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Abstract: Philadelphia-negative (Ph-) myeloproliferative neoplasms (MPNs) are a group of hematopoi-
etic malignancies identified by clonal proliferation of blood cell lineages and encompasses poly-
cythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The clinical
and laboratory features of Philadelphia-negative MPNs are similar, making them difficult to diagnose,
especially in the preliminary stages. Because treatment goals and progression risk differ amongst
MPNs, accurate classification and prognostication are critical for optimal management. Artificial
intelligence (AI) and machine learning (ML) algorithms provide a plethora of possible tools to clini-
cians in general, and particularly in the field of malignant hematology, to better improve diagnosis,
prognosis, therapy planning, and fundamental knowledge. In this review, we summarize the litera-
ture discussing the application of AI and ML algorithms in patients with diagnosed or suspected
Philadelphia-negative MPNs. A literature search was conducted on PubMed/MEDLINE, Embase,
Scopus, and Web of Science databases and yielded 125 studies, out of which 17 studies were included
after screening. The included studies demonstrated the potential for the practical use of ML and AI
in the diagnosis, prognosis, and genomic landscaping of patients with Philadelphia-negative MPNs.

Keywords: artificial intelligence; deep learning; machine learning; convolutional neural networks;
clinical decision support system; myeloproliferative neoplasms; diagnosis; prognosis; genomics

1. Introduction

Philadelphia chromosome-negative (Ph-) myeloproliferative neoplasms (MPNs) are a
group of disorders characterized by acquired mutations within the JAK-STAT signaling
pathways of bone marrow stem cells, resulting in the excessive proliferation of red blood
cells, white blood cells, or platelets [1,2]. According to the World Health Organization
(WHO) classifications, essential thrombocythemia (ET), polycythemia vera (PV), and pri-
mary myelofibrosis (PMF) are the three classical Philadelphia-negative MPNs [3,4]. They
share clinical and laboratory characteristics that can make them difficult to distinguish,
especially in the initial stages of the disease [4,5]. Mutations in one of three genes, JAK2,
CALR, and MPL, are found in more than 90% of MPNs, with the remaining 10% of cases
identified as triple-negative MPNs [6]. JAK2 mutations, most notably JAK2V617F, are
found in almost all cases of PV and more than 60% of ET and PMF, whereas CALR and
MPL mutations are found in ET and PMF [7–9]. Ph-negative MPNs are associated with
high morbidity, reduced quality of life, and decreased overall survival [10]. Accurate
categorization of MPNs is essential for effective management since treatment goals and
progression risk vary across the diseases [9,11]. Major cardiovascular adverse events and
thrombosis are significant contributors to death in patients with Ph-negative MPNs [12,13].
Additionally, patients incur the risk of developing leukemia and fibrosis [14,15].
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Artificial intelligence (AI) refers to computer programs that simulate and imitate
human intellect, including learning and problem-solving [16]. Machine learning is a branch
of artificial intelligence that involves automatically identifying patterns in data [17]. As
opposed to having the behavior explicitly written, AI learns to do a task automatically from
experience (i.e., data) [18]. Since the turn of the century, advances in computer power and
access to ever-growing data repositories have allowed artificial intelligence (AI) to advance
rapidly [19]. AI provides numerous potential tools to doctors in general and especially
in the field of hematology to better inform diagnosis, prognosis, therapy planning, and
basic knowledge relating to malignant hematology [20]. Moreover, subjective histological
assessments are currently a significant component of the categorization scheme crucial to
the diagnosis of MPNs and various other human cancers [3,4,7]. Recent advancements in
computer image analysis have the potential to revolutionize the conventional morphologi-
cal evaluation of human tissues and can replace or supplement the categorization systems
now used in cancers [21,22].

This review summarizes the current literature on the use of artificial intelligence
(AI) and machine learning (ML) algorithms in the diagnosis, prognosis, and genomics of
Philadelphia-negative myeloproliferative neoplasms (MPNs). The results section is divided
into three sub-sections, each exploring a different aspect of MPN research. Section 3.1
discusses the use of AI and ML in MPN diagnosis, including detection, classification,
and differentiation between MPN subtypes as well as the role of genomics. Section 3.2
examines the potential of AI and ML in predicting disease outcomes, such as myelofibrosis
progression risk and thrombosis, as well as response to therapy using clinical criteria and
genomics. This review aims to present an overview of the outcomes, limitations, and future
research needs for each of the proposed models.

2. Methods

Our search strategy (Figure 1) was developed in PubMed/MEDLINE using title/abstract
keywords. For Philadelphia-negative MPNs, we included terms such as “myeloprolifera-
tive”, “Polycythemia”, “Myelofibrosis”, and “Thrombocythemia”. To review the use of AI
in MPNs, we also included terms such as “AI”, “deep-learning”, and “machine-learning”.
The combined search was as follows: (“polycythemia”[tiab] OR “myelofibrosis”[tiab] OR
“thrombocythemia”[tiab] OR “myeloproliferative”[tiab]) AND (“AI”[tiab] OR “machine
learning”[tiab] OR “deep learning”[tiab]). The search was not restricted by language or
timeframe. The Polyglot translator was used to convert the initial search strategy to Embase,
Web of Science, and Scopus [23]. All the studies identified were moved into EndNote 20
and, subsequently, Rayyan to remove any duplicates [24,25].

This review included research articles that discuss the use of AI and ML algorithms in
Philadelphia-negative MPNs in humans. Studies were excluded from our study if they had
the following attributes: (1) animal studies, (2) reviews, and/or (3) different outcomes.
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Figure 1. Schematic representation of the literature review process.

3. Results

Eight full-text articles and nine conference abstracts were included in our study.
Studies were summarized and categorized under two categories: Diagnosis and Prognosis.
A summary of outcomes, advantages, disadvantages, AI/ML models and their uses for the
included full-text articles can be viewed in Table 1.

Table 1. Summary of included full-text articles.

Study Outcome Advantages Limitations Model(s) Model(s) Uses

Sirinukunwattana
et al. [26]

Automated analysis of
megakaryocytes can

categorize MPNs and
differentiate them from

reactive BM samples

Fast assessment of
sequential BM samples

Comprehensive
summary of

megakaryocytic cells

Marrow cellularity,
lineage maturation,

degree of fibrosis, and
blast cell estimation are

required for MPNs
WHO classification

Unsupervised
Learning: Principal

Component Analysis
(PCA)

Reduction of high
dimensional data
Exploratory data

analysis and
visualization of

complex datasets

Kimura et al.
[27]

Automated diagnostic
support system for

MPNs using peripheral
blood (PB) specimen

Fast assessment of PB
specimens

Accurate differentiation
of PV, ET, and MF

Single-center study
Small number of cases

Deep Learning:
Convolutional

Neural Network
(CNN)

Image recognition
and classification
Learns features

automatically from
raw data

Asaulenko
et al. [28]

Histotopographical
features of

megakaryocytes
allowed correct

differentiation between
ET and PMF in 71.6%

of cases

Patterns of
megakaryocyte

distribution in BM of
ET and prePMF

patients with
JAK2/CALR mutations

can be revealed only
using ML

The percentage of
correct diagnostic

predictions for PMF
was only 40%

Unsupervised
Learning:

Density-Based
Spatial Clustering of

Applications with
Noise (DBSCAN)

Clustering and
anomaly detection in

high-dimensional
data

Automatically detect
clusters of arbitrary

shape and size

Kantardzic
et al. [29]

Extraction of new
decision rules for PV
diagnosis, based on a

reduced and optimized
set of lab parameters

Reducing the original
parameters of diagnosis
to only four while still

obtaining good
classification results

Not diagnostic by its
own

Only complements the
standard PVSG criteria

Supervised Learning:
Artificial neural

networks (ANNs)
and Support vector
machines (SVMs)

Classification and
regression tasks

Both require large
amounts of labeled

data for training
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Table 1. Cont.

Study Outcome Advantages Limitations Model(s) Model(s) Uses

Shen et al. [30]

Progressive platelet
transcriptomic markers,

enable an externally
validated prediction for

advanced MPNs

Comprehensive catalog
of platelet

transcriptome in
chronic MPNs

Accurate prediction of
MF using <5 candidate

markers

Only analyzed
platelet-derived

molecular alterations
Biological and
computational

validations are needed
for decision making

Supervised Learning:
Multiple LASSO
(Least Absolute
Shrinkage and

Selection Operator)
penalized regression

classifiers

Classification and
prediction tasks,

especially when there
are more features
than observations

Ryou et al. [31]

Continuous Indexing of
Fibrosis (CIF) enhances

the detection and
monitoring of fibrosis
within BMTs and aids

MPN subtyping

Accurate
discrimination between

ET and Pre-PMF
Identification of MPN

patients at risk of
progression

Invasive technique
Requires BM trephines

Ranking-CNN:
Learning to Rank

(LTR) and
Convolutional

Neural Network
(CNN)

Ranking and
recommendation

tasks
LTR models rank
items based on

relevance, while
CNNs extract

features from raw
data

Angelopoulos
et al. [32]

Discovered genomic
sets and their

relationships in MPNs
using Bayesian
networks (BNs)

BNs allow correlations
among driver events in
large genomic cohorts
Graphical illustrations

Robustness of the
networks is important

for BN learning
Not suitable for small

datasets

Probabilistic
Graphical: Bayesian

networks

Probabilistic
inference and

decision-making
under uncertainty
Models’ complex

relationships
between variables

Li et al. [33]

EPB42, CALR, SLC4A1
and MPL are candidate
prognostic biomarkers

and potential
therapeutic targets for

early PMF

WGCNA, a powerful
global research tool for

data mining from
multiple genes in

large-scale datasets was
used

Molecular biological
studies and larger

samples are needed to
further validate these

hub genes

Supervised Learning:
Support vector

machines (SVMs)

Classification and
prediction tasks,

especially when there
are more features
than observations

3.1. Diagnosis

Section 3.1 will focus on the use of AI and ML in the diagnosis of MPNs, including
the detection, classification, and differentiation between subtypes of MPNs. This section
will explore the potential of these technologies in improving the accuracy and efficiency of
MPN diagnosis.

3.1.1. Diagnosis of MPNs Using Bone Marrow and Peripheral Blood Specimens

Sirinukunwattana et al. [26] created a machine-learning method for automated identi-
fication, quantitative measurement, and abstract representation of megakaryocyte charac-
teristics utilizing reactive/nonneoplastic bone marrow trephines (BMT) and those from
patients with confirmed MPN diagnosis. They discuss the use of an automated method for
identifying and delineating key histological characteristics in routinely generated BMTs.
Following analysis, tissue diagnosis of MPN was possible with high predictive accuracy
(AUC = 0.95), and significant evidence of the ability to distinguish between major MPN sub-
types was shown. The machine-learning algorithms described have numerous significant
advantages over traditional histology analysis. To begin with, a totally automated model
can deliver a rapid and reliable preliminary diagnostic assessment of specimens before
official pathology reporting, which is likely to be valuable if access to hematopathology
expertise is restricted (for example, in low-resource health care systems). Second, a detailed
and interpretable description of the megakaryocytic population will enable the pathologist
to concentrate on integrating broader pathological elements with clinical and laboratory
data. Third, this approach is well-suited for a more accurate evaluation of consecutive
specimens from patients undergoing therapy and/or recurrent examination.

Kimura et al. [27] established a clinical decision support system for Ph-negative MPNs
to minimize workload and inter- and intra-personal discrepancies (Figure 2). The technique
involved combining the complete blood counts (CBCs) and research data collected by an
automated hematological analyzer (Sysmex XN-9000) with peripheral blood (PB) smear
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morphological features retrieved using a recently developed Convolutional Neural Net-
work (CNN) coupled with an Extreme Gradient Boosting (XGBoost)-based decision-making
algorithm [34,35]. In brief, a deep learning system (DLS) was trained using 695,030 nor-
mal and pathological cell pictures, 174 XN-9000 parameters, and 114 cell morphological
parameters through a CNN-based image-recognition system. The DLS could successfully
categorize 17 cell subtypes and detect 97 aberrant morphological characteristics after train-
ing. The diagnostic-aid algorithm was also trained to distinguish between 23 polycythemia
vera (PV), 101 essential thrombocytosis (ET), and 36 myelofibrosis (MF) cases. The system
was evaluated utilizing samples from 9 PV, 53 ET, and 12 MF patients and demonstrated
reliable performance in distinguishing PV, ET, and MF with high accuracy when compared
to human diagnoses, specifically with >90% sensitivity and >90% specificity. The com-
puted area under the curve of the ROC curves for PV, ET, and MF, respectively, were 0.990,
0.967, and 0.974. This work adds to previous AI-based studies utilizing mutational data,
peripheral blood specimens, and bone marrow trephines for a more accurate diagnosis of
MPNs [36–38].
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with deep learning algorithms for the distinction of myeloproliferative neoplasms. Six misclassified
cases are labeled #1–#6.

3.1.2. Differential Diagnosis of PMF and ET Using Megakaryocytic Lineage

Asaulenko et al. [28] created machine learning algorithms capable of distinguishing
morphological and histotopographical aspects of bone marrow samples in order to increase
the accuracy of essential thrombocythemia (ET) and prefibrotic primary myelofibrosis
(prePMF) differential diagnosis. The Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) clustering technique was developed in-house and was used to
investigate particular histotopographical aspects of the megakaryocytic lineage in bone
marrow samples from 95 patients with JAK2- or CALR-mutated ET and prePMF. The
percentage of correct predictions for ET (90%) was much greater than prePMF (40%).
The overall correct diagnostic probability was 71.6%. By building logistic regression
models with 75% and 25% of the source dataset, the model was verified in a training and
testing sample. The ROC was constructed, and the area under the curve was 72.5%. The
discrepancies found by the DBSCAN clustering technique suggest that there may be a
connection between the MPN subtype and the development of the megakaryocytic lineage.
The results of this study agree with a recent study by Yassin et al. [39] assessing bone
marrow activity using 3′-18Fluoro-3′-deoxy-L-thymidine (18F-FLT) with positron emission
tomography (PET) to differentiate between patients with essential thrombocythemia and
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prefibrotic primary myelofibrosis. The findings demonstrate that the characteristics of
the bone marrow in MPNs differ in a manner that cannot be visually observed during
microscopic analysis and can only be detected using machine learning and advanced
automated imaging techniques.

3.1.3. Reduced and Optimized PV Diagnosis Rules

In 2002, polycythemia vera was often diagnosed using the widely used Polycythemia
Vera Study Group (PVSG) diagnostic criteria [40–42]. Kantardzic et al. [29] introduced
a data-mining method to derive new decision criteria for polycythemia vera diagnosis
based on a reduced and optimized subset of lab characteristics. This study included several
laboratory and clinical findings from 431 polycythemia vera patients and 91 patients with
other myeloproliferative disorders within the original dataset used in the PVSG study.
They demonstrated that it is feasible to reach a diagnostic conclusion about polycythemia
vera with the same degree of classification quality while utilizing only four parameters:
hematocrit, platelet count, splenomegaly, and white blood cell count, using typical data-
mining approaches such as artificial neural networks, support vector machines, and n-
dimensional visualization. The categorization of polycythemia vera patients using a trained
artificial neural network or a support vector machine compared to PVSG diagnostic criteria,
the gold standard for polycythemia vera diagnosis at the time, did not show any significant
differences. Therefore, these reduced and optimized diagnostic criteria could be utilized in
addition to the conventional PVSG criteria, notably in differentiating polycythemia vera
from other myeloproliferative syndromes.

3.1.4. Diagnosis of JAK2 V617F Negative Patients with WHO-Defined ET

Smart Blood Analytics (SBA) is a machine learning-based application that examines
complete blood counts (CBCs) to generate a list of probable diagnoses. It is primarily
proposed for medical professionals who lack a thorough grasp of hematology and has been
proven to be useful in diagnosing hematological illnesses [43]. Belcic et al. [44] further
evaluated the SBA algorithm’s applicability in 237 patients referred for suspected essential
thrombocythemia (ET). They classified individuals as having ET according to WHO 2008 or
modified WHO criteria. All 237 patients were then assessed using the SBA algorithm. The
SBA algorithm detected ET patients with 100% sensitivity and 50% specificity. The SBA
machine-learning method may be effective in situations where expert consultation is not
accessible.

3.1.5. Supervised Classification of MPNs

Skov et al. [45] studied the possibility of categorizing ET, PV, and PMF into indepen-
dent categories using supervised classification techniques and looked into the possibility
of overlap between the three entities. Blood specimens from 19 patients with ET, 18 with
PV, and 9 with PMF were used in gene expression microarray investigations. In order
to select the best multi-class classification technique, 11 support vector machine-learning
algorithms were used in the voting process. Five gene sets were utilized to train the models,
with one set left out for cross-validation. The categorization techniques were established
to have optimal accuracy and significance level. In summary, 15 patients (79%) with ET,
28 patients (68%) with PV, and 8 patients (89%) with PMF were accurately predicted by
the support vector algorithms. The categorization models have a 79% overall accuracy
and performed quite well statistically (p = 1 × 10−6). These results suggested that ET, PV,
and PMF might be classified as discrete disease entities, with overlap between ET and PV
providing support to a biological continuum from ET through PV to PMF. Furthermore,
this supervised multi-classifier might help with the differential diagnosis of MPNs.

3.1.6. Bayesian Networks Elucidate Complex Genomic Landscapes in MPNs

Bayesian networks (BNs) are artificial intelligence (AI) models that can define complex
joint probability regions. Angelopoulos et al. [32] used the BN model to analyze genetic
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data from 2035 individuals with myeloproliferative neoplasms and discovered a number of
genomic groupings in myeloproliferative neoplasms (Figure 3). For example, mutations in
TP53 co-occurred with chromosomes 17p and 5q29 deletions. Another grouping, charac-
terized by LOH at chromosome 4q, abnormalities in chromosomes 7 and 7q occurring in
conjunction with mutations in at least 14 myeloid malignancies, accounting for the largest
co-mutation pattern in the Bayesian network, was enriched for patients with PMF. More-
over, JAK2 was identified as the most mutated gene in the network, with CALR and MPL
mutations exhibiting reciprocal exclusivity patterns, demonstrating functional redundancy
in their pathogenic processes. The three genes (JAK2, CARL, and MPL) accounted for
most of the dataset’s total driver mutations. The BN model beautifully depicts the major
players’ three-way mutual exclusivity. Moreover, the genomic landscapes elucidated by
the BNs are supported by clinical exome sequencing studies assessing driver mutations in
MPNs [46,47]. Understanding the genomic landscape of MPNs using AI may prove useful
in developing diagnostic panels that complement and confirm clinical diagnoses.
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3.1.7. Distinction of MPNs Using Genetic Markers

Meggendorfer et al. [48] combined genetic profiling using AI-augmented next-generation
sequencing (NGS) with clinical parameters to differentiate and classify MPNs. Firstly,
deep-learning algorithms were applied to NGS and allowed the exploration of 15 different
genetic markers in addition to JAK2, CALR, and MP. Secondly, clinical parameters were
combined with the 18 genes and applied to a training cohort of 243 Ph-negative MPNs
using support vector machines (SVM). Individual models for PMF, PV, and ET were created
using threefold cross-validation. Then, the trained models were utilized to estimate the
most likely diagnosis of patients from a testing cohort, including 183 MPN patients, with
the class probabilities for each patient retrieved. Overall, an accuracy of 96% was achieved,
demonstrating the potential of deep learning to assist physicians by making the diagnosis
based on the patient’s genetic background, even if certain clinical criteria were absent.

3.1.8. Random Forest Classifier for Predicting MPN Subtype Using Genomics

Jabalameli et al. [49] used machine-learning methods to analyze germline genetic vari-
ations and built a robust prediction model for ET and PV patients. Using a patient’s genetic
data; a Random Forest Classifier was used to predict MPN subtypes. The Illumina Human
OmniExpressExome-v1.2 was used to genotype 499 JAK2+ve ET cases and 505 JAK2+ve
PV cases. Single nucleotide polymorphisms (SNPs) with a minor allele frequency (MAF) of
<0.01, SNPs and samples with more than 10% missing genotypes, and SNPs deviating from
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Hardy–Weinberg Equilibrium (HWE) proportions were all removed for quality control.
SNPs with r2 > 0.2 within a 50 kb frame were eliminated to account for multi-collinearity
and avoid overfitting. For data visualization and categorization, Principal component
analysis (PCA) was employed as an unsupervised technique. To build the classifier model,
7144 SNPs with significant alternative allele relationships (p > 0.05) between ET and PV
were employed. The MPN ensemble classifier model proved extremely accurate in predict-
ing MPN subtypes. Using fivefold cross-validation, the Random Forest model (AUC = 90%)
outperformed the Decision Tree model (AUC = 87%) in terms of accuracy. The findings
show that germline variation information may be used to predict the MPN subtype using
machine-learning modeling.

3.2. Prognosis

Section 3.2 will examine the potential of AI and ML in predicting disease outcomes,
such as the risk of myelofibrosis progression and thrombosis, as well as response to ther-
apy. This section will explore the potential of these technologies in guiding personalized
treatment decisions for MPN patients.

3.2.1. Myelofibrosis Prediction Using Platelet Transcriptome of MPNs

The capacity to anticipate how a patient’s condition will develop or change over time,
from essential thrombocythemia (ET) or polycythemia vera (PV) diagnoses to secondary
myelofibrosis (SMF), is currently restricted by an understanding of genetic, cytogenetic,
or epigenetic variances in myeloproliferative neoplasms. [50,51]. Shen et al. [30] built
multiple LASSO (Least Absolute Shrinkage and Selection Operator) penalized regression
classifiers [52] that use machine learning to evaluate platelet transcriptome in order to
distinguish MPN subtypes and to allow MF prediction (Figure 4). Aside from a training
set, two robust external validation criteria [53] were used: temporal validation with two
independent cohorts and geographical validation using independently published datasets
on healthy donors, and patients with MF [54,55]. The best-performing model employed a
collection of progressively differentiated MPN genes and identified five potential genetic
markers as the top predictors of disease development. Essentially, LASSO regression and
progressive transcriptome studies yielded a compact gene signature that might be used in
a PCR-based predictive assessment and performed in clinical laboratories.

3.2.2. Continuous Index of Fibrosis in MPNs

In MPNs, fibrosis grading is a significant component of disease categorization, prog-
nosis, and surveillance [3]. Ryou et al. [31] devised a machine-learning (ML) approach to
objectively measure bone marrow reticulin fibrosis and enhance fibrosis grading (Figure 5).
Manually labeled areas of fibrosis were utilized to train the model, yielding a continuous
index of fibrosis (CIF) ranging from 0 to 1. The projected scores of new samples were
then translated into a quantitative fibrosis map using artificial intelligence, which was
subsequently superimposed over entire sample images. The whole spectrum and variety
of fibrosis among established MPN and normal/reactive BMT samples are captured in
analyses of MPN sample cohorts. Additionally, when paired with megakaryocyte analysis,
CIF has good predictive accuracy (AUC = 0.94) in distinguishing between the typically
difficult differential diagnosis of ET and pre-fibrotic MF. CIF also showed promise in iden-
tifying MPN patients at risk of disease progression. When CIF was tested on a study of
35 ET patients engaged in the Primary Thrombocythemia-1 trial, the model discovered
characteristics predictive of post-ET MF with relatively high accuracy (AUC = 0.77) [56].



Diagnostics 2023, 13, 1123 9 of 15

Diagnostics 2023, 13, x FOR PEER REVIEW 8 of 15 
 

 

model (AUC = 90%) outperformed the Decision Tree model (AUC = 87%) in terms of ac-
curacy. The findings show that germline variation information may be used to predict the 
MPN subtype using machine-learning modeling. 

3.2. Prognosis 
Section 3.2 will examine the potential of AI and ML in predicting disease outcomes, 

such as the risk of myelofibrosis progression and thrombosis, as well as response to ther-
apy. This section will explore the potential of these technologies in guiding personalized 
treatment decisions for MPN patients. 

3.2.1. Myelofibrosis Prediction Using Platelet Transcriptome of MPNs 
The capacity to anticipate how a patient’s condition will develop or change over time, 

from essential thrombocythemia (ET) or polycythemia vera (PV) diagnoses to secondary 
myelofibrosis (SMF), is currently restricted by an understanding of genetic, cytogenetic, 
or epigenetic variances in myeloproliferative neoplasms. [50,51]. Shen et al. [30] built mul-
tiple LASSO (Least Absolute Shrinkage and Selection Operator) penalized regression clas-
sifiers [52] that use machine learning to evaluate platelet transcriptome in order to distin-
guish MPN subtypes and to allow MF prediction (Figure 4). Aside from a training set, two 
robust external validation criteria [53] were used: temporal validation with two independ-
ent cohorts and geographical validation using independently published datasets on 
healthy donors, and patients with MF [54,55]. The best-performing model employed a 
collection of progressively differentiated MPN genes and identified five potential genetic 
markers as the top predictors of disease development. Essentially, LASSO regression and 
progressive transcriptome studies yielded a compact gene signature that might be used 
in a PCR-based predictive assessment and performed in clinical laboratories. 

 
Figure 4. Graphical abstract of Shen et al.’s machine learning algorithm for myelofibrosis predic-
tion using platelet transcriptome of myeloproliferative neoplasms. (A,B) Two independent cohorts 
of MPN patients and healthy controls were included. (C) Platelets from peripheral blood samples 
of the two cohorts were isolated and sequenced to yield a platelet transcriptome. (D) Machine 
learning approaches, including unsupervised and supervised techniques, were utilized for myelo-
fibrosis prediction using the platelet transcriptome. 

  

Figure 4. Graphical abstract of Shen et al.’s machine learning algorithm for myelofibrosis prediction
using platelet transcriptome of myeloproliferative neoplasms. (A,B) Two independent cohorts of
MPN patients and healthy controls were included. (C) Platelets from peripheral blood samples of
the two cohorts were isolated and sequenced to yield a platelet transcriptome. (D) Machine learning
approaches, including unsupervised and supervised techniques, were utilized for myelofibrosis
prediction using the platelet transcriptome.

3.2.3. Predicting Risk of Thrombosis in PV Using Clinicopathologic Features

Using the most significant of 60 clinicopathologic variables, Abu-Zeinah et al. [57]
developed a machine-learning algorithm-based clinical decision support system that pre-
dicts the incidence of thrombosis in polycythemia vera patients. Prediction of arterial or
venous thrombosis in the following 3 months was performed using a random survival
forest (RSF) model. A cohort of 470 patients with polycythemia vera was obtained from
Weill Cornell Medicine’s database and divided into training (75%) and testing (25%). The
grading system was created using the most important ML-derived characteristics and
validated using multivariable logistic regression analysis. Using the Fine–Gray model, the
cumulative incidence (CI) of thrombosis was compared between risk categories. Five of
the top ten variables that independently predicted thrombosis within the RSF model were
included in a clinical decision support system that quantified thrombosis risk. A point was
allocated for the presence of each of the five variables: age, old thrombosis, recent thrombo-
sis, leukocytosis, and recent diagnosis. The cohort was then labeled as low, intermediate,
and high-risk if their score in the grading system was 1/5, 2/5, or ≥3/5, respectively. The
grading method revealed that high-risk and intermediate-risk individuals were 6.5 and
2.3 times more likely to develop thrombosis, respectively, than low-risk patients, and the
likelihood of thrombosis was substantially different after 1, 2, and 5 years.
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3.2.4. Predicting Fibrosis in PV Using Accessible Baseline Characteristics

By using easily accessible baseline parameters, Srisuwananukorn et al. [58] created a
machine-learning algorithm that predicts the development of myelofibrosis in polycythemia
vera (PV) at the time of diagnosis using characteristics such as demographics, physical
exam findings, and laboratory values. A total of 35 models were created after dividing a
cohort of 527 PV patients into a development set (90%) and a hold-out set (10%) based on
disease progression status. A set of biologically plausible characteristics were chosen using
minimum depth analysis across all 35 models. The models were compared to well-known
prediction models such as the European LeukemiaNet (ELN) score and the International
Working Group MPN Research and Treatment (IWG-MRT) score. Age and past thrombosis
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define the ELN score, while age, WBC, and prior thrombosis determine the IWG-MRT score.
Three variables—age, neutrophilia, and leukocytosis—were utilized as continuous values
in a final random survival forest (RSF) model. The model outperformed the ELN and
the IWG-MRT scores (p = 0.001) and is undergoing development to become an interactive
online interface.

3.2.5. Predicting Hydroxyurea Failure and Thromboembolism in PV

Verstovsek et al. [59] developed an accurate and reliable machine-learning model that
forecasts the incidence of thromboembolism (TE) in polycythemia vera (PV) patients under-
going Hydroxyurea (HU) treatment. The model was trained using 69,464 polycythemia vera
patients within the US OPTUM database. For prediction, a logistic regression model was
constructed, and the results were transformed into therapeutically applicable decision-tree
classification algorithms. Lymphocytosis and high red cell distribution width (RDW) were
predictive for patients without a history of TEs, while thrombocytosis and lymphocytosis
were predictors in patients with a history of TEs. Similarly, high RDW was predictive of HU
failure in phlebotomy-dependent patients after three months of treatment. Additionally, PV
patients who switched to Ruxolitinib had a lower incidence of TEs than those who stayed
on HU.

3.2.6. Predicting Thrombosis Risk in Secondary Myelofibrosis

Mora et al. [60] examined thrombosis predictors in the MYSEC PM (Myelofibrosis
Secondary to PV and ET-Prognostic Model) database. A machine-learning random survival
forest (RSF) model that incorporated phenotypic and genotypic variables upon secondary
myelofibrosis (SMF) diagnosis was utilized to find predictors of thrombosis incidence such
as gender, age, RBC indices, WBC indices, bone marrow fibrosis, and prior thrombosis.
Then, in order to assess the function of the ML algorithm in predicting thrombotic risk, a
second model was developed, which aggregates MYSEC-PM components. The results have
shown that the random forest model involving MYSEC-PM and past thrombosis predicted
thrombotic risk following SMF evolution with great accuracy.

3.2.7. Prediction of Primary Myelofibrosis Using Gene Expression

Li et al. [33] sought to uncover unique diagnostic and predictive gene expression
profiles of primary myelofibrosis (PMF) from gene expression datasets. Weighted Gene
Co-expression Network Analysis (WGCNA) methods were used to find the most associated
genes to PMF. Following that, Gene Ontology (GO) and Kyoto Encyclopedia Genes and
Genomes (KEGG) searches were conducted in order to properly comprehend the specific
information of a module of interest labeled Green. Following WGCNA analysis, module
Green was substantially associated with PMF disease. Twenty genes in module Green
were identified as hub genes for PMF development. EPB42, CALR, SLC4A1, and MPL
were the most highly expressed and correlated with PMF, and a machine-learning model
was developed to demonstrate the reliability of these genes. The SVM (support vector
machine) was chosen as the best-suited prediction model and was assessed in third-party
datasets, obtaining AUCs of 0.922 and 0.875 within Gene Expression Omnibus (GEO)
datasets GSE53482 and GSE61629, respectively.

3.2.8. Prediction of Myelofibrosis Progression in Health Records

Bejan et al. [61] devised a system to predict myelofibrosis using Natural language
Processing (NLP) machine learning with negation detection of MF keywords, drugs, and
ICD coding to construct phenotype-genotype connections. JAKextractor, an algorithm to
find individuals clinically tested for JAK2V617F across 248,000 cases in BioVU, a bank
of de-identified DNA samples, was developed to enhance the dataset. A supervised
learning system was taught to learn decision rules that encode MF-specific ICD codes,
drugs, the text mentions, and the assertion status of MF and JAK2 references in patient
notes for MF identification. A 10-fold cross-validation technique was used to evaluate the
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experiments. JAKextractor employed pattern matching to determine the state of each JAK2
text mention (wild-type versus mutated). Based on the information gathered from patient
notes, machine learning identified JAK2V617F patients. The best-performing MF algorithm
included all clinical data sources and attained an F1-measure (F1) of 96%, identifying
309 MF patients in BioVU. Moreover, 71/131 (54.2%) of MF patients were genotyped with
JAK2V617F, compared to 66/131 (50.4%) identified using JAKextractor. There were only
two false positives and four false negatives in the JAKextractor predictions. These findings
confirmed the possibility of constructing an MPN database using retrospective genotyping
of biobanked DNA and demonstrated the effective identification of MF and JAK2V617F
within an electronic health record.

4. Discussion

While the use of AI and ML technologies in MPNs has shown promise, several
limitations should be considered. Firstly, the use of these technologies may not be diagnostic
by itself and only complements the standard diagnostic criteria for MPNs, such as the
requirement for marrow cellularity, lineage maturation, degree of fibrosis, and blast cell
estimation, which are necessary for MPNs WHO classification. Therefore, the use of
AI and ML should not be relied upon solely for diagnosis but rather as a tool to assist
physicians in making a diagnosis. Secondly, many of the reviewed studies were based
on single-center and a small number of cases, which may limit the generalizability of the
results. Additionally, some of the reviewed studies only analyzed cell-derived molecular
alterations, indicating that biological and computational validations are necessary for
decision-making. Furthermore, the application of AI and ML technologies in MPNs may be
based on invasive techniques that require BM trephines, which may not be suitable for all
patients and therefore limit the utility of these technologies. Finally, some of the reviewed
studies focused on larger datasets and molecular biology, such as the identification of hub
genes or the use of Bayesian networks, which may require larger samples to validate the
proposed models. Therefore, future studies should focus on addressing these limitations to
fully realize the potential of AI and ML technologies in MPNs research and clinical practice.

5. Conclusions

This literature review summarizes the recent advances in the applications of Artificial
Intelligence (AI) within Philadelphia-negative (Ph-) myeloproliferative neoplasms (MPNs).
Machine learning, deep learning and digital hematopathology models have shown promis-
ing results in diagnosing, prognosing and explaining the complex genomics of Ph-MPNs
with remarkably high accuracy and reliability. As management of the complex and over-
lapping MPNs depends upon correct classification, AI models might prove useful in the
treatment and monitoring of patient suffering from these rare disorders. Nevertheless, in
order to assess the effectiveness of these models in diverse clinical scenarios, additional
research studies utilizing larger samples and improved methods are still required.
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