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Abstract: The retinal vessels in the human body are the only ones that can be observed directly by
non-invasive imaging techniques. Retinal vessel morphology and structure are the important objects
of concern for physicians in the early diagnosis and treatment of related diseases. The classification
of retinal vessels has important guiding significance in the basic stage of diagnostic treatment. This
paper proposes a novel method based on generative adversarial networks with improved U-Net,
which can achieve synchronous automatic segmentation and classification of blood vessels by an
end-to-end network. The proposed method avoids the dependency of the segmentation results in the
multiple classification tasks. Moreover, the proposed method builds on an accurate classification of
arteries and veins while also classifying arteriovenous crossings. The validity of the proposed method
is evaluated on the RITE dataset: the accuracy of image comprehensive classification reaches 96.87%.
The sensitivity and specificity of arteriovenous classification reach 91.78% and 97.25%. The results
verify the effectiveness of the proposed method and show the competitive classification performance.

Keywords: retinal vessel classification; fundus image; GAN; U-Net; image segmentation

1. Introduction

According to the “World Vision Report” issued by WHO, at least 2.2 billion people
in the world are visually impaired or blind, and nearly half of the visual impairments
could be avoided through early prevention [1]. By 2020, the number of glaucoma patients
reached 796 million worldwide, and age-related macular degeneration patients numbered
200 million people [2,3]. The number of patients with diabetic retinopathy is expected
to reach 200 million by 2035 [4]. However, the noted irreversible blinding diseases can
be prevented and treated in advance by an ophthalmologist’s examination of the ocular
fundus [5]. In this relevant examination, the pattern and structure of retinal vessels are
important clinical characterizations. In addition, retinal blood vessels in the human body are
the only blood vessels that can be directly observed with non-invasive imaging technology.
The morphology is also affected by various factors of cardiovascular disease, hypertension,
arteriosclerosis, and other systemic diseases [6–8]. The changes in retinal vessels, including
vascular caliber, branch morphology, and arteriolar-to-venular diameter ratio (AVR), can
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be used as the diagnostic basis for vascular related diseases. For example, the method of
observing the aspect ratio of retinal arterioles and the asymmetry of venous branches is
an early monitoring method for Alzheimer’s disease [9]. The risk value of coronary heart
disease and other diseases is also associated with the ratio of arteriovenous diameters [10].
In addition, arterial stenosis in the cerebrovascular network is significantly correlated with
retinal arteriolar diameter [11].

Therefore, it is of great significance to classify the retinal vessels accurately for the
prevention and observation of many diseases. However, early retinal vessel segmentation
and classification mainly rely on manual labeling by professional doctors [12], which
requires a lot of time and effort. Moreover, due to the reliance on subjective criteria,
the results of segmentation and classification can be different. Automatic segmentation
and classification of retinal vessels can greatly reduce the workload of doctors and can
also avoid the impact of different doctors’ subjective factors on the classification results.
With the development of computer vision technology, there are many methodologies for
retinal vessel segmentation, including image filtering technology [13,14], machine learning
algorithm for feature extraction [15], and neural network research [16]. However, related
work that is dedicated to the classification of arteriovenous vessels is significantly less than
that on vascular segmentation [17].

U-shaped convolution network (U-Net) [18] is widely used in the field of fundus
blood vessel segmentation because of its excellent effect in the field of medical image
segmentation. Specifically, the U-Net network is superior to convolutional neural network
(CNN) and the fully convolutional networks (FCN) networks in the field of retinal vessel
segmentation [19]. At the same time, generative adversarial network (GAN) has also been
widely used in the field of fundus images and has been proven to be beneficial for various
tasks [20]. In recent years, the GAN network has made good progress in the field of medical
image segmentation. Some proposed GAN also obtained high accuracy for retinal vessel
segmentation [19]. In addition, the atrous spatial pyramid pooling (ASPP) module enables
the network to expand the receptive field and capture multi-scale contextual information
without increasing the complexity of the algorithm parameters. It also reduces the loss of
detailed information, which makes the vascular feature information better preserved and
can enrich the microvascular information. In the task of blood vessel segmentation and
classification, the number of pixels in the background of the fundus image is far greater
than the number of blood vessels. In order to make the network pay more attention to
the generation of blood vessel pixels, the attention module is also designed to be added
to the network structure. At the same time, residual connections are introduced into the
downsampling process of the U-Net of a generator network to alleviate the problem of
gradient disappearance and increase the sensitivity of the generator network to weight
changes, which makes the generator improve the vascular classification effect. In addition,
low contrast is a major obstacle to the retinal image in optical imaging [21]. Before network
classification, the preprocessing operations need to be conducted to enhance the contrast of
the data.

To summarize, the contributions and novelty of the present study are highlighted
as follows:

1. A model based on GAN and improved U-Net is proposed for the automatic end-to-end
classification of fundus arteriovenous vessels. The introduction of ASPP and attention
modules can also improve the classification capability of the model. The classification
results of the proposed model are highly competitive.

2. A local contrast enhancement method was used to preprocess the input images.
Through preprocessing, the problems of low overall brightness and poor contrast
between blood vessels and background of the original fundus image data were solved.
The effectiveness of this method was verified by ablation experiments.

3. The proposed method allows simultaneous classification of vessel crossings in fundus
images in addition to the classification of arterioles, which is innovative in the study
of fundus vascular classification.
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The experimental materials used in this study are described in detail in Section 3.
The design of the network model and the experimental process are described in Section 4.
The results obtained are reported in Section 5. Section 6 summarizes this article.

2. Related Work

Although extensive research has been carried out in the field of retinal vessel seg-
mentation, little attention has been paid to the field of automatic classification of retinal
vessels [22]. Based on the existing research, the methods of retinal artery and vein classifi-
cation can be divided into two categories: traditional machine learning based methods and
depth learning based methods.

(A) Traditional Machine Learning Based Methods

Manual features. In the research of vessel classification based on traditional machine
learning methods, it is usually necessary to manually extract features and then classify
arteries and veins. It is often accompanied by some post-processing steps. Sathanan-
thavathi et al. [23] extracted features manually according to the morphological structure
of retinal vessels; the BAT evolutionary algorithm and the random forest classifier were
used for main feature determination and classification, respectively; and, finally, the post-
processing was used at the bifurcation of retinal vessels. Srinidhi et al. [24] and Xu et al. [25]
also used manual features combined with random forest classifier to classify arteries and
veins. Vázquez et al. [26] used the optic disc to divide the retinal vessels into many seg-
ments, and then the vessel segments were classified by color information, and the final
classification result of whole blood vessel was determined by voting of the connected blood
vessel segments.

Graph-based methods. Welikala et al. [27] avoided the use of hand-crafted fea-
tures. The vascular network was first segmented from the retinal image. Bifurcations
and crossover points were searched based on the retinal vascular skeleton, and vessel
segments were segmented using the centerline. Finally, the vessel segments were fed into a
convolutional neural network based on three convolutional and three fully connected layers
to achieve the arteriovenous classification of retinal vessels. The classification rate with
47 features (the largest dimension tested) using OLPP in their own ORCADES dataset is
only 90.56%, and the classification rate in the public dataset DRIVE is 86.7%. Zhao et al. [28]
constructed the graph through image segmentation, skeletonization, and identification of
significant nodes. They formalized the topology estimation and A/V classification into a
pairwise clustering problem. The classification of blood vessels was effectively realized.

(B) Deep Learning Methods

Segmentation first and then classification. With the continuous development of deep
learning, convolutional neural network has also been applied in the field of retinal vessel
classification. Especially after U-Net [18] was proposed, it has performed well in the field
of retinal vessel segmentation and classification, which leads to the realization of pixel-level
segmentation and classification of fundus images. Li et al. [29] regarded arteriovenous
classification as a three-classification task. First, the fundus image was preprocessed using
the fuzzy removal technology, and then the image was classified by using the improved
U-Net network. In order to improve the classification accuracy, the tracking algorithm was
used as the post-processing method to further classify the blood vessels. Binh et al. [30]
also regarded arteriovenous classification as a three-classification task,the improved U-Net
model was used to classify retinal vessels, and the method of graph cutting was used for
post-processing; the accuracy of their method is about 97.6%.

End-to-end classification. Morano et al. [31] decomposed the joint task into three seg-
mentation problems: arteries segmentation, veins segmentation, and vessel segmentation.
Their classification network consisted of the straightforward application of an FCNN with
a custom loss. The accuracy of classifying retinal vessels reached 95.45%. Galdran et al. [32]
used CNN as a task classification network. The previously segmented vascular tree did not
need to be included in their classification method. Fully automatic classification of retinal
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blood vessels was achieved. They also proposed a classification of uncertain blood vessels.
For the benefit of retrieval, the investigation of comparison is concisely summarized in
Table 1.

Table 1. Summary of contemporary retinal vessel classification methods.

Method Category Pros and Cons Examples

Traditional

Manual features

The extracted vascular features
can be explained, but feature

processing requires more
professional knowledge of

fundus vascular medicine and
images

[23–26]

Graph-based methods

The interpretable features can
be extracted automatically,

and the vascular segments are
classified. However, accurate

segmentation at the pixel level
is not achieved

[27,28]

Deep learning

Segmentation first and then
classification

The accuracy of classification is
good, but the vascular

classification task is divided
into multiple subtasks, and the

errors in the vascular
segmentation subtask will be

directly transmitted to the
vascular classification subtask

[18,29,30]

End-to-end classification

Automatic blood vessel
segmentation and pixel-level

classification are implemented
synchronously, but the amount
of related research is insufficient

[31,32]

3. Experimental Materials and Preprocessing
3.1. Dataset

The Retinal Images vessel Tree Extraction (RITE) dataset [33] is used in this work,
which is derived from the DRIVE dataset [34]. It has been widely used as evaluation criteria
in research fields such as retinal vessel segmentation, vessel extraction, and vessel classifi-
cation. As shown in Figure 1, the RITE dataset is composed of four parts: fundus image,
mask image used to extract the region of interest, the vessel trees manually segmented,
and the A/V reference standard. The A/V reference standard is generated by marking
each vascular pixel. In Figure 1d, red represents artery (A), blue represents vein (V), green
represents crossing parts of artery and vein (O), and white represents uncertain vessel (U),
with a resolution of 565 × 584 pixels.

Figure 1. Examples of RITE dataset: (a) fundus images; (b) ROI mask; (c) ground truth of vessel
segmentation; (d) ground truth of vessel classification.
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3.2. Preprocessing

The collection process of image datasets inevitably has problems such as uneven
lighting and noise. Similarly, the fundus image dataset is limited by imaging conditions
such as low overall illumination and low contrast between blood vessels and background.
These problems will have negative impacts on the further classification of fundus images.
Therefore, this paper uses adaptive contrast enhancement (ACE) [35] to preprocess the
original retinal fundus image.

The ACE algorithm divides the image into high frequency and low frequency. The low
frequency part is obtained by smoothing, blurring, and other low-pass filtering methods.
The high frequency part is directly obtained by subtracting the low frequency part from the
original picture. In ACE, the high frequency part is amplified and added to the original low
frequency part to obtain the enhanced image. The color constancy and brightness constancy
of the enhanced image are improved, and the image contrast is changed. The details of
ACE are as follows:

y(i, j) = mx(i, j) + G(i, j)[x(i, j)− mx(i, j)], (1)

where x(i, j) represents the pixel value corresponding to the image coordinate (x, j) before
preprocessing; mx (i, j) represents the low-frequency part, [x(i, j) − mx (i, j)] represents
the high-frequency part, and G(i, j) represents the high-frequency amplification coefficient
(contrast gain).

The low-frequency part represents the local average value of the area with the window
size of (2n + 1) × (2n + 1) centered on the image coordinate (x, j) pixel. The specific formula
is as follows:

mx(x, j) =
1

(2n + 1)2

i+n

∑
k=i−n

j+n

∑
l=j−n

x(k, l) (2)

According to the relevant research on ACE [36], the high-frequency amplification
coefficient G(i, j) is defined as a variational constant, which is inversely proportional to the
local mean square error, as shown in Equation (3).

G(x, j) = α
δ

σx(x, j)
, (3)

where the value of δ is equal to the global mean square error of the image, which can reflect
the dispersion of the image pixel value and the mean value. Constant α coefficient can
linearly adjust the total amplification coefficient. The expression δx (i, j) represents the local
mean square deviation, which can reflect the contrast change of the gray value of each pixel
in the local area of an image. The expression of σ is shown in Equation (4).

σx(x, j) =

√√√√ 1
(2n + 1)2

i+n

∑
k=i−n

j+n

∑
l=j−n

[x(k, l)− mx(x, j)]2 (4)

In addition, in order to avoid noise amplification or pixel value saturation caused by
small local variance of the local part of image smoothing, the maximum value of G(i, j) is
limited. The setting of the maximum of G(i, j) and the effects of all parameters is discussed
in Section 5.5. The fundus images before and after preprocessing are shown in Figure 2.
By comparing the original image, it can be seen that the contrast between the vascular pixels,
especially the microvascular pixels and the background pixels, is significantly enhanced
after preprocessing.
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Figure 2. Two examples of fundus images before and after preprocessing: (a,c) original fundus image;
(b,d) fundus image after preprocessing.

4. Methods
4.1. Method Architecture Overview

The overall flow chart of the proposed method is shown in Figure 3. In the proposed
method, ACE is used to preprocess the original retinal fundus image before performing
network training and testing. The proposed model is designed using GAN. GAN is
based on the idea of dynamic adversarial and can be divided into the generator and the
discriminator parts. In this paper, the modified U-Net network is used as the generator and
the convolutional network is used as the discriminator.

Figure 3. The overall flow chart of the proposed method.

The generator is used to generate the vessel classification prediction result from the
input training fundus image data, which is labeled as Fake Image. The corresponding
Real Image is the ground truth of vessel classification from trained fundus image data.
The discriminator is used to discriminate the image source, and the discriminated results
are marked as Real and Fake. Being marked as Real means the image comes from the
real vascular classification data Real Image, and being marked as Fake means the image
come from the vascular classification data Fake Image, which is generated by the generator.
By repeatedly training the generator and discriminator, the Fake Image will be as close to
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the Real Image as possible. When the discriminator cannot distinguish between real and
false numbers, the required vessel classification network training is completed.

4.2. Network Structure

The design details of GAN are described in this section. The U-Net [18] network is
used as the main design of the generator. The structure of the designed generator network
is shown in Figure 4. The atrous spatial pyramid pooling (ASPP) [37] module is added to
the downsampling process of the U-Net network. The attention module is introduced at
the skip link of the U-Net network. To alleviate the problem of gradient disappearance,
residual connections are introduced into the downsampling process of the U-Net network.
The residual connections helps to increase the sensitivity of the generator network to weight
changes, which makes the generator fully learn the distribution of retinal vascular pixels
and improve the vascular classification effect.

The main role of the discriminator is to provide a descent gradient for the generator.
Complex discriminator gradients will cause the gradient of the generator to disappear,
which will not achieve effective adversarial training [38]. In this paper, ordinary convolu-
tional networks are used as a discriminator, with the structure shown in Figure 5.

Figure 4. Improved U-Net network used as the generator (the ASPP Module is shown in Figure 6,
and the Attention Module is shown in Figure 7).

Figure 5. Discriminator network used.
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4.2.1. ASPP Module

The original U-Net network uses downsampling to expand the receptive field while
reducing the resolution, but the pooling layer of traditional convolution in U-Net will
lose the details of retinal images, which leads to problems such as incomplete microvessel
segmentation and susceptibility to breakage. In this paper, the ASPP module is added,
which utilizes dilated/atrous convolution with multiple expansion rates to stack into a
pyramidal structure instead of normal convolution. The structure of the ASPP module
is shown in Figure 6. The structure enables the network to expand the receptive field
and capture multi-scale contextual information without increasing the complexity of the
algorithm parameters. It also reduces the loss of detail information, which makes the
vascular feature information better preserved and can enrich the microvascular information.

Figure 6. The structure of the ASPP module.

4.2.2. Attention Module

In the vascular classification task, the number of background pixels far exceeds the
number of vascular pixels. The downsampled extracted feature maps are spliced directly
with upsampling in the skip connection of traditional U-Net. Such a design produces a
lot of redundant information and also leads to the deterioration of the extracted features.
Inspired by Ashish Vaswani [39], the attention module is added to each skip to suppress
excessive irrelevant information and make the model more concerned with the generation
of vascular pixels. The details of the attention module are shown in Figure 7. In the figure,
X is the feature map from downsampling and Y is the feature map from upsampling. After
1 × 1 convolution operation, X and Y are summed to highlight the features. After passing
through ReLU and Sigmoid, the highlighted features are ranged between 0 to 1, which is
the attention weight. It is assigned to the low-level feature after the attention weight is
multiplied with X, and the attention allocation is achieved.

Figure 7. The structure of the attention module.
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5. Experiments and Results

In this section, the experiments and results of the proposed method on the RITE
dataset are detailed. Before going into the details of the implementation, the metrics
to quantitatively evaluate the vascular classification results are described in Section 5.1.
To ensure the validity of the proposed method, an ablation study is also described in
Section 5.4. In addition, the effects of the parameters about the preprocessing are discussed
in Section 5.5.

5.1. Evaluation Metrics

Considering the multiple cases of actual and predicted values in fundus images, a con-
fusion matrix applicable to vascular classification studies is established, shown in Table 2.
Because the proportion of arteriovenous crossing (A-V crossing) pixels and uncertain vessel
pixels in fundus images is small, they are classified together as an uncertain vessel category.

Table 2. The confusion matrix for vascular classification of fundus images.

Forecast Classification Results
Actual Category A (Artery) V (Vein) U (Uncertain Vessel) B (Background)

A (Artery) TA FVa FUa FBa
V (Vein) FAv TV FUv FBv

U (Uncertain vessel) FAu FVu TU FBu
B (Background) FAb FVb FUb TB

According to the assessment methods widely used in the field of vascular classifica-
tion [29,40–43], sensitivity (Sens), specificity (Spec), and accuracy (Acc) are used to assess
the performance of the classification; the arteries are set as positive and the veins are set as
negative. Sens, Spec and Acc are defined as follows:

Sens =
TA

TA + FVa
(5)

Spec =
TV

TV + FAv
(6)

Acc =
TA + TV

TA + FVa + TV + FAv
(7)

In order to quantitatively analyze the accuracy of uncertain vessels (including A-V
crossing) classification, the index Acc U is also introduced. To reflect a more comprehensive
performance, the overall accuracy Acc all and the background segmentation accuracy Acc B
are added to evaluate the performance of the overall prediction of fundus images and the
performance of the segmentation performance of non vascular pixels; Acc U, Acc All, and
Acc B are defined as follows:

Acc U =
TU

TU + FVu + FAu
(8)

Acc All =
TA + TV + TU + TB

(TA + FAv + FAu + FAb + TV + FVa + FVu + FVb + TU + FUa+
FUv + FUb + TB + FBa + FBv + FBu)

(9)

Acc B =
TB

TB + FAb + FUv + FVb
(10)
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5.2. Implementation Details

Twenty color fundus images of RITE are selected randomly as the training set, and the
remaining images are used as the test set. To increase the training data, a series of data
enhancement operations such as horizontal flipping and rotating the images was performed.
The network implementation is based on the Python language and the Pytorch framework,
and the model is trained on a PC with a core i9-12900k CPU (3.8 GHz) and NVIDIA
RTX3090-24GGPC (32 GB of RAM). During training, the batch size was set to 1, the learning
rate was 0.0008, and the optimizer was Adam. The experiment was trained for a total of
855 iterations and took about 7 h.

5.3. Classification Results

The classification results of the proposed model on the RITE retinal images are pre-
sented in Figure 8. The validity of the proposed method is demonstrated by comparing the
network prediction results of fundus images with the ground truth of vessel classification
from the medical professional. In addition to the crude arteriovenous vessels, microvessels
can also be more effectively and accurately classified. The details of the microvessel clas-
sification are magnified in Figure 8d. As described in Section 5.1, the results of the data
quantified by the six evaluation metrics are shown in Table 3.

Figure 8. Example of vessel classification results of RITE fundus image dataset: (a) the original retinal
fundus image; (b) ground truth of vessel classification; (c) vessel classification results of proposed
method; (d) detail amplification of microvascular region.

Table 3. Vessel classification assessment results.

Formula Index Result Comments

(1) Sens 91.78% The ability to classify arteries
(2) Spec 97.25% The ability to classify veins
(3) Acc 96.86% The ability to comprehensively classify the arteries and veins
(4) Acc U 63.23% The ability to classify uncertain vessels (including A-V crossing)
(5) Acc All 96.87% The ability to accurately classify the whole fundus image
(6) Acc B 98.88% The ability to classify non-vascular regions

In Table 4, the experimental result is compared with the results of related studies
based on the three important evaluation statistics of Sens, Spec, and Acc. As can be seen
from Table 4, the proposed method outperforms most models in all evaluation metrics and
achieves the highest scores on Acc and Sens. It shows the competitive performance of the
proposed method compared to state-of-the-art methods. The evaluation metric Sens can
be used to indicate arterial classification performance. The value of Sens of the proposed
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classification method increased to 91.78%, which proves the advantages of the proposed
method in arterial classification performance. Among the methods, Morano et al. [31]
designed an FCNN classification network with custom losses. Their method has a greater
classification performance for veins. The value of Spec was increased to 98.67% in their
method. However, the value of Sens only reached 78.07%. The balance between arterial clas-
sification and venous classification is the worst compared with other methods. The value
of Sens also decreased by 13.71% compared with the proposed method.

Table 4. Comparison of the assessment results for the related advanced arteriovenous classification.

Methods Acc Sens Spec Datasets A-V Crossing Years End to End

Xu et al. [44] 92.30% 90.00% 90.00% RITE No 2017 No
Dashtbozorg et al. [25] 87.40% 73.00% 84.00% DRIVE No 2014 No
Kang et al. [41] 90.81% 88.63% 92.97% RITE No 2020 No
Huang et al. [45] 72.00% 70.90% 73.80% DRIVE No 2018 No
Galdran et al. [32] 89.00% 89.00% 90.00% RITE Yes 2019 Yes
Morano et al. [31] 96.05% 78.07% 98.67% RITE No 2021 Yes
This work 96.86% 91.78% 97.25% RITE Yes 2023 Yes

The best results are highlighted in bold.

In the whole fundus image, the pixel of A-V crossings is a small proportion. As such,
the corresponding classification training samples that can be obtained are few. Therefore
the accurate classification of the A-V crossings is a greater challenge. In most current studies
of fundus image classification [31,32,43–45], the identification of the A-V crossings region is
not considered. However, A-V crossings are an area of concern for physicians. For example,
the retinal crossover sign is one of the common alterations of retinal vessels in the fundus of
hypertensive eyes [46]. The phenomenon of compression at the A-V crossings regions is the
retinal arteriovenous crossing sign. When the A-V crossings are compressed, they are called
retinal arteriovenous crossings signs. Therefore, A-V crossings also need to be considered
in the classification studies of retinal vessels in the fundus images. The classification results
of the A-V crossings are shown in Figure 9. The results show that A-V crossings far from
the optic disc regions would enable a more accurate classification. However, due to the
dense and complex distribution of blood vessels near the optic disc, the classification in
these regions is not ideal.

Figure 9. Details of A-V crossings classification results (the areas bounded by the blue rectangle
is the examples near the optic disc, the areas bounded by the green rectangle is the examples far
away from the optic disc). (a,g) A-V crossing classification results; (b,f) ground truth of A-V crossing;
(c,e) fundal images of A-V crossing locally; (d) fundus image.
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5.4. Ablation Study

In order to verify the effectiveness of the proposed preprocessing and network im-
provement modules, six sets of ablation studies are conducted on the RITE dataset. The re-
sults of the ablation studies are shown in Table 5. The baseline model is the backbone
network, where the original U-Net network is used as the generator network. Compared to
baseline, adding residual connections RS improved Acc by 3.64% and Sens by 7.23%. Af-
ter the addition of the ASPP module (ASPPM), Acc was improved by 3.10%, and Sens/Spec
were improved, respectively, by 15.74%/3.02%. The addition of the attention module
(AttM) increased Acc/Sens/Spec by 4.56%/14.66%/4.58%. Combining the residual connec-
tions, the ASPP module, results in an overall improvement for Acc/Sens/Spec/Acc U by
4.91%/16.59%/5.54%/7.78%, which verified the effectiveness in the improved network.
Moreover, with the preprocessing method (Pre), the results of Acc, Sens, and Acc U reach the
optimum. In summary, the proposed method is verified to have potential in the vascular
classification task.

Table 5. Ablation study results of baseline and improved network.

Methods Vessel Classification
Baseline RS ASPPM AttM Pre Acc Sens Spec Acc U

Yes No No No No 91.13% 72.67% 92.33% 52.08%
Yes Yes No No No 94.77% 79.90% 96.61% 54.31%
Yes No Yes No No 94.23% 88.41% 95.35% 58.98%
Yes No No Yes No 95.69% 87.33% 96.91% 57.11%
Yes Yes Yes Yes No 96.04% 89.26% 97.87% 59.86%
Yes Yes Yes Yes Yes 96.86% 91.78% 97.25% 61.23%

5.5. Discussion

In Equation (1), G(x, j) represents the high-frequency amplification coefficient (con-
trast gain). When it is a fixed constant, the high-frequency part is amplified in the same
proportion. An overexposure phenomenon occurs in over-enhanced areas such as the edge
of the fundus image and the center of the optic disc, as shown in Figure 10a. To avoid this
phenomenon, the high-frequency amplification coefficient G(x, j) is defined as a variational
constant in this work, which is inversely proportional to δx (i, j), as shown in Equation (3);
δx (i, j) represents the local mean square deviation, and its value is directly related to n.
Figure 10b shows an example of a result where n is equal to 50; the overexposure phe-
nomenon at the edge of the fundus image and the center of the optic disc is significantly
improved compared with Figure 10a. Due to the addition of δx (i, j), the high frequency
amplification factor G(x, j) becomes a variable of spatial adaptation. In places where the
image changes violently, the high-frequency amplification coefficient decreases accordingly,
which can avoid the Ringing effect.

Figure 10. Examples of fundus images before and after preprocessing: (a) example of the overex-
posure phenomenon; (b) example of n equal to 50; (c) example of α equal to 0.01; (d) example of
excessive noise.
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The function of α is to linearly adjust the value of G(x, j) to control the enhancement
effect of the preprocessing. For example, the effect of α equal to 0.01 is shown in Figure 10c.
In addition, since G(x, j) is inversely proportional to the local mean squared deviation,
the local mean squared deviation may be small in areas where the image is smooth. If the
local mean squared deviation is too small, and the G(x, j) will become large, which will lead
to noise amplification or pixel saturation (i.e., pixel value exceeds 255). For example, this
phenomenon can be observed easily, as shown in Figure 10d. When the noise is too large,
the tiny vascular regions are greatly disturbed. Therefore, the maximum value of G(x, j) is
limited to obtain better results. After comparing different preprocessing effects, this paper
limits the maximum value of G(x, j) to 5.

As a further detailed supplement, the parameter sensitivity analysis is shown in
Figure 11. According to the analysis, the results show a slightly increasing trend when
n is less than 6, and a significantly decreasing trend when n is greater than 6. When α is
less than 0.9, it has a significant impact on the results, and when α is more than 0.9, it has
a more subtle impact on the results. When the maximum setting is less than or equal to
5, for Acc U has a slight improvement, and other results are slightly affected. When the
maximum setting is greater than 5, all results basically show a downward trend.

Figure 11. The parameter sensitivity analysis.

5.6. Limitations

In fundus images, the pixel and background of blood vessels are not balanced, which is
also a common problem in medical images. In particular, the classification of A-V crossings
are involved in this work. Its content and background are seriously unbalanced, and vas-
cular crossing needs further attention by the network. At the same time, the classification
accuracy is greatly affected by the preprocessing effect, but the data preprocessing needs to
rely on manual adjustment. In the experimental process, we found that when the number
of epochs increases to a higher level, the classification performance for arterial vein and
vascular crossing rapidly decline. In future work, better preprocessing methods and solu-
tions to imbalance problems can improve the accuracy of classification of vascular crossing
and achieve more stable performance.

6. Conclusions

In this paper, a method based on the combination of the GAN and U-Net networks
is proposed for vessel classification of fundus images. This method preprocesses the
input images by ACE to solve problems such as unclear data of original fundus images.
In addition, the confusion matrix established in this study for vessel classification has
reference value for comprehensive analysis and evaluation of prediction results. In the
design of GAN, the original U-Net network is improved by introducing the residual
connection, the null pyramid module, and the attention module. The proposed network
structure not only achieves the end-to-end prediction for arterial and venous vessels,
but also predicts the arterial–venous crosspoint region. Due to the complexity of the optic
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disc region and the small percentage of vascular cross-pixels, there is still much room
for improvement in the accuracy of vascular cross-point recognition. Compared with the
existing end-to-end methods, this study has improved the accuracy of vessel classification,
which is important for retinal vessel classification to 96.86%. Experimental results show that
the proposed method can effectively realize the automatic classification of arteriovenous
and A-V crossings. This can be applied to the basic stage of screening and diagnosis of
retinal vascular related diseases to improve the diagnostic efficiency of doctors, which has
important significance for clinical practice. The proposed model design can also provide
important reference for similar semantic segmentation tasks. In addition, the distribution
of retinal vessels, arteriovenous intersection, and other characteristics have individual
uniqueness, which have potential application value in biological recognition and other
fields. In addition, some reliable future research can be continued based on the advantages
and limitations of our research methods. For example, research directions to improve
the accuracy of A-V crossings are needed. In addition, the fundus image enhancement
method based on depth learning can be tried to solve the disadvantages of data optical
imaging and improve the classification accuracy. Automated measurement of arteriovenous
caliber ratios can be achieved based on arteriovenous classification, which has important
implications for the diagnosis of diabetes.
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