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Abstract: Diagnosis of adamantinomatous craniopharyngioma (ACP) is predominantly determined
through invasive pathological examination of a neurosurgical biopsy specimen. Clinical experts can
distinguish ACP from Magnetic Resonance Imaging (MRI) with an accuracy of 86%, and 9% of ACP
cases are diagnosed this way. Classification using deep learning (DL) provides a solution to support
a non-invasive diagnosis of ACP through neuroimaging, but it is still limited in implementation, a
major reason being the lack of predictive uncertainty representation. We trained and tested a DL
classifier on preoperative MRI from 86 suprasellar tumor patients across multiple institutions. We
then applied a Bayesian DL approach to calibrate our previously published ACP classifier, extending
beyond point-estimate predictions to predictive distributions. Our original classifier outperforms
random forest and XGBoost models in classifying ACP. The calibrated classifier underperformed
our previously published results, indicating that the original model was overfit. Mean values of the
predictive distributions were not informative regarding model uncertainty. However, the variance
of predictive distributions was indicative of predictive uncertainty. We developed an algorithm
to incorporate predicted values and the associated uncertainty to create a classification abstention
mechanism. Our model accuracy improved from 80.8% to 95.5%, with a 34.2% abstention rate. We
demonstrated that calibration of DL models can be used to estimate predictive uncertainty, which
may enable clinical translation of artificial intelligence to support non-invasive diagnosis of brain
tumors in the future.

Keywords: deep learning; brain tumor diagnosis; uncertainty quantification; craniopharyngioma

1. Introduction

Deep learning (DL) imaging models are a widely explored Artificial intelligence (AI)
method to predict brain tumor diagnosis from magnetic resonance imaging (MRI) [1–7].
Expected benefits include reduced diagnostic error and cost, better treatment planning,
and better patient education [8–14]. With their ability to recognize patterns and identify
key features in medical images, DL models can provide an efficient and accurate means
of diagnosing brain tumors. Jaju et al. offer a comprehensive resource on the utility of
pediatric brain tumor images and a survey of interpretation concepts, thus providing
valuable insights for designing AI systems to support clinicians [15]. Similarly, Xie et al.
conducted a comprehensive review of 83 studies from 2015–2022, focusing on the use of
DL models for the diagnosis of brain tumors from MRI, reporting an accuracy range of
60–100% [16]. Neither review included suprasellar tumors such as adamantinomatous
craniopharyngioma (ACP).

Few AI technologies have been adopted in the clinical setting due to the “black-box”
problem of DL: its scale and complexity make it difficult to understand, leading to a lack of
trust in the technology among clinical decision-makers [17,18]. In addition to the lack of
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clarity in the exact algorithmic process of a DL classification, there is also no information
provided regarding the predictive uncertainty of the classification. Predictive accuracy
is a measure of correctness, while predictive uncertainty represents the reliability of the
accuracy measurement. It is critical to know the predictive uncertainty of a DL model in a
high-risk scenario, such as neuro-oncology, because errors can have devastating effects [19].
Studies have shown that, prior to adopting AI-based decision support, clinicians require
information regarding the reliability of model performance and what kind of mistakes it
can make [20–22]. Under high uncertainty, the model should also be able to state “I don’t
know” and abstain from providing a prediction [23].

Probabilistic deep learning (DL) methods have been used to create more generalizable
and effective models that capture parameter variability and report predictive certainty.
For instance, Shamsi et al. proposed a DL framework to detect COVID-19 using medical
images of chest X-ray and CT scans [24]. Four DL models (VGG16, ResNet50, DenseNet121
and InceptionResNetV2) were used to extract deep features, which were then processed by
machine learning and statistical models to identify cases of the virus. The linear support
vector machine and neural network models were found to have the highest accuracy,
sensitivity, specificity, and AUC. The predictive uncertainty estimates of CT images were
also found to be higher than those of X-ray images; however, the method utilized by the
authors only measured the uncertainty of the training data and did not evaluate uncertainty
on a held-out test set. Another example is Hercules, a DL-based model for medical image
classification that features an uncertainty-aware module and achieves high accuracy in
retinal, lung, and chest imaging datasets [25]. This method outperforms existing state-of-
the-art medical image classification methods. It utilized a specialized architecture followed
by a Markov chain sampling procedure to estimate the predictive uncertainty. In contrast,
our approach is unique in the way it specifically constructs a calibration curve rather than
estimates the predictive uncertainty without constraint.

Clinical experts can accurately diagnose pediatric suprasellar brain tumors, such
as ACP, from preoperative MRI with 86% accuracy, but neurosurgical biopsy is still re-
quired for 91% of diagnoses [26,27]. Radiographic diagnosis offers a non-invasive solution
that avoids risks and costs associated with neurosurgical intervention. However, radio-
graphic interpretation can be limited by low spatial resolution of radiology images and
atypical visual features which make diseases look similar [28]. This limitation then re-
quires neurosurgical biopsy and pathological examination for a definitive diagnosis [28,29].
Radiographic interpretations can affect the accuracy of a pathological diagnosis and treat-
ment planning, so it is important to maximize certainty [28]. DL can detect brain tumors
from radiology images and is sensitive to minor image alterations that are not perceptible
to humans [7,30]. We hypothesize that AI can be utilized to improve the reliability of
radiographic diagnosis by supporting the clinician when they are uncertain.

We present a novel method that uses Bayesian DL to predict ACP diagnosis from
preoperative MRI. Specifically, our method calibrates a deep learning image classifier for
preoperative MRI of ACP tumors in a one versus all context for pediatric suprasellar tumors.
We also investigate if the mean and variance of the predictive distribution is informative to
flag when a prediction is uncertain, and we present an algorithm which can abstain from
making a prediction when uncertain.

2. Materials and Methods
2.1. Image Acquisition

For this research, we utilized the same dataset that was used in our prior study [7].
This multi-institutional dataset is comprised of sagittal T1-weighted MRI comprised of
39 ACP patients and 47 patients, which have other suprasellar tumors (i.e., NOTACP).
These included pilocytic astrocytoma (n = 12), germinoma (n = 7), pilomixoid astrocy-
toma (n = 6), optic glioma (n = 4), pituitary adenoma (n = 3), arachnoid cyst (n = 3),
prolactinoma (n = 3), mature teratoma (n = 2), low grade glioma (n = 2), renal cell
carcinoma (n = 2), Rathke’s cyst (n = 1), lipoma (n = 1), and Langerhans cell histiocytosis
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(n = 1). Three representative two-dimensional images were extracted from each patient
by a board-certified neurosurgeon. For training, 23 ACP and 30 NOTACP patient datasets
were used, with three representative images per patient and imaging modality (six images
per patient, 318 images total). All training images were augmented to synthetically expand
the dataset to 1000 images (500 ACP, 500 NOTACP). The test dataset consisted of 16 ACP
and 17 NOTACP patients, with one image selected per patient and imaging modality
(n = 33).

2.2. Deep Learning Classification of Preoperative MRI Images and Benchmarking

The DL computations were performed with the TensorFlow framework, including the
TensorFlow Hub, TensorFlow Probability, and TensorFlow AddOns libraries [31]. The im-
ages were first preprocessed by the ResNet v2 preprocessing function (Figure 1a). A ResNet
v2 152 model, which had been pre-trained on the ImageNet dataset, was used to produce a
2048-dimensional feature embedding for each input image [32]. These embeddings were
used to train a DL classifier or a benchmarking model (i.e., random forest or XGBoost).
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Figure 1. Overview of deep learning model architecture (a) and calibration approach (b).

In our previous work, we used a genetic algorithm to optimize the DL model architec-
ture and meta-parameters for training [7]. The final model included batch normalizing the
feature embeddings (with a batch size of two) and then passing them through a dropout
layer, which randomly masks 50% of the feature values before they go to the hidden fully
connected layer with a softmax activation function. The batch normalization and final
dense layer are the only elements of the architecture with optimizable parameters, and only
the dense layer is calibrated for uncertainty (Figure 1a).

Our new approach optimizes the parameters using a LazyAdam optimizer, a decou-
pled weight-decay, a categorical cross-entropy objective function, cyclic learning rate, and
smoothed via stochastic weight averaging [33–36]. The LazyAdam optimizer is designed
to handle sparse updates, which regularizes model weights to focus on rare and distin-
guishable features, leading to better training loss and generalization error. By adjusting the
weight decay factor independently from the learning rate for LazyAdam, the generalization
performance is improved. This combined approach is based on the idea that imaging
features that commonly occur are assigned a lower learning rate, while uncommon features
are focused on with higher learning rate. As a result, the optimizer enables the discovery
and distinguishing of highly predictive yet uncommon features, allowing the classifier to
discern between highly similar instances (e.g., suprasellar tumors). The performance was
assessed using categorical accuracy and area under the precision-recall curve (AUPR).
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2.3. Bayesian Subspace Inference

Uncertainty can be divided into aleatoric (inexplicable due to randomness) and epis-
temic (reducible with more/better data or better understanding of the knowledge) uncer-
tainty [37,38]. Point estimation for parameters in DL models is one source of reducible
epistemic uncertainty; a non-Bayesian DL model is trained to find a single set of optimal
parameter values given observations of x and y, but Bayesian methods account for multiple
possible solutions [39–41]. Calculating multiple solutions can be intractable for DL models
with billions of parameters, but approximations of the distributions can be calculated [42].
For example, the parameter space can be mapped through principal component analysis
(PCA) to create a simple linear subspace that represents the complicated solution space,
which enables us to construct a geometric curve that connects potential solutions and is
suitable for Bayesian DL predictions [42].

We applied the subspace inference method in [42] to construct a calibrated induced
posterior of our deep learning model, as illustrated in Figure 1b. This process consists of
three steps. First, we constructed a low-dimensional subspace of the parameter space using
the first principal components of the optimizer trajectory on the loss surface. Next, we used
a geometric curve to connect two high performing models in the constructed subspace.
Lastly, we applied elliptical slice sampling to sample from the geometric curve, yielding
predictive distributions of the suprasellar tumor diagnosis. To implement this approach,
we utilized TensorFlow (available at https://github.com/lericnet/bsi-acp-mri (accessed
on 30 January 2023)) to support our existing model. The approach is described in further
detail in the following subsections.

2.3.1. Construct PCA Subspace Curve End-Point Parameters through SWA Training

We tuned two separate models with different random seeds (6567 and 7656) for the
calibration curve in Section 2.3.2. To identify optimal anchor points, we utilized stochastic
weight averaging (SWA) to smooth the models’ tuning process [33]. Following Algorithm 2
in [42], every 10 training steps (i.e., epochs), the model parameters are averaged, and a
deviation matrix (the error between the current parameters and the 10 epoch average) is
calculated. This bias matrix is then decomposed via PCA and is stored as a model parameter.
SWA is a technique used in deep learning to improve the generalization of a model. It
involves taking the average of a neural network’s weights obtained from multiple training
cycles, rather than just the weights at the end of the last training cycle. This averaging
technique reduces overfitting and provides a more robust model with better generalization
performance. Furthermore, our use of a cyclic learning rate enables SWA to explore regions
that are rich in potential solutions [33], resulting in two DL models that are optimized to
encourage generalization. We refer to these models as SWA-ResNet.

2.3.2. Connecting Loss Modes by Bezier Curves in PCA Subspace

Given the two resulting models, the next step was to connect these two optima through
a learned PCA subspace representation [40]. Briefly, each SWA-ResNet model serves as a
fixed end-points (ŵ1 and ŵ2) and the free center parameter θ is optimized such that the
curve is fit across a high accuracy space [40]. The final 3-point quadratic Bezier curve (φθ)
is generated using the equation:

φθ(t) = (1 − t)2ŵ1 + 2t(1 − t)θ + t2ŵ2, 0 ≤ t ≤ 1

where t is the position along the length of the curve. A Bezier curve is a parametric
curve, which is constructed via interpolation between two specified points. The curves are
symmetric and can be reliably transformed through PCA space to reliably map to the more
complex DL parameter space. Importantly, the Bezier curve exists on what is known as the
convex hull of the parameter space; this the minimum curve, which contains the solutions
between our defined end points and all interior points. This means that we will return, and
efficient representation of our parameter subspace will be used for variational inference.

https://github.com/lericnet/bsi-acp-mri
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2.3.3. Variational Inference by Elliptical Slice Sampling

The final step of the process is to calculate the posterior distribution of the model. We
sample from the posterior parameters in our induced PCA subspace and then transform
these parameters back to the original parameter space. The selection of an inference
procedure is a matter of experimental design, and we have a broad range of approximate
inference methods to choose from [42]. We utilize elliptical slice sampling (ESS)—a Markov
chain Monte Carlo method of performing inference in models with multivariate Gaussian
priors—implemented through the TensorFlow Probability library [43]. These sampled
values are passed as the weights for the dense layer in our model, resulting in 5000 (ACP,
NOTACP) paired predictions.

2.4. Computational Infrastructure

All computational programs were performed on 64-core Intel Gold 6226R CPUs with
512 GB RAM, and 128 GB of NVIDIA GPU memory running CentOS 7.4.1708. Visualizations
were generated using custom R scripts supported by the tidyverse ecosystem [44].

3. Results
3.1. SWA-Tuned Model Outperforms Benchmarks

The first step of the approach is to identify two DL classifiers with parameters iden-
tified from wide valleys of the PCA subspace landscape. Figure 2 shows ResNet feature
embeddings of test MRI images, which were best classified by the SWA-tuned classi-
fier (AUPR = 0.871), improving performance beyond our previously published model
(AUPR = 0.808). The most common machine learning classifiers deployed are random
forest and XGBoost. Both our previously published model and SWA-tuned model out-
performs random forest and XGBoost in terms of accuracy and AUPR. AUPR is utilized
because we care more about identifying the positive class (ACP) than the negative class
(NOTACP) because the former is clinically meaningful diagnosis.

Diagnostics 2023, 13, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 2. Comparison of accuracy (as a decimal, red boxplot) and area under the precision-recall 
curve (AUPR, blue boxplot) of classifiers on ResNet feature embeddings of ACP MRI. 

3.2. PCA Subspace Model Results in Stable but Reduced Test Performance  
Given the two SWA tuned models, we constructed a three-point curve with fixed 

endpoints (Figure 3a). Our curve model was constrained to only update the center-point 
value, 𝜽. We observed that our weight parameter endpoints remained fixed during train-
ing epochs and that the center-point was modified, resulting in a flatter distribution of 
weight parameters. Mapping the curve points through PCA subspace resulted in approx-
imately normally distributed curve weights, 𝝓𝜽 𝒕 , with more than four times the vari-
ance of 𝒘𝟏, 𝜽, or 𝒘𝟐 (Figure 3b). This curve is what we utilize to generate our predictive 
distributions; we can utilize variational inference methods (i.e., ESS) to sample weights 
from the curve which are passed to the Dense classification layer, resulting in a distribu-
tion of predictions for each input image. Therefore, the increase in variance in curve 
weights versus 𝒘𝟏 , 𝜽, or 𝒘𝟐  indicates that our model is more uncertain. During our 
curve-fitting process, this was corroborated by a stable test performance while training, 
but AUPR was lower for this model than SWA-tuned and our prior model (Figure 3c). 
Note, the test performance at this stage is utilizing the mean value from the curve weights. 
In the next section, we sample from the curve weights to generate predictive distributions 
for each patient. 

 
Figure 3. PCA subspace model parameter distributions and test performance. (a) Parameter distri-
butions during curve-fitting (during training epochs) showing the fixed endpoints (outside distri-
butions) and the optimized parameter. (b) Distribution of parameters within calibrated curve. (c) 
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curve (AUPR, blue boxplot) of classifiers on ResNet feature embeddings of ACP MRI.

3.2. PCA Subspace Model Results in Stable but Reduced Test Performance

Given the two SWA tuned models, we constructed a three-point curve with fixed
endpoints (Figure 3a). Our curve model was constrained to only update the center-point
value, θ. We observed that our weight parameter endpoints remained fixed during training
epochs and that the center-point was modified, resulting in a flatter distribution of weight
parameters. Mapping the curve points through PCA subspace resulted in approximately
normally distributed curve weights, φθ(t), with more than four times the variance of ŵ1, θ,
or ŵ2 (Figure 3b). This curve is what we utilize to generate our predictive distributions;
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we can utilize variational inference methods (i.e., ESS) to sample weights from the curve
which are passed to the Dense classification layer, resulting in a distribution of predictions
for each input image. Therefore, the increase in variance in curve weights versus ŵ1, θ,
or ŵ2 indicates that our model is more uncertain. During our curve-fitting process, this
was corroborated by a stable test performance while training, but AUPR was lower for this
model than SWA-tuned and our prior model (Figure 3c). Note, the test performance at this
stage is utilizing the mean value from the curve weights. In the next section, we sample
from the curve weights to generate predictive distributions for each patient.
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Figure 3. PCA subspace model parameter distributions and test performance. (a) Parameter distribu-
tions during curve-fitting (during training epochs) showing the fixed endpoints (outside distributions)
and the optimized parameter. (b) Distribution of parameters within calibrated curve. (c) Test perfor-
mance (AUPR) during curve-fitting shows stable performance during the optimization of the free
parameter θ.

3.3. Mean Prediction Values Are Ambiguous, but Variance of Prediction Distributions
Is Informative

For each test patient MRI (n = 33), we generated conditional probability distributions
for the ACP and NOTACP classes (Figure 4a; red and blue, respectively) using elliptical
slice sampling (n = 5000). Aside from one patient (the last row of the ACP patients), there
are no major observable differences in the mean values between prediction classes. For
example, given the first patient, the mean value for NOTACP is only marginally greater
than the mean value for ACP. A similar trend can be seen throughout the test dataset.
Next, we evaluated whether the difference between each of the class mean probabilities
could be used to identify uncertain predictions (Figure 4b). Filtering predictions based on a
p-value threshold resulted in no changes in predictive performance in terms of sensitivity,
specificity, false negative rate, false positive rate, and accuracy. As we increased the
threshold for abstaining from prediction, we only observed a loss in cases predicted with
no benefit in performance. In total, this indicates that the difference in mean values for
ACP/NOTACP predictive distributions is not immediately indicative of the predictive
uncertainty of our classifier.

Although Figure 4a shows that the means do not appear significantly different, there
are some patterns with respect to variance across the two classes; the boxplots in the ACP
cohort (Figure 4a, top half) typically have wider ranges (Figure 4c,d) than those in the
NOTACP cohort (Figure 4a, bottom half). This indicates that the model is more generally
uncertain about predicting ACP patients than NOTACP patients. We sought to leverage
this observation and calculated the statistical significance of a given patient belonging to
a ground truth group based on their predictive variance using a Kolmogorov-Smirnov
(KS) test. Plotting the p-values for each class (Figure 4e), we observed that the ACP and
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NOTACP classes (circles and triangles, respectively) could be separated by the ratio of
p-values (Figure 4e, diagonal line). Therefore, the variance of the predictive distributions is
informative in our classification task.
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Figure 4. Prediction distributions with mean and variance relationships. (a) Predictive distributions
(generated using elliptical slice sampling; ESS) stratified by patient ground truth (top APC, bottom
NOTACP) and predicted class (red = ACP, blue = NOTACP). (b) Model performance using mean
values for abstention across p-value threshold. (c) Predictive distributions for each diagnostic class,
stratified by ground-truth. Colors indicate different patients prodived in the legend in (e). (d) Boxplot
of predictive distribution variance stratified by ground-truth. (e) Scatterplot of Kolmogorov-Smirnov
p-values for each predicted class. Each point represents one test patient, ACP/NOTACP ground-truth
depicted as circles and triangles, respectively. Diagonal line represents classification boundary used
in abstention algorithm.

3.4. Classification Algorithm with Abstention Mechanism Improves Test Performance

We developed an algorithm that combines ArgMax predictions, as well as predictions
based on the variance of the ESS prediction, and the steps of the algorithm are shown
in Figure 5. ArgMax (top-left) selects the class with the highest predicted value. For
example, the ArgMax prediction of (0.75 ACP, 0.25 NOTACP) is ACP. This approach on
the calibrated model resulted in an accuracy of 68.6%, sensitivity of 0.882, specificity of
0.5, false negative rate (FNR) of 0.118, and a false positive rate (FPR) of 0.5. The second
prediction method (top-right) is based on the NOTACP/ACP ratio of KS p-values; ratios
greater than 1 are predicted as NOTACP, while those that are less than 1 are predicted to
be ACP. This approach resulted in an accuracy of 85.7%, sensitivity of 0.882, specificity of
0.833, FNR of 0.118, and FPR of 0.167.
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The sensitivity and FNR was unchanged between the two prediction methods. We then
compared the predictions from each method and observed a high accuracy if both methods
predict the same value. Specifically, we observed an accuracy of 95.5%, sensitivity of 0.933,
specificity of 0.833, FNR of 0.067, and FPR of 0.125. This was in the context of abstaining
from prediction in 34.2% (n = 12) of cases. Out of the abstained cases, 10/12 (83.3%) were
from the NOTACP group; 2/12 (16.6%) were from the ACP group.

4. Discussion and Conclusions

We demonstrated that Bayesian DL can be used to calibrate a deep learning image
classifier to predict ACP diagnosis from preoperative MRI. Statistical analysis of the pre-
dictive distributions revealed that the variance of the distribution could be leveraged
to trigger the model to abstain from prediction, which we implemented in a two-step
diagnostic algorithm.

We observed that model performance on the test images varied across each stage of
our study. At first, the SWA-tuned classifier (AUPR = 0.871) performed better in classifying
ResNet feature embeddings of test MRI images than our previously published model
(AUPR = 0.808) [7] and outperformed the other models. However, our final calibrated
model only achieved an accuracy of 68.6%. These results demonstrate that the prediction
is now reflecting the model’s uncertainty, depending on the data it has seen; subspace
inference is especially valuable for indicating increasing or decreasing uncertainty when
making new predictions relative to the data it has already seen [27]. Given the limited
amount of data, there is a high probability of overfitting, which implies that the model may
not be applicable to new images. We utilized multiple techniques, such as transfer learn-
ing, dropout, data augmentation, and stochastic weighted averaging, to limit overfitting.
Nevertheless, inference through the PCA subspace showed that the model was still overfit,
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which indicates the necessity of calibrating DL models in the context of small training data
and high-risk application scenarios, such as healthcare. By calibrating our model, we likely
have increased the model’s ability to be applicable to other data sets, but more research is
necessary to investigate generalizability.

Calibration of our DL model using this approach improved specificity and revealed
that the uncertainty is predominantly associated with the negative (NOTACP) class. Two
reasons support this outcome: first, we specifically optimized for performance based on
AUPR, which emphasizes the positive class, ACP; second, the NOTACP class is ambiguous
compared to the ACP class, since ACP is comprised of one diagnosis, while NOTACP
is comprised of eleven diagnoses (see the Methods Section). It is important to note that
a radiographic differential diagnosis is a ranked list of potential diagnoses given the
radiographic images and known clinical information about the patient [45]. Within this
concept, there is the prediction of the diagnosis and the prediction of the diagnosis rankings.
We are specifically addressing the prediction of the diagnosis here. In future work, we
plan to expand the approach to also address the prediction of the diagnosis rankings
and generate a more realistic radiographic differential diagnosis by including pituitary
adenoma, craniopharyngioma, meningioma, astrocytoma, germinoma, as well as non-
cancerous pathologies, such as aneurysm.

Our approach has several limitations that could be addressed in future work. The
sample size of our training and test data is relatively small and could be increased to
improve generalizability. Additionally, our study utilized two-dimensional images, rather
than volumetric MRI, which is more commonly used in a clinical setting to interpret neu-
roimaging. Using volumetric MRI would likely improve accuracy of the model. We could
also explore the application of other inferential methods. Our current method, elliptical
slice sampling, is not an exact solution of the posterior integral [43], and, therefore, the
uncertainty measurement is an approximation. As an alternative solution, we could evalu-
ate the probably approximately correct (PAC)-Bayes approach and more computationally
expensive methods, such as Hamiltonian Monte Carlo [46–48], for exact solutions. Simpler
solutions, such as dropout, could also be utilized as an approximation of the Bayesian
model average. These different approximations and exact solutions of the posterior integral
could be compared and evaluated in terms of computational complexity, stability, and cost.

Uncertainty is only one of the remaining challenges that need to be addressed for suc-
cessfully translating AI to the clinic. Another critical component to successfully translating
such a model to the clinic will be reliant on the usability, or accessibility, of the model’s
prediction and uncertainty with respect to the clinical user. To date, very few studies
have focused on clinical usability of AI system [16]. Considering how the prediction and
uncertainty are presented to the clinician and interacted with are vitally important to the
design of a clinical AI system. Future work will investigate how different visual design
interfaces impact the usability and utility of our model system.

In conclusion, the presented approach holds advantages for the design of clinical AI
tools to support diagnosis of pediatric brain tumors, such as ACP. The variance of the
predictive distributions can inform when the predicted diagnosis is uncertain. Furthermore,
when the prediction is considered certain, the diagnostic accuracy is beyond that reported
for human experts. Current research is underway to expand this concept to calibrate a
multi-class classifier to run as an orthogonal prediction to the one-versus-all approach in
this study. Applying a multi-class classifier will create a prediction that is represented by a
list of brain tumor diagnoses ranked by decreasing likelihood combined with a prediction
for each brain tumor diagnosis versus all others. Both the ranked list and one-versus-all
classifiers can be calibrated using the presented approach. As a result, our method provides
a basis to use DL for predicting pediatric brain tumor diagnosis from preoperative MRI
with desired uncertainty quantification properties using Bayesian methods on a calibrated
PCA parameter subspace.
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