frames).
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5.4. Cluster Number Determination

We analyzed the classification performance of the proposed clustering methods, as
we knew the types of informative and uninformative frames. The types of frames may
not be predictable in actual clinical data. Thus, the definition of the informative frame
does not exist. We can hypothesise that the exact number of classes of the NBI-InfFrmae
dataset is unknown. In other words, the dataset is not well-classed. We introduced the
Calinski-Harabasz Index (Equation (14)) to determine the optimal number of clusters.

We observed existing results matched the exact number of classes of the NBI-InfFrmae
dataset. The Calinski–Harabasz Index score in the column of UMAP indicated the optimal
number of clusters is four (Table 5). The result suggested that the proposed scheme can still
achieve comparable performance in the situation of unknown labels of the NBI-InfFrame.

Table 5. Calinski–Harabasz Index (CH) analysis on the cluster number of the K-means coupled
with three state-of-the-art dimensionality reduction approaches. Evaluated methods reported
without dimensionality reduction (vanilla), PCA, t-SNE, and UMAP. The tested cluster number
ranges from 2 to 6.

n_cluster Vanilla↑ PCA ↑ t-SNE ↑ UMAP ↑
2 185.55 226.95 1445.76 1097.70
3 148.47 186.72 1470.55 1285.14
4 122.82 157.26 1696.34 1529.70
5 104.90 136.15 1564.44 1384.12
6 93.23 122.66 1500.42 1357.81

6. Discussion

The purpose of informative frame selection is to detect the informative frames among
all kinds of frames. As the class of the NBI-InfFrame is well-defined in advance, we
intentionally hide the labels of the dataset and proposed an unsupervised learning scheme.
Finally, we evaluated the classification performance of the proposed methods by unfold
the labels.

There are several reasons the agglomerative clustering achieved the best classification
performance in our scheme:

• We extracted the features using a suitable scale convolutional neural network.
• We employed a persevering global-structure features method, which keeps a minimal

number of features for the subsequent clustering.
• The agglomerative clustering maintained a bottom-up fashion dendrogram, which is

efficient for the small dataset.

Since the difference in the classification performance between the clustering meth-
ods is tiny, we finally attributed the success of the proposed scheme to the introduced
dimensionality reduction method, UMAP. Meanwhile, the proposed cost function for the
Bayesian optimization searching algorithm is vital in finding optimal parameters in the
vast space.

Still, we cannot infer from the classification results that the learning-based feature
exaction is superior to the criterion-based one. Most importantly, we revealed an unsu-
pervised scheme that achieved a comparable classification performance to the supervised
learning methods without defining types of frames. However, there are several drawbacks
to this work:

• The introduced metric for cluster number determination needs to be further demon-
strated in the dataset close to the clinical setting.

• The proposed automatic cluster labeling algorithm is conditioned on the number of
clusters, which should be identical to the defined number of the class.

• The cost function in Bayesian optimization aims to find the best average recall of all
classes; thus, the time consumption of the searching algorithm is enormous (Appendix C).
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7. Conclusions

In this work, we developed a novel unsupervised framework, integrated with the
neural network and dimensionality reduction methods coupled with clustering methods,
that can distinguish the informative and uninformative frames from laryngoscopic videos.
An automatic cluster labeling algorithm and a cost function for the Bayesian optimization
are proposed to manifest the classification performance of the framework.

Several experiments were conducted. The comparison result of the different dimen-
sionality reduction methods showed that the t-SNE and UMAP are more suitable than PCA
in our scheme. Furthermore, the UMAP best fits the 4 clusters with an average silhouette
score of 0.5, while the t-SNE is 0.48. The four clustering methods coupled with UMAP
all obtained comparable performance to the baseline. The comparison among the four
clustering methods coupled with UMAP indicated that agglomerative clustering achieved
the best classification performance. An overall median classification recall of 96% among
four frame classes was achieved with 12% over the baseline. Informative video frames
were classified with a recall of 94%. Such performance is comparable to the current optimal
benchmark from the statistical significance perspective. Moreover, the Calinski-Harabasz
Index in the t-SNE and UMAP separately indicates the optimal number of the cluster is the
same as the class number. This evidence motivates the application of the proposed scheme
to vanilla clinical data.

This work stands on the experiments of the NBI-InfFrame; further evaluation exper-
iments on the different datasets can be conducted for the community. In other words,
the effort of the methods to improve the clinical data quality is worthwhile but not only
devoted to machine learning algorithms with manual labeling.
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Appendix A. NBI-InfFrmaes Dataset

Table A1. NBI-InfFrames dataset. The dataset is split into three folders, and each folder contains six
videos (video ID) and 60 images for each class (I, B, S, U). I: informative frame; B: blurred frame; S:
frame with saliva or specular reflections; U: underexposed frame.

Video ID I B S U

Fold 1

1 10 10 20 11
2 10 0 6 9
3 10 0 0 2
4 10 40 23 20
5 10 10 11 3
6 10 0 0 15

total 60 60 60 60
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Table A1. Cont.

Video ID I B S U

Fold 2

7 10 28 19 0
8 10 8 21 5
9 10 3 10 10

10 10 21 10 16
11 10 0 0 14
12 10 0 0 15

total 60 60 60 60

Fold 3

13 10 17 0 10
14 10 21 34 22
15 10 0 11 10
16 10 0 9 5
17 10 12 0 2
18 10 10 6 11

total 60 60 60 60

Appendix B. Understanding UMAP from Cost Function

Uniform Manifold Approximation and Projection (UMAP) is a recently proposed
manifold learning technique for dimensionality reduction. Understanding it can be based
on the t-SNE (Equation (4)). we can rewrite the cost function of t-SNE as

Ct−SNE = ∑
i 6=j

pij log pij − pij log qij. (A1)

Instead of minimizing the original KullbackLeibler divergence, LargeVis [57] maxi-
mizes a likelihood function,

CLV = ∑
i 6=j

pij log wij + γ ∑
i 6=j

log
(
1− wij

)
. (A2)

where the wij is derived from low-dimensional space approximated by the Student t-

distribution qij =
wij

∑k 6=l wkl
, thus wij =

(
1 +

∥∥yi − yj
∥∥2

2

)−1
.

Eventually, we can write the cost function of UMAP as

CUMAP = ∑
i 6=j

vij log

(
vij

wij

)
+
(
1− vij

)
log

(
1− vij

1− wij

)
, (A3)

where vij is derived from the Gaussian distribution pj|i =
vj|i

∑k 6=i vk|i
in the high-dimensional

space, vj|i = exp
(
−
∥∥xi − xj

∥∥2
2/2σ2

i

)
,

vij =
(

vj|i + vi|j

)
− vj|ivi|j. (A4)

Put all together, the cost function of UMAP can be presented in the non-constant form

CUMAP = ∑
i 6=j

vij log vij +
(
1− vij

)
log
(
1− vij

)
− vij log wij −

(
1− vij

)
log
(
1− wij

)
. (A5)

Appendix C. Time Consumption Analysis

Appendix C.1. Feature Extraction

The computational time of the proposed feature extraction method (Section 3.1) is
∼0.03 s for 720 images, while the one image computational time is ∼0.03 s
(Moccia et al. (2018) [17]).
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Appendix C.2. Hyperparameter Tuning

The proposed cost function used for Bayesian Optimization (BO) searching (Section 4.4).

Table A2. The parameters and the CPU time of the clustering methods coupled with UMAP.

K-Means Agglomerative Spectral DBSCAN

Parameters (num) 4320 35,840 26,880 54,000
CPU time (sec) 13,078 37,523 37,039 19,940

BO search (step) 1000 5000 3000 2000
CPU time (sec) /per

step 13.08 7.50 12.35 9.97
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53. Caliński, T.; Harabasz, J. A Dendrite Method for Cluster Analysis. Commun. Stat. 1974, 3, 1–27. .
03610927408827101. [CrossRef]

54. Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math.
1987, 20, 53–65. [CrossRef]

55. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

56. Turner, R.; Eriksson, D.; McCourt, M.; Kiili, J.; Laaksonen, E.; Xu, Z.; Guyon, I. Bayesian Optimization Is Superior to Random
Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020. arXiv 2021,
arXiv:2104.10201. https://doi.org/10.48550/arXiv.2104.10201.

57. Tang, J.; Liu, J.; Zhang, M.; Mei, Q. Visualizing Large-scale and High-dimensional Data. In Proceedings of the 25th International
Conference on World Wide Web, Montréal, Québec, QC, Canada, 11–15 April 2016; pp. 287–297. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/ 03610927408827101
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1145/2872427.2883041

	Introduction
	Early Diagnosis and Narrow-Band Imaging
	Informative Frame Selection for CADx
	Organization

	Related Work
	Criterion-Based Feature Extraction
	Learning-Based Feature Extraction
	Contributions

	Methods
	Feature Embedding
	Dimensionality Reduction
	PCA
	t-SNE
	UMAP

	Clustering
	Agglomerative
	K-Means
	Spectral Clustering
	DBSCAN


	Evaluation
	Dataset
	Evaluation Metrics
	Automatic Cluster Labeling
	Cost Function in Hyperparameter Tuning

	Experiments and Results
	Comparison of Dimensionality Reduction Methods
	Classification Performance Comparison
	Comparison with Benchmarks
	Cluster Number Determination

	Discussion
	Conclusions
	Appendix A
	Understanding UMAP from Cost Function
	Time Consumption Analysis
	Feature Extraction
	Hyperparameter Tuning

	References

