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Abstract: Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of
death in women. Researchers have discovered an increasing number of molecular targets for BC
prognosis and therapy. However, it is still urgent to identify new biomarkers. Therefore, we evaluated
biomarkers that may contribute to the diagnosis and treatment of BC. We searched TCGA datasets
and identified differentially expressed genes (DEGs) by comparing tumor (100 samples) and non-
tumor (100 samples) tissues using the Deseq2 package. Pathway and functional enrichment analysis
of the DEGs was performed using the DAVID (Database for Annotation, Visualization, and Integrated
Discovery) database. The protein–protein interaction (PPI) network was identified using the STRING
database and visualized through Cytoscape software. Hub gene analysis of the PPI network was
completed using cytohubba plugins. The associations between the identified genes and overall
survival (OS) were analyzed using a Kaplan–Meier plot. Finally, we have identified hub genes at
the transcriptome level. A total of 824 DEGs were identified, which were mostly enriched in cell
proliferation, signal transduction, and cell division. The PPI network comprised 822 nodes and
12,145 edges. Elevated expression of the five hub genes AURKA, BUB1B, CCNA2, CCNB2, and PBK
are related to poor OS in breast cancer patients. A promoter methylation study showed these genes
to be hypomethylated. Validation through genetic alteration and missense mutations resulted in
chromosomal instability, leading to improper chromosome segregation causing aneuploidy. The
enriched functions and pathways included the cell cycle, oocyte meiosis, and the p53 signaling
pathway. The identified five hub genes in breast cancer have the potential to become useful targets
for the diagnosis and treatment of breast cancer.

Keywords: gene; molecular diagnostic; prognosis; therapy; database

1. Introduction

Breast cancer (BC) is the most common type of cancer and the second most prominent
cause of cancer-related death in women [1]. According to the World Health Organiza-
tion (WHO), in 2020, there were 2.3 million women diagnosed with breast cancer and
685,000 deaths globally [2]. The lack of improved adjuvant therapy is also a major problem
in reducing the burden of BC patients. Currently, the lymph node involvement, tumor size,
and distant metastasis of the American Joint Committee on Cancer have been extensively
identified, but there is still a need for a globally recognized platform or efficient markers that
can correctly predict the prognosis of BC patients [3]. Even though applying for endocrine
therapy or neoadjuvant chemotherapy, clinic-pathological parameters are commonly am-
biguous, which complicates the judgments of real prognosis [4]. Approximately 70–80% of
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BC patients can be cured, especially when the disease is identified early, while advanced BC
having distant organ metastases is considered incurable with currently available treatment
strategies. Therefore, there is a critical need to find breast cancer biomarkers that can help
to develop better treatment strategies for breast cancer. Comprehensive research is required
to focus on understanding the molecular basis of BC [5].

Since then, many genes have been identified as prognostic and predictive biomarkers
of breast cancer that play a significant role in precise treatment [6,7]. The commonly targeted
drugs used for HER2-positive BC include trastuzumab, lapatinib, tucatinib, trastuzumab
emtansine (T-DM1) and pertuzumab. Many molecular-targeted drugs therapy include the
mammalian target of rapamycin (mTOR)/serine/threonine kinase (AKT)/phosphoinositide
3-kinase (PI3K) signaling pathways, which include bupacoxib, abencoxib, GDC-0068,
alpelisib, and Bez235 [1]. Therefore, vascular endothelial growth factor has found to be as
a key target for anti-angiogenic treatment, and its reported inhibitors such as sorafenib,
sunitinib, and bevacizumab are being utilized for breast cancer therapy [6]. Androgen
receptor (AR)-based targeted therapies can include AR antagonists and AR agonists which
showing prominent results in clinical trials for BC patients [8].

Likewise, the combinations of AR-based targeted treatments with other reagents such
as PI3K inhibitor have been analyzed to overcome resistance to AR-targeted treatments.
In contrast, the targeted treatment strategies have been extensively developed for cyclin-
dependent kinase 4/6 (CDK4/6), BRCA1/2-mutated polyadenosine diphosphate ribose
polymerase (PARP), BTB and CNC homology 1 (BACH1), epidermal growth factor receptor
(EGFR), and so on. However, due to low ratios of responders, tumor heterogeneity, and
drug resistance, there is still a strong need to identify new biomarkers that can help diagnose
and treat BC [1].

Computational analysis is one of the efficient strategies for the comprehensive study
of large databases that include complex genomic information [9]. Our present study used
sophisticated in silico approaches to identify potential prognostic biomarkers that can be
useful for BC. Therefore, this analysis includes the identification of differentially expressed
genes that were overexpressed in BC. The five hub genes obtained were further validated
through promoter methylation, mutation and genetic alterations analysis, which proved
their potential to be prognostic biomarkers. The survival analysis of all these hub genes
showed poorer survival rates among BC patients.

2. Materials and Methods
2.1. Fetching and Preprocessing of Data and Determination of Differentially Expressed Genes
through DESeq2 Analysis

The raw data for the solid normal samples and primary tumor were obtained from The
Cancer Genome Atlas (TCGA). The raw data were pre-processed using bioinformatics tools
and software. The quality assessment of the raw reads was carried out using FastQC (v
0.11.8) to identify the short length reads (adapter content) having low quality and uncalled
biases. The low-quality reads were filtered and trimmed using Cutadapt software tool
(v 3.2) for removing the noise in the data that could affect the results drastically. The
trimmed reads were further aligned against the human reference genome (GRch38/hg38)
using the STAR alignment tool (v 2.7.7a) and is considered as one of the fastest global
alignment tools [10]. In the next step, the mapped reads were quantified to obtain the
read counts corresponding to each gene through featureCounts (v 2.0.1) [11] Finally, the
differentially expressed genes (DEGs) were obtained between solid normal samples and
primary tumors through DESeq2 (v 1.22.1), which provided the quantitative variation in
the expression levels of genes. This process is based on the normalization of the data using
negative binomial distribution [12]. The criteria specified for categorizing the genes as
significantly differentially expressed were the false discovery rate (p-value (adj.) < 0.05)
and |log2FC| > 2.

The flowchart shown below depicts the entire process that was followed in this study
(Figure 1).
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2.2. Investigating the Protein–Protein Interaction Network (PPIN) to Establish the Hub Genes as
Potential Prognostic Biomarkers

The protein–protein interaction network deals with mathematical representations
pertaining to physical contacts established between different cellular level proteins and is
crucial for understanding the processes that are taking place at the cellular level in normal
and diseased states. The STRING database developed for the purpose of constructing
the PPI network was used in this case, and this database uses the differentially expressed
genes as input to provide the required result [13]. The nodes of the network correspond to
differentially expressed genes (DEGs), and the edges constitute the interaction between the
proteins. Cytoscape visualization software was used to visualize the various interactions
and analyze the PPI network [14]. The significance of the interactions in the PPI network
was analyzed through PPI enrichment value < 1.0 × 10−16. A confidence interval <0.4 was
set for constructing the PPIN. For determining the hub genes as prognostic biomarkers, the
cytohubba plug-in, available in the Cytoscape software, was used. Overall, 6 significant
topologies of cytohubba viz. Degree, Maximal Clique Centrality (MCC), Maximum Neigh-
borhood Component (MNC), Edge Percolated Component (EPC), Radiality, and Closeness
were employed. From these five algorithms, the hub genes common among all of these
were finally established using the jVenn online tool [15].

2.3. Analyzing the Gene Ontology (GO) Components and Enriched Pathways Involved in the
Progression of Breast Cancer

DAVID (Database for Annotation, Visualization and Integrated Discovery) is an online
tool for establishing the functional enrichment of overexpressed genes involved in different
disease types [16]. In the case of the present study, the gene list was uploaded in the
database for exploring both GO terms and KEGG pathways involved in breast cancer. The
modified Fisher exact p-value was set to 0.1, and this value aided in the measurement of
gene enrichment in annotation terms. Likewise, the value for count threshold was fixed at
2, and this is the default value in the database. The lesser value of p-value indicates more
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enriched GO terms and KEGG pathways. These terms are considered significant based on
the cut-off value for any term or pathway, which was set at p < 0.05. For visualizing these
obtained components from DAVID, an online server, REVIGO [17], was used. It provided
the treemaps corresponding to biological processes, cellular components and molecular
functions based on the GO IDs and respective p-values of each component.

2.4. Exploring the Epigenetic Regulation of Hub Genes through Promoter Methylation

The analysis of the consequences on the overexpressed genes due to the variations
at the epigenetic level provides an in-depth knowledge about the tumorigenesis and
metastasis of breast cancer. The promoter methylation study provides this information, and
it can be obtained for each gene through an online server, UALCAN [18]. This multi-omics
server dedicated to cancer study employs TCGA datasets, and for the analysis of the present
study, datasets related to breast cancer were employed. The result could be interpreted
based on the beta values that indicate the level of DNA methylation. These values range
from 0 (unmethylated) to 1 (fully methylated). The beta values ranging between 0.5
and 0.7 pertain to hypermethylation, while those between 0.05 and 0.3 correspond to
hypomethylation.

2.5. Identifying the Genetic Alterations of Hub Genes

Different external and internal factors are responsible for causing genetic alterations
such as mutations and copy number alterations, and these alterations result in altering
the DNA sequences and play a pivotal role in the development and progression of cancer,
its metastasis and providing resistance to therapies. In the present study, these genetic
alterations in the hub genes were identified using the cBioPortal online resource, which
contains genomic datasets of patients suffering from different cancer types [19]. The results
pertaining to copy number alterations were obtained from GISTIC (Genomic Identification
of Significant Targets in Cancer) algorithms, which identify the significantly altered regions
across the different sets of patients. These results obtained from GISTIC correspond to the
level of copy number per gene where a value of −2 indicates deep deletion or deep loss and
constitutes homozygous deletion. Similarly, a value of −1 corresponds to shallow deletion
and constitutes a heterozygous deletion. The value 0 corresponds to normal or diploid,
1 corresponds to gain (low-level gain) and 2 corresponds to amplification (high-level
amplification). For visualizing these alterations (mutations and copy number alterations)
obtained for different hub genes, OncoPrints was used. The mutations that occurred in the
intronic region referred to splice site mutation, while those that occurred at the exon/intron
junction referred to splice region mutations.

2.6. Validating the Differential Expression Pattern and Survival Analysis of Hub Genes

GEPIA (Gene Expression Profiling Interactive Analysis), an online web server [20],
was used to obtain the gene expression profiles of all the 5 hub genes in case of patients
suffering from breast cancer. The survival analysis corresponding to these hub genes was
obtained from SurvExpress [21]. The Kaplan–Meier (KM) plot used for visualizing the
survival analyses of all the hub genes (prognostic biomarkers) is based on the univariate
Cox regression analysis, which provides the risk score by categorizing the patients into
low- and high-risk groups.

3. Results
3.1. Determination of Differentially Expressed Genes through Statistical Analysis

The RNA-Seq high-throughput analysis produced 2854 differentially expressed genes
(DEGs) for breast cancer, out of which 1812 were upregulated and 1042 were downregulated.
The upregulated and downregulated genes can be visualized using a Bland–Altman (MA)
plot (Figure 2a). It could be evidenced from the figure that a greater number of DEGs
was found in the positive x-axis showing more upregulated genes as compared to the
downregulated genes in the negative x-axis. The volcano plot (Figure 2b) that provides
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the information about the most significant differentially expressed genes showed that all
the five identified biomarkers in this study were upregulated as they all lie on the right
portion of the plot shown by red dots. The blue dots represents the downregulated genes
viz. NEK2 (NIMA-related kinase 2) and KIF4A (Human kinase family member 4A), and
these two lie on the left portion of the plot. The most significant differentially expressed
gene among these five DEGs was BUB1B having the highest log fold change value in the
deseq2 statistical analysis.
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Figure 2. (a) MA plot of breast cancer representing the log fold change against mean expression using
the DESeq2 dataset. The red dots corresponding to the positive x-axis represent upregulated differen-
tially expressed genes, while those corresponding to the negative x-axis represent downregulated
differentially expressed genes. (b) Volcano plot showing the most significant differentially expressed
genes. The blue color dots on the left portion of the plot represent the downregulated DEGs, red color
dots on the right portion of the plot represent upregulated DEGs, and white color dots at the bottom
portion depict the non-significant DEGs. BUB1B is the most significant DEG based on its highest
value of log fold change.

3.2. Investigation of the Protein–Protein Interaction Network (PPIN) Established the Hub Genes as
Potential Prognostic Biomarkers

The obtained DEGS were used for constructing the PPIN having 822 nodes and
12,145 edges. The average node degree was 29.5, the average local clustering coefficient
was 0.453, and the PPI enrichment p-value was less than 1.0 × 10−16. The PPIN with
the above characteristics is shown below (Figure 3). The five hub genes obtained from
different topologies of cytohubba are AURKA (Aurora Kinase A), BUB1B (BUB1 Mitotic
Checkpoint Serine/Threonine Kinase B), CCNA2 (Cyclin A2), CCNB2 (Cyclin B2), and PBK (PDZ
Binding Kinase) (Figure 4). The values and ranks of the hub genes in these algorithms are
summarized in the table (Table 1). The five hub genes were upregulated in breast cancer,
promoting tumorigenesis and metastasis.
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Figure 4. Important sub-networks and nodes obtained from cytohubba plug-in of Cytoscape software
using six topological algorithms. The top 15 hub genes were evaluated in the PPI network using
these six calculation methods. Red color circles represent the hub genes of interest in this study, and
green color circles represent the adjoining genes obtained from network. (a) Sub-network obtained
from closeness topological algorithm. The nodes in red represent the top-ranked hub genes. (b) Sub-
network and hub genes obtained from degree topological algorithm. (c) Sub-network and hub genes
obtained from EPC topological algorithm. (d) Sub-network and hub genes obtained from MCC
topological algorithm. (e) Sub-network and hub genes obtained from MNC topological algorithm.
(f) Sub-network and hub genes obtained from radiality topological algorithm. The hub genes are
shown in red color in all 6 topologies.
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Table 1. The values of hub genes for various topological algorithms of cytohubba.

Hub
Genes Closeness Degree EPC MCC MNC Radiality

AURKA 192.6 106 38.26 1.65 × 1057 106 6.67

BUB1B 194.7 112 43.76 1.65 × 1057 112 6.62

CCNA2 200.4 109 38.26 1.65 × 1057 109 6.73

CCNB2 190.6 110 41.25 1.65 × 1057 110 6.52

PBK 199.5 115 42.23 1.65 × 1057 115 6.61

3.3. Gene Oncology (GO) Component and KEGG Pathway Enrichment Analysis

The DAVID database provided the components and pathways in which the five hub
genes participated and were enriched. The hub genes were found to be enriched in various
biological processes such as the cell cycle, mitotic cell cycle, cell division, mitotic nuclear
division, and chromosome segregation, and these are some of the most important processes
that promotes tumorigenesis and the metastasis of breast cancer (Figure 5). The biological
processes were ranked based on p-values, and these processes along-with their respective
p-values are tabulated in the table (Table 2).
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Figure 5. Tree map showing the Biological Processes (BP) based on p-values drawn from Revigo in
which the hub genes were significantly enriched. The plot represents highly similar GO terms based
on their respective p-values. Each rectangle in the tree map represents a single cluster representative.
The different clusters are represented by different colors. The size of the rectangles is based on either
the p-value or frequency of the GO terms in the GOA database.
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Table 2. Top 10 significantly enriched biological processes along with their respective p-values.

Biological Process p-Value

GO:0000278~Mitotic Cell Cycle 1.13 × 10−43

GO:1903047~Mitotic Cell Cycle Process 2.43 × 10−43

GO:0022402~Cell Cycle Process 7.17 × 10−40

GO:0007049~Cell Cycle 1.97 × 10−35

GO:0000280~Nuclear Division 1.99 × 10−33

GO:0051301~Cell Division 3.12 × 10−33

GO:0007059~Chromosome Segregation 4.28 × 10−33

GO:0000819~Sister Chromatid Segregation 5.08 × 10−33

GO:0007067~Mitotic Nuclear Division 3.20 × 10−32

GO:0048285~Organelle Fission 1.05 × 10−31

The significant KEGG pathways based on p-values include oocyte meiosis, cell cycle,
progesterone-mediated oocyte maturation, and p53 signaling pathway (Figure 6). Some of
the top-ranked enriched KEGG pathways along with their respective p-values are tabulated
below (Table 3).
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Figure 6. Important KEGG pathways in which the hub genes were significantly enriched.

Table 3. Top 10 significantly enriched KEGG pathways with their respective p-values.

KEGG Pathways p-Value

hsa04110:Cell Cycle 1.71 × 10−15

hsa04114:Oocyte Meiosis 1.27 × 10−4

hsa03030:DNA Replication 1.59 × 10−4

hsa04152:AMPK Signaling Pathway 4.01 × 10−40

hsa03460:Fanconi Anemia Pathway 5.36 × 10−4

hsa03440:Homologous Recombination 0.001599
hsa04914:Progesterone-Mediated Oocyte
Maturation 0.001748

hsa03320:PPAR Signaling Pathway 0.010183
hsa04115:p53 Signaling Pathway 0.012470
hsa04923:Reguation of Lipolysis in Adipocytes 0.011456

3.4. Exploring the Epigenetic Regulation of Hub Genes through Promoter Methylation

Validation of promoter methylation through Student’s t-test between normal and
primary tumor using the UALCAN database revealed that the promoter methylation level
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of BUB1B and CCNB2 was lower than that of the normal samples in breast cancer, which
indicates the higher expression of these hub genes (Figure 7b,d) (p < 0.05) in contrast to that
of AURKA, CCNA2 and PBK having a higher promoter methylation level than the normal
samples (Figure 7a,c,e) (p < 0.05).
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Figure 7. Level of promoter methylation corresponding to 5 hub genes in breast cancer. It provides
the information about whether the overexpressed genes are hypermethylated or hypomethylated
as both play vital roles in the progression and metastasis of breast cancer. The blue color box plot
denotes normal TCGA samples without breast cancer, and the red color box plot represents the
TCGA samples with breast cancer. (a) Methylation level of AURKA gene in which the methylation
levels of tumor samples are higher than those of normal samples. (b) Methylation level of BUB1B
gene in which the methylation levels of tumor samples are lower than those of normal samples.
(c) Methylation level of CCNA2 gene in which the methylation levels of tumor samples are higher
than those of normal samples. (d) Methylation level of CCNB2 gene in which the methylation levels
of tumor samples are lower than those of normal samples. (e) Methylation level of PBK gene in which
the methylation levels of tumor samples are higher than those of normal samples. In all the above
cases, the p-value is less than 0.05 (p < 0.05).

3.5. Findings of Genetic Alterations in Hub Genes

Tumorigenesis mainly occurs due to irremediable mutations in cell structures. These
mutations could be identified through genetic alteration analysis. The alterations may be
in the form of missense mutation, splice mutation, deep deletion, truncating mutation, and
amplification. In case of breast cancer, the percentage alteration of all the five hub genes
varied from 0.7% to 6% (Figure 8a). The corresponding frequency of occurrence of the
genetic alterations shows more frequency of amplification and mutations in all the five hub
genes (Figure 8b). Copy number alterations for breast cancer show most of the alterations
due to diploid, gain, and amplification. The AURKA gene was mostly affected due to
amplification in the genetic materials, while the remaining four hub genes were mainly
altered due to either gain, diploid or in some cases, deep deletion (Figure 9). The details of
genetic alterations and copy number variations are summarized in the table below (Table 4).
Almost all the mutations in these five hub genes were phosphorylated.
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Figure 8. (a) Visualization of genetic alterations of hub genes in breast cancer using OncoPrint. Green
color in the bar plot represents mutation, red color represents amplification, and blue color represents
deep deletion in the cancer patient samples from TCGA. In this figure, AURKA have 6% genetic
alteration having missense mutation in 5 TCGA patient samples and amplification in other samples.
BUB1B have 1.9% genetic alterations which include missense and truncating mutations, amplification
and deep deletion in some samples. CCNA2 have 1% genetic alterations having missense and
amplification. CCNB2 consists of 0.7% alterations mainly consisting of amplification and deep
deletion. PBK gene has 6% alterations having truncating and missense mutations, amplification and
deep deletion in the patient samples. (b) Frequency of genetic alterations in hub genes in breast
cancer. Red color indicates amplification, green color indicates mutations and blue color indicates
deep deletion. (a) The AURKA gene has a more frequent occurrence of amplification in 5% of the
samples and less frequent mutations in only 1% of the samples. (b) The BUB1B gene has more
frequent deep deletion in 1% of the samples, which is followed by less frequent amplification and
mutation each occurring in only 0.5% of the samples. (c) The CCNA2 gene has a higher frequency of
amplification in 0.6% of the samples and mutations in 0.4% of the samples. (d) The CCNB2 gene has
deep deletion having frequent occurrence in 0.4% of the samples and less frequency of occurrence of
amplification in 0.2% of the patient samples. (e) The PBK gene has more genetic alterations due to
deep deletion in 5% of the samples, which is followed by amplification in 0.8% of the samples and
mutation in 0.2% of the samples, respectively.

3.6. Survival Analysis Validation of Prognostic Biomarkers

The aberrant expression of AURKA, BUB1B, CCNA2, CCNB2, and PBK resulted in a
poorer survival rate of breast cancer patients in the high-risk group having a survival rate
of less than 2 years. The survival curves are statistically significant with a p-value < 0.05,
and this p-value is based on a log-rank test (Wilcoxon test). The median survival rate was
less than 2 years for all the five hub genes (Figure 10). For each patient, the risk score was
calculated and ranking was completed accordingly in the TCGA datasets. Patients were
then divided into a high-risk group and a low-risk group. The hazard ratio of the hub
genes indicates the risk associated with the survival of the patients (Table 5). The survival
rate of the patients was found to be the least in case of overexpressed BUB1B having a
survival probability of low-risk patients of only 48%, while those in the high-risk group
had a survival probability only 18%, and the hazard ratio was also the highest as compared
to that of other hub genes.
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Figure 9. Copy number alteration deals with the deletions and amplification of genetic material
fragments. This phenomenon is common in different cancer types and plays a vital role in the
development and progression of cancer. This figure shows the copy number alterations in hub genes
of BRCA. Light blue color dots represent shallow deletion, dark blue dots represent deep deletion,
red dots represent gain, and green dots represent missense mutation. (a) Copy number alterations in
the AURKA gene having most of the changes due to gain and amplification in the genetic materials.
(b) Copy number alterations in BUB1B gene having most of the changes due to diploid, gain and
shallow deletion in the genetic materials. (c) Copy number alterations in CCNA2 gene having most
of the changes due to shallow deletion, gain and diploid in the genetic materials. (d) Copy number
alterations in CCNB2 gene having most of the changes due to gain and amplification in the genetic
materials. (e) Copy number alterations in PBK gene having most of the changes due to gain and
amplification in the genetic materials.
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Figure 10. Kaplan–Meier plots showing the survival analysis corresponding to 5 hub genes in breast
cancer. The patients were divided into high- and low-risk groups. The overexpression of all the hub
genes resulted in the poor survival outcomes, which is less than 3 years for the patients suffering from
breast cancer. The plot in green color indicates the survival of patients in the low-risk group, and the
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plot in red color represents the survival of patients in the high-risk group. The survival curves are
statistically significant with a p-value less than 0.05 (p-value < 0.05). (a) The overexpression of the
AURKA gene indicates a survival probability of 50% for patients in the low-risk group and 25%
survival of the patients in the high-risk group. The positive control has 482 samples, and the negative
control has 480 samples. (b) The overexpression of the BUB1B gene indicates a survival probability of
48% for patients in the low-risk group and 18% survival of the patients in the high-risk group. The
positive control has 483 samples, and the negative control has 479 samples. (c) The overexpression
of the CCNA2 gene indicates a survival probability of 56% for patients in the low-risk group and
18% survival of the patients in the high-risk group. The positive control has 481 samples and the
negative control also has 481 samples. (d) The overexpression of the CCNB2 gene indicates a survival
probability of 54% for patients in the low-risk group and 22% survival of the patients in the high-risk
group. The positive control has 484 samples and the negative control has 478 samples. (e) The
overexpression of the PBK gene indicates a survival probability of 52% for patients in the low-risk
group and 23% survival of the patients in the high-risk group. The positive control has 482 samples
and the negative control has 480 samples.

Table 4. Table summarizing the information related to genetic alterations in breast cancer.

S.
No.

Gene
Name

Types of Genetic
Alterations (%)

Post Translational
Modifications

(PTMs)
Mutation

Type
Mutation

Site
Copy Number

Alteration

1 AURKA

Mutation
(0.24%)

Amplification
(5.29%)

Phosphorylation Missense S98N Diploid
Phosphorylation Missense S4Y Diploid
Phosphorylation Missense S89C Gain

NA Missense A81V Gain
NA Missense L26V Gain

2 BUB1B

Mutation
(0.39%)

Amplification
(0.32%)

Deep Deletion
(1.12%)

NA Missense Q460E Gain
NA Missense L669P Gain
NA Nonsense S564* Diploid
NA FS del D989Mfs*13 Diploid

3 CCNA2

Mutation
(0.49%)

Amplification
(0.62%)

NA Missense R112C Diploid
NA Missense L315P Shallow

Deletion
NA Missense M189I Shallow

Deletion
NA Missense V85F Diploid

4 CCNB2

Amplification
(0.29%)

Deep Deletion
(0.41%)

NA NA NA NA

5 PBK

Mutation
(0.40%)

Deep Deletion
(5.1%)

Amplification
(0.8%)

Phosphorylation

Missense E203K Shallow
Deletion

Missense F40L Shallow
Deletion

Nonsense E295* Diploid
FS del K18Efs*50 Gain

Table 5. Table showing the survival analysis results of hub genes in breast cancer.

S. No. Gene Hazard Ratio (CI)

1 AURKA 1.32 (0.91–2.42)
2 BUB1B 1.85 (1.32–2.92)
3 CCNA2 0.49 (0.40–0.95)
4 CCNB2 0.62 (0.41–1.01)
5 PBK 1.26 (0.90–2.13)

4. Discussion

Cancer is a dreadful disease, and it costs millions of lives every year, more specifically,
breast cancer, which is common among women across the globe. Proper awareness of the
biological insight and better understanding of this cancer type through complex networks
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and signaling might help in the early diagnosis and treatment of breast cancer [22]. This in-
depth understanding was studied in this research work through transcriptome analysis. The
transcriptome analysis paved the way to identify the overexpressed differentially expressed
genes that could be potential prognostic biomarkers of breast cancer that could help in
prohibiting the tumorigenesis and metastasis of breast cancer. The identification of patients
with high risk of breast cancer is important to provide effective and specific treatment.
These above-discussed gene expression profiling concepts will aid in the identification
of novel prognostic biomarkers with greater accuracy [23]. The identified biomarkers
could regulate the analysis of survival of the patients using a Kaplan–Meier plot based
on which the survival probability could be predicted, thereby proving these biomarkers
as potential therapeutics involved in the identification of differentially expressed genes
through the transcriptomic approach. Subsequently, we obtained the protein–protein
interaction network by utilizing these differentially expressed genes to identify the most
prominent hub genes (prognostic biomarkers) viz. AURKA, BUB1B, CCNA2, CCNB2, and
PBK, and these hub genes obtained were found to be upregulated (based on log2fold
change value) in breast cancer. Pathway enrichment analysis further showed the biological
processes and pathways in which these biomarkers were enriched. The survival analysis
predicted poorer prognosis of the patients suffering from these cancer types due to the
overexpression of these prognostic biomarkers. The promoter methylation validation
showed these biomarkers to be hypomethylated in breast cancer and could be a probable
cause of spread of breast cancer and development [24]. Moreover, the analysis of genetic
alterations that provides information pertaining to variations in prognostic biomarkers
could furnish how these changes aid in the progression and metastasis of cancer and its
detection, diagnosis and prognosis [25]. This genetic alterations in the form of mutations
and copy number alterations provided an in-depth understanding of genetic changes in the
biomarkers that resulted in the tumorigenesis and metastasis of breast cancer in patients.

The five potential prognostic biomarkers, i.e., Aurora Kinase A (AURKA), BUB1 Mitotic
checkpoint serine/threonine kinase B (BUB1B), Cyclin A2 (CCNA2), Cyclin B2 (CCNB2), and
PDZ binding kinase (PBK) were upregulated in breast cancer. These genes were enriched
in some of the important biological processes that include mitotic cell cycle, cell division,
regulation of mitotic cell cycle, and chromosome segregation. Chromosome segregation is
a particularly important biological process due to its relation in the development and pro-
gression of cancer. The errors introduced in chromosome segregation during mitosis lead
to chromosomal instability, which is responsible for tumorigenesis, cancer metastasis and
poor prognosis in cancer patients [26]. The abnormal count of chromosomes due to genomic
instabilities plays a pivotal role in tumorigenesis and cancer metastasis [27]. The important
KEGG pathways that participated in tumorigenesis and metastasis showed the enrichment
of the biomarkers in the p53 signaling pathway, cell cycle, oocyte meiosis, progesterone-
mediated oocyte maturation, glucagon signaling pathway, and PPAR signaling pathway.
In this study, it was observed that the potential biomarkers are overrepresented in the cell
cycle KEGG pathway. This improper regulation of cell cycle may result in uncontrolled cell
multiplication, and this phenomenon leads to tumorigenesis and cancer metastasis [28].
The two other important KEGG pathways in which the biomarkers were enriched are
oocyte meiosis and progesterone-mediated oocyte maturation. In the meiosis process, two
more rounds of chromosome segregation (Meiosis I and Meiosis II) are followed by a single
round of DNA replication [29]. At G2 of meiosis I, oocytes are naturally arrested, and this
arrest is broken by the encounter to the progesterone, which is a steroid hormone. This
persuades the maturation of the oocyte and the two meiotic division cycles process to be
resumed [29]. So, it may be inferred that the cell cycle process might be affected due to
an abnormal regulation of meiosis and oocyte maturation. Moreover, this change in cell
cycle had a negative impact on normal activities in the human body resulting in increased
risks of suffering from different types of cancer. Moreover, two genes viz. NEK2 and KIF4A
were downregulated. Although NEK2 has been found to be downregulated in this study, it
has been reported as overexpressed in one of the studies [30,31]. Likewise, the KIF4A gene
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is also downregulated in the following study and found to have a strong correlation with
malignant breast cancer. Hence, it could be a prognostic biomarker for this cancer type [32].

AURKA, an oncogene from the serine/threonine kinase family, is responsible for acti-
vating the process of cell division through mitosis regulation and promoting tumorigenesis
and metastasis in different cancer types, and this property qualifies AURKA as a potential
target in cancer treatment [33,34]. This gene is related to cell cycle progression, and hence,
its inhibition might lead to the regression of breast cancer [35]. This gene was hypomethy-
lated (beta value 0.034), which causes genetic instability and is the primary reason for the
development and metastasis of breast cancer. The mutation is mainly missense type and
occurred at five different mutation sites (S98N, S4Y, S89C, A81V, and L26V), and also this
gene has been identified in amplified regions due to gene amplification, resulting in ge-
netic alterations and phosphorylation. This post-transcriptional modification affects many
significant pathways in which the AURKA gene was enriched, such as the cell cycle, and
played a key role in breast cancer growth and metastasis. So, this altered phosphorylation
could be a potential target for the development of suitable anti-cancer drugs that can inhibit
the progression and metastasis of breast cancer [36]. The diploid and gain copy number
alterations found in this gene also played a role in the development and progression of
breast cancer [37]. The statistically significant (p-value < 0.05) survival analysis showed
poor prognosis in case of AURKA having a hazard ratio > 1 (1.32). The patients in the
low-risk group have a higher survival probability (50%) than those in the high-risk groups
with a survival probability of 25%. The overexpression and poor survival rate indicate
this gene to be a potential predictive biomarker for the early detection and diagnosis of
metastatic breast cancer.

The BUB1B gene plays a vital role in encoding a kinase which is involved in the
spindle checkpoint function, resulting in many cancer forms. In breast cancer metastasis,
the chromosomal instability was found to be the main cause, and this defect pertains to
imperfection in mitotic spindle checkpoints. This process is related to the overexpression of
the BUB1B gene [38]. The BUB1B gene also caused a decrease in the survival probability of
the patients suffering from breast cancer and resulting in metastasis in another study [39].

The DNA methylation showed a higher expression of this gene in breast cancer (beta
value: 0.125). The missense mutation at was formed at two sites (Q460E and L669P) and a
nonsense mutation was formed at another single site (S564*). Another genetic alteration
was amplification with a frequency 0.32% in the breast cancer patients affected due to
the overexpression of this gene in contrast to mutation (0.39%) and deep deletion (1.12%).
The copy number alterations were gain and diploid can, and these are most prominent in
producing cancer. The survival analysis of BUB1B showed a survival probability of 48% in
case of low-risk group patients and 18% in case of high-risk group patients. The hazard
ratio was 1.85, which was very high and proved the overexpression and poor prognosis of
this gene to be a potential prognostic biomarker for breast cancer.

CCNA2 is a protein-coding gene which plays a prominent role in the progression and
distant metastasis of breast cancer and could be a biomarker [40]

CCNA2, which was overexpressed in case of breast cancer and has an oncogenic
role in cancer [41], participates in the tumorigenesis and metastasis of breast cancer. The
promoter methylation showed that the CCNA2 gene was hypomethylated, leading to the
speedy tumor progression and metastasis. The genetic alterations that are involved in the
overexpression of CCNA2 include mutation and amplification. There are missense mutation
at four mutation sites (R112C, L315P, M189I, and V85F). The other genetic alteration, i.e.,
amplification was related to an increased growth of breast cancer cells and further assisted
in its metastasis due to the upregulation of the CCNA2 gene. The copy number alterations
that were associated with this gene include diploid and shallow deletion can, and both of
these are already discussed to promote tumor growth and metastasis. The survival analysis
demonstrated that the overall survival probability of the patients in the low-risk group was
56% compared to the high-risk group, where it was only 18%. The hazard ratio was < 1
(0.49), and this showed that the overexpression of this gene was comparatively less effective
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in case of breast cancer as compared to other biomarkers. However, the survival probability,
particularly in the case of the high-risk group, was associated with poor prognosis, and
hence, this gene could be a significant predictive biomarker for the diagnosis and inhibition
of breast cancer tumorigenesis and metastasis.

The overexpression and oncogenic role of the CCNB2 gene was responsible for the
metastasis of breast cancer. This overexpression of this gene had an adverse effect on the
normal functioning of the cells, and hence, the breast cancer cells metastasized. Moreover,
the promoter methylation level showed a higher expression level of this gene in case of
metastatic breast cancer (beta value–0.06). The genetic alterations consisted of amplification
and deep deletion and took part in the promotion of tumor growth and metastasis. The
survival analysis shows that the expression level of this gene was in a controlled manner.
The survival probability was 54% in the low-risk group of patients, and those in the high-
risk group had a survival probability of 22%. The genetic alteration analysis showed that
only gene amplification participated in producing the genomic instability of this gene. This
higher expression of CCNB2 as shown by the results of promoter methylation and poor
prognosis obtained from the survival analysis demonstrated the efficacy of this gene to be
a suitable candidate for the prediction, diagnosis and treatment of HCC.

The PBK gene, which was also overexpressed, was found to have an association with
the poor survival of patients in different cancer, and this made PBK a suitable prognostic
biomarker and a potential therapeutic target [41].

In the case of breast cancer, the PBK gene was found to be overexpressed, and this
resulted in the progression and probable metastasis of breast cancer to form GBM and HCC.
In one of the latest studies, it was reported that the overrepresentation of the PBK gene
resulted in a poor prognosis of patients suffering from breast cancer [42]. The promoter
methylation level validated the lower expression of this gene in case of breast cancer
(beta value: 0.25). The genetic alteration study further demonstrated the involvement of
amplification, mutation, and deep deletion in producing the overexpression of the PBK gene.
The missense mutation at two mutation sites (E203K and F40L) and nonsense mutation
at a single mutation site (E295*) showed the genomic instability that caused the growth
and metastasis of breast cancer. In addition to mutation, the other two alterations that
were responsible for overexpression include amplification and deep deletion (FS deletion at
K18Efs*50). The phosphorylation post-translational modification was also altered, resulting
in further progression of cancer. The survival analysis showed that the hazard ratio was
1.26. The survival probability of patients in the low-risk group was 52%, while that in
the high-risk group was 23%. The poor prognosis of this gene qualified it to be a suitable
indicator for the prediction and diagnosis of breast cancer metastasis. Although our results
suggest that copy number alterations are associated with the changes in gene expression
in the five hub genes identified in this study, there are some genes such as CDK4 and
MYC, which can be amplified without resulting in increased mRNA levels [43,44]. Further
research is needed to investigate the complex relationship between copy number alterations
and gene expression. Understanding the mechanisms that regulate gene expression in
the context of copy number alterations may help in identify additional hub genes and
developing more effective therapeutic strategies for cancer treatment.

Therefore, current standard-of-care biomarkers such as estrogen receptor (ER), pro-
gesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) provide
important prognostic and predictive information in case of breast cancer [45]. For example,
HER2-positive breast cancer is typically treated with targeted therapy, such as trastuzumab,
while ER-positive breast cancer may be treated with endocrine therapy [46]. In addition,
Oncotype DX is a widely used biomarker that provides prognostic information for patients
with early-stage breast cancer and can help in guide treatment decisions [47]. However,
these biomarkers have limitations. For example, not all breast cancers express HER2 or have
hormone receptor expression, and some patients may have tumors that are HER2-negative
and ER-negative, making them ineligible for targeted therapy or endocrine therapy [48].
Moreover, although Oncotype DX provides important prognostic information, it is expen-
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sive and not universally available. It may not provide information beyond the basic clinical
and pathological factors already guiding treatment decisions.

Our identified biomarkers, AURKA, BUB1B, CCNA2, CCNB2, and PBK, can poten-
tially provide additional prognostic and predictive information beyond current standard-
of-care biomarkers, including Oncotype DX.

Furthermore, they were identified through an integrated approach of transcriptome
and pathway enrichment analysis, providing a more comprehensive understanding of the
underlying biology of breast cancer. However, further validation of these biomarkers in
future studies is needed to determine their clinical utility in guiding treatment decisions
and improving patient outcomes [49].

5. Conclusions

The present study provided five potential prognostic biomarkers viz. AURKA, BUB1B,
CCNA2, CCNB2, and PBK through the integrated approach of transcriptome and pathway
enrichment analysis. This will aid in the early diagnosis and treatment of breast cancer
and could probably improve the survival analysis of the patients. The proper design-
ing of potential inhibitors for these biomarkers will help immensely in suppressing the
tumorigenesis and metastasis of breast cancer.
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