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Abstract: Improving forecasts, particularly the accuracy, efficiency, and precision of time-series
forecasts, is becoming critical for authorities to predict, monitor, and prevent the spread of the
Coronavirus disease. However, the results obtained from the predictive models are imprecise and
inefficient because the dataset contains linear and non-linear patterns, respectively. Linear models
such as autoregressive integrated moving average cannot be used effectively to predict complex time
series, so nonlinear approaches are better suited for such a purpose. Therefore, to achieve a more
accurate and efficient predictive value of COVID-19 that is closer to the true value of COVID-19, a
hybrid approach was implemented. Therefore, the objectives of this study are twofold. The first
objective is to propose intelligence-based prediction methods to achieve better prediction results
called autoregressive integrated moving average–least-squares support vector machine. The second
objective is to investigate the performance of these proposed models by comparing them with the
autoregressive integrated moving average, support vector machine, least-squares support vector
machine, and autoregressive integrated moving average–support vector machine. Our investigation
is based on three COVID-19 real datasets, i.e., daily new cases data, daily new death cases data,
and daily new recovered cases data. Then, statistical measures such as mean square error, root
mean square error, mean absolute error, and mean absolute percentage error were performed to
verify that the proposed models are better than the autoregressive integrated moving average,
support vector machine model, least-squares support vector machine, and autoregressive integrated
moving average–support vector machine. Empirical results using three recent datasets of known
the Coronavirus Disease-19 cases in Malaysia show that the proposed model generates the smallest
mean square error, root mean square error, mean absolute error, and mean absolute percentage error
values for training and testing datasets compared to the autoregressive integrated moving average,
support vector machine, least-squares support vector machine, and autoregressive integrated moving
average–support vector machine models. This means that the predicted value of the proposed
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model is closer to the true value. These results demonstrate that the proposed model can generate
estimates more accurately and efficiently. Compared to the autoregressive integrated moving average,
support vector machine, least-squares support vector machine, and autoregressive integrated moving
average–support vector machine models, our proposed models perform much better in terms of
percent error reduction for both training and testing all datasets. Therefore, the proposed model is
possibly the most efficient and effective way to improve prediction for future pandemic performance
with a higher level of accuracy and efficiency.

Keywords: COVID-19 pandemic; machine learning; hybrid models; forecasting; public health;
accuracy and efficiency

1. Introduction

The city of Wuhan in Hubei Province, China, made history as the first point of the
spread of the coronavirus disease (COVID-19) due to severe respiratory syndrome. On
January 31, the World Health Organization (WHO) declared for the first time that COVID-
19 is a “public health emergency of international concern” [1]. The virus was originally
thought to have come from a fish market in Wuhan. On 11 January 2020, the gene sequence
that China openly shared through personal contacts fueled its rapid spread, with a total
of 9,129,146 confirmed cases, including 473,797 deaths worldwide as of 24 June 2020 [2].
However, as of 1 May 2021, COVID-19 has infected more than 151 million people and
caused three million deaths worldwide. Countries such as the USA, Brazil, Russia, Spain,
UK, Italy, France, Germany, China, India, Iran, and Pakistan have been hit the hardest
by COVID-19. The first cases of COVID-19 reported in Malaysia on 2 January 2020 were
detected by Chinese tourists entering the country from Singapore [3]. Only single-digit
daily cases were reported in the initial phase, but this increased to 235 by 26 March [4].
The number of daily cases in Malaysia continued to increase exponentially by reaching
around 20,000 in August 2021. The Malaysian government declared the implementation
the Movement Control Order (MCO) from 18 March to 3 May 2020, the Conditional MCO
(CMCO) from 4 May to 9 June 2020, and the Recovery MCO (RMCO) from 10 June 2020 to
31 March 2021. All travel and socio-economic activities (religious and cultural gatherings
were not allowed) have been restricted across the country to keep new infections at bay
and avoid overloading the country’s healthcare system during this time. All government
and private offices and educational institutions, including transportation hubs, have been
closed, citizens have been ordered to stay at home, and interstate travel has been banned,
with fines of up to RM 10,000 for violators.

Since the WHO declared the COVID-19 outbreak a pandemic, not only governments
from around the world, but also dedicated medical institutions have made many efforts
to find vaccines and treatments to control the spread of the virus. Statisticians and public
health scientists have also performed extensive statistical modelling, especially regarding
the forecasting of COVID-19 cases, to help the health system prevent the contagion catas-
trophe. In this scenario, the ability to most effectively determine the growth rate at which
the epidemic is spreading is very critical to counterattack and help governments, social
planning, and policy making to accurately address the epidemic. Therefore, the motivation
behind this research compared to the existing research is to (i) develop the most accurate
and efficient predictive model related to the spread of COVID-19 in Malaysia and (ii) com-
pare the performance of this new model with autoregressive integrated moving average
(ARIMA), support vector machine (SVM), least-squares support vector machine (LSSVM),
autoregressive integrated moving average-support vector machine ARIMA–SVM, and
autoregressive integrated moving average–least-squares support vector machine models
(ARIMA–LSSVM).

During the pandemic, many studies have been conducted using various mathematical
and statistical models to predict the spread of the COVID-19 pandemic. One of the most
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popular time-series prognostic models for analyzing and predicting disease spread is the
ARIMA (p, d, q) model [5–7]. Predicting new daily cases of COVID-19 was a difficult
task, as cases increased daily. In the first wave, the pattern of COVID-19 cases has been
continuously increasing for a period and then decreasing. However, for the second wave, it
appears to be picking up again, and some of the COVID-19 cases are difficult to predict.
In this scenario, some researchers predict the pattern of COVID-19 using ARIMA [8–14].
However, the ARIMA model has a limitation in that it typically can only handle a linear
time-series data structure [15]. ARIMA model approximations are insufficient to pose a time-
series prediction obstacle for researchers, especially for nonlinear patterns [16]. Despite its
superior performance, the classification performance of Support Vector Machines (SVMs)
and the generalizability of the classifier are often affected by the dimension or number of
feature variables used, as mentioned by Lee [17]. As a result of the development of Vector
Machines models, this process will be able to provide the most accurate and efficient result
in each prediction case. SVMs, first introduced in 1995 by Vladimir Vapnik [18] in the
field of statistical learning theory and structural risk minimization, have proven useful in
a variety of prediction problems and classifications. SVMs could also manage or address
difficulties such as non-linearity, local minimum, and high dimension where the ARIMA
model could not [15,19–21]. SVM models have recently been used to handle problems
such as nonlinear, local minimum, and high dimension. SVM can even guarantee higher
accuracy for long-term predictions compared to other computational approaches in many
practical applications. However, the single SVM model as a single ARIMA model also has
some limitations, as the SVM model can only handle non-linear data and not linear data.
With the limitations of a single ARIMA and SVM model, as well as an in-depth analysis of
time-series prediction, hybrid approaches have become the best approach to overcome both
limitations, and have a very significant impact in many areas due to their dynamic nature
and higher level of predicting accuracy, efficiency, and precision. This approach is crucial
because of the problems encountered in time-series forecasting, where almost all real time
series contain linear and nonlinear correlation patterns between the data. Recently, the
hybridization of prediction methods has been used with great success to achieve higher
prediction accuracy [15,16,19,20,22–26].

Regarding the spread of COVID-19, the hybrid time-series model approach is crucial
for predicting the impact of the COVID-19 outbreak, and has proven successful in predicting
COVID-19 [27–33]. This study aims to (a) propose the ARIMA–LSSVM hybrid model
approach to achieve better forecast results when it is able to produce the best estimator,
i.e., produce small error terms; additionally, it aims to (b) examine the performance of
the proposed models by comparing them to ARIMA and SVM models using three daily
cases of COVID-19 data in Malaysia, that is, daily new positive cases, daily new deaths,
and daily new recovered cases. Despite recent advances in time series and on COVID-19,
the modelling process does not include COVID-19 cases specifically in Malaysia to help
authorities manage the spread of this outbreak by producing more efficient, more accurate
data, and more accurate forecasting results.

This study makes a significant contribution to the field of pandemic prediction and
prevention by introducing novel approaches to dealing with COVID-19 data. Rather than
relying on traditional methods, this research utilizes evidence-based prediction techniques,
which have been shown to be more accurate and efficient. The use of these intelligent
forecasting models enables local health authorities to create more precise and effective
preventive measures, especially in the face of future outbreaks.

This study is particularly innovative in its use of hybrid forecasting models by machine
learning for Malaysia’s future pandemics, such as avian flu or novel coronavirus strains.
According to Moore [34], the scenario is for the next possible new pandemic of avian
influenza virus strain H7N9 or a novel coronavirus. The predictive models developed
are more precise, accurate, and efficient in anticipating the dynamic spread of the virus.
This approach has been tested on real-world data, including daily new cases, daily new
death cases, and daily new recovered cases of COVID-19, making it a valuable tool for
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public health officials and researchers. This research also has significant implications for
future outbreaks, particularly in countries with tropical rainforests such as Malaysia. By
predicting the spread of COVID-19 early on, this model can help policymakers build better
healthcare facilities, take legislative action, and avoid economic losses. While a vaccine
is now available, this model remains useful in accurately forecasting and preventing the
impact of future pandemics, including those caused by new virus strains.

This study’s innovative and evidence-based methods make a valuable contribution
to pandemic prediction and prevention, providing significant insights that can be used to
mitigate the impact of future outbreaks. The implications of this research extend to public
health authorities, policymakers, and researchers worldwide, offering powerful tools for
mitigating the devastating effects of pandemics. The remainder of this paper is structured
as follows. Materials and Methods goes into detail about the method we used to develop
our proposed model. The hybrid ARIMA–SVM model used in this study is then briefly
described. The results and discussion present the performance of our proposed model
based on three known COVID-19 case datasets. Finally, we wrap up the article and make
suggestions for future research.

2. Materials and Methods
2.1. ARIMA Modelling

The ARIMA (p, d, q) autoregressive integrated moving average model is one of the
families in time-series forecasting that is widely used for time-series forecasting series
datasets due to its flexibility with different time categories [16]. It also explicitly considers
several standard patterns in time-series analysis, allowing for a powerful and easy-to-use
way to produce accurate time-series forecasts. However, limitations may occur due to the
existence of assumptions of a linear form that represents a linear relationship between
the future value of the time series with the current value, the past value, and random
noise in the model [15–17,21,26]. In the ARIMA model, p and q are the numbers of the
autoregressive and moving average terms, and they are always listed in the order of the
model, while d is the integer representing the differential order. The ARIMA model type
with mean µ is represented mathematically as follows:

yt = β + θ1yt−1 + θ2yt−2 + · · ·+ θpyt−p + et −∅1et−1 −∅2et−2 − · · · −∅qet−q (1)

where yt and et are the actual value and the random error at time t, respectively. Both are
assumed to be independently and identically distributed (iid) with a mean 0 and a constant
variance of σ2; θi (i = 1, 2, . . . , q) and ∅j(j = 0, 1, 2, . . . , q) are the model parameters that
need to be predicted.

2.2. Support Vector Machines Modelling

The Support Vector Machine (SVM) introduced by Vladimir Vapnik [18], which incor-
porates statistical learning theory, can handle larger dimensional data better, even with a
small number of instances generalizability. Because the models select boundary support
vectors from the input data, they process the data quickly. The SVM regression function is
written as follows.

For linear and regressive dataset {xi, yi} the function is formulated as follows:

f (x) = wTx + b (2)

The coefficient w and b are estimated by minimizing.

1
2
wTw+ C

1
n

n

∑
i−1

Lε(yi, f (xi)) (3)
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where `ε is called the ε-intensive loss function and is formulated as follows:

`ε(y, f (x)) =
{

0 if |y− f (x)| ≤ e
|y− f (x)| others

(4)

Equation (3) can be transformed to the following constrained formulation by introduc-
ing positive slack variables ξ and ξ∗i :

min 1
2 w

Tw+ C
n
∑

i=1

(
ξi + ξ∗i

)
wxi + bi − yi ≤ ξ+ ξ∗i
−wxi − bi + yi ≤ ξ+ ξ∗i

ξi, ξ∗i ≥ 0

i = 1, 2, . . . , N

(5)

We always use dual theory to convert the above formula into a convex quadratic
programming problem when solving it. Adding the Lagrange Equation (5) results in the
following term:

min
1
2

n

∑
i,j=1

(α∗i − αi)(α
∗
j − αj)α

T
i αj −

n

∑
i=1

α∗i (yi − e)− αi(yi + e) (6)

Subject to
y

∑
i=1

(αi − α∗i ) = 0 , αi, α∗i ∈ [0, C]

When a dataset cannot be regressed linearly, we map it to a high dimension feature
space and regress it linearly. The following is the formulation:

min
1
2

n

∑
i,j=1

(α∗i − αi)(α
∗
j − αj)ϕ(xi)

T ϕ
(
xj
)
−

n

∑
i=1

α∗i (yi − e)− αi(yi + e) (7)

Subject to
n

∑
i=1

(αi − α∗i ) = 0 , αi, α∗i ∈ [0, C]

Let K
(
Xi, Xj

)
=
{

ϕ(Xi)·ϕ
(
Xj
)}

= ϕT(Xj
)

ϕ(Xi); K(x, x) is the inner product of fea-
ture space and is called kernel function. Any symmetric function that satisfies Mercer
condition can be used as Kernel function [19]. The Gaussian kernel function is specified in
this study.

K
(

xi, xj

)
= exp(−||xi − xi||2/(2σ2)) (8)

SVMs were used to estimate the nonlinear behaviour of the forecasting dataset because
Gaussian kernels perform well under general smoothness assumptions [22].

2.3. Least-Square Support Vector Machines Modelling

The Least-Squares Support Vector Machines (LSSVM) proposed by Suykens and
Vandewalle [35] is a modification of the standard SVM. LSSVM formulates the training
process by solving linear problem quicker than SVM through quadratic programming.
Additionally, this model is also more time efficient when analysing huge data. Consider a
given training set

{
(xi, yj), i = 1, 2, . . . n

}
with xi ∈ Rn as input data and yi ∈ R as output

data. LSSVM defines the regression function as:

minJ (ω, e) =
1
2

ωTω +
C
2

n

∑
i=1

e2
i (9)
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Subject to
yi = ωT ϕ(xi) + b + ei; i = 1, 2, 3 . . . n

where ω is the weight vector; y is the regularization parameter where it determines the
trade-off between the training error minimization and smoothness of the estimated func-
tion; e is the approximation error; ϕ(.) is the nonlinear function; and b is the bias term.
Constrained optimization of Equation (9) can be translated to unconstrained optimization
by constructing Lagrange function. This can be obtained by using Karush–Kuhn–Tucker
(KKT) condition, where it partially differentiates with respect to ω, b, e, and ϕ(.):[

0 It
v

Iv Ω + c−1 I

][
b
a

]
=

[
0
y

]
where y = [y1, . . . , yn]

T ; Iv = [1, . . . , 1]T ; a = [a1, . . . , an]
T ; Ω =

{
Ωij
∣∣ i, j = 1 . . . n

}
, Ωij =

ϕ(xi)
T ϕ(xi) = K(xi, xj); K(.) is the Radial Basis Function (RBF) kernel function that ob-

tains a and b by calculating linear operations.

2.4. Proposed Hybrid Model

Despite the various time-series models presented, the accuracy, efficiency, and pre-
cision of time-series forecasts are becoming crucial for many decision-making processes
today. However, these factors do not appear in ARIMA and SVM models. This is also
the main reason why the time-series forecasting model is crucial, more demanding, and
dynamic, as well as actively researched in many fields of study. ARIMA and SVM models
have also prevailed in their linear or nonlinear domains [15,25,26]. However, none of these
are generic principles that can be generalized to all situations. Therefore, a hybrid approach
using both linear and non-linear modelling capabilities is recommended. This approach
is mainly proposed to improve the overall prediction effectiveness. Therefore, there is no
research on how to improve the effectiveness of predictive models created in Malaysia,
particularly in the case of COVID-19.

There are two reasons for using hybrid models in this study. First, a single ARIMA
and SVM model may not be sufficient to identify all the time series’ characteristics. The
second assumption is that one or both cannot recognise the actual data generation process.
This study’s hybrid models were built in two stages. Part I discusses linear autocorrelation
composition, and Part II discusses nonlinear components. Thus,

yt = `t +Nt (10)

where `t and Nt are denoted as the linear composition and the nonlinear component,
respectively. Based on the data, these two parts must be approximated. Part I focuses on
linear modelling, which employs the ARIMA model to model the linear composition. The
model from the first model included residuals, which are nonlinear interactions that cannot
be modelled by a linear model or possibly a linear relationship. Thus,

`t =

[
p

∑
i=1

θizt−i −
p

∑
i=1

∅jet−j

]
+ εt = ˆ̀t + εt (11)

Let εi denoted as the residual from the linear model at time t. Then,

εt = yt − ˆ̀t

where ˆ̀t is the predicted value for time t from the estimated relationship in (1), with εt as
the residual at time t from the linear model. The residual dataset after ARIMA fitting will
only contain non-linear relationships that can be represented by a linear model [15]. The
first stage results, which include forecast values and residuals from linear modelling, are
then used in Part II.
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Following Part II, the emphasis is on nonlinear modelling, where LSSVM is used to pre-
dict the nonlinear connection that occurs in residuals of linear modelling and original data.
Then, the residual can be calculated using LSSVM by modelling various configurations
as follows:

Part II focuses on nonlinear modelling, and LSSVM is used to model the nonlinear (pos-
sibly linear) relationship that occurs in residuals of linear modelling as well as original data.
The residual can then be calculated using LSSVM by modelling different configurations
as follows:

εt = f (εt−1, εt−2, . . . εt−n) + et (12)

εt = f (εt−1, εt−12) + et (13)

yt = f
(
yt−1, yt−12, ˆ̀t

)
+ et (14)

yt = f (yt−1, yt−12) + et (15)

where f is a nonlinear function determined by the LSSVMs model and et is the random
errors. Thus, the hybrid forecast is

ŷt = ˆ̀t + N̂t (16)

Equations (12) and (13) can be identified as N̂t, therefore the forecasted values can be
achieved by summation of linear and nonlinear components. Figure 1 shows the functional
flowchart of hybrid models.

Figure 1. Flowchart process for hybrid ARIMA-LSSVM models.

In short, the proposed hybrid process methodology is divided into two parts. The
ARIMA model is used to analyse the linear composition problem in Part I. Part II develops
an LSSVM model to model the residuals from Part I. Because the ARIMA model in Part
I cannot handle the nonlinear component of the data, the residuals of the linear model
will include information about the nonlinearity. The LSSVM results can be utilised as
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forecasts of the ARIMA model’s error terms. The hybrid model defines various patterns
by combining the distinct features and strengths of the ARIMA and LSSVM models. As
a result, it is more effective to model linear and non-linear patterns separately with two
different models and then re-hybridize the forecast results to improve overall modelling
and forecasting performance.

2.5. Proposed Algorithm

Step 1: Three selected time series of COVID-19 cases datasets (1 October 2020–4 November
2022), namely daily new positive cases, daily new deaths cases, and daily new recovered
cases, are generated in R programming Language.
Step 2: Each of the generated datasets is defined as {X1i = x11, x12, x13, . . . , xn1}, {X2i = x21,
x22, x23, . . . , x2n}, and {X3i = x31, x32, x33, . . . , x3n} for daily new positive cases, daily new
deaths cases, and daily new recovered cases, respectively. Then, the best ARIMA (p, d, q) is
selected after checking the autocorrelation function (ACF) plot of ARIMA (p, d, q) residuals.
The best fitted value for daily new positive cases is ARIMA (2, 1, 2), while it is ARIMA (1,
1, 2) and ARIMA (0, 1, 1) for daily new fatalities cases and daily new recovered cases of
COVID-19, respectively.
Step 3: The fitted value, yt−i = (yt−1, yt−2, . . . , yt−m) and the residuals εt−i = (εt−1, εt−2,
. . . . , εt−n).
Step 4: Combine the values in step 3 as a set of input variables to obtain the output yt
Step 5: The ARIMA (p, d, q) is defined by the order of q. According to the information in
step 4, Vector Machines is carried out to examine the residuals to obtain the output Lt using
R-programming Language.
Step 6: A fitted value of ARIMA with the hybridization of Vector Machines model is
obtained for all sample data. Then, the residuals εt is generated to obtain the forecasting
result N̂t.
Step 7: The framing data split randomly into training data and testing data for further
Vector Machines modelling. Run the Vector Machines procedure using the “e1071” and
“liquidSVM” package in R-Programming Language.
Step 8: The two modifiable parameters of the LSSVM technique (γ and σ) derived by
objective function minimization such as mean square error (MSE). The grid-search method
updates the parameters exponentially in the specified range using predetermined equidis-
tant steps.
Step 9: Assume the split data as the processing data and the order q as in Step 5. Therefore,
the combine forecast as in Equation (16): ŷt = ˆ̀t + N̂t
Step 10: Estimate the model performance using the statistical measurement which are MSE,
RMSE, MAE, and MAPE.

2.6. Forecasting Evaluation Criteria

In order to assess the overall performance of the proposed hybrid models, the one of a
kind statistical measurements standard which accompanied by [15,16,36] including MAE
(Mean Absolute Error), MAPE (Mean Absolute Percentage Error), MSE (Mean Squared
Error), and RMSE (Root Mean Squared Error) are used.

MAE =
1
n ∑n

t=1

∣∣∣∣ŷt − yt

∣∣∣∣
MAPE =

1
n ∑n

t=1

∣∣∣∣ ŷt − yt

yt

∣∣∣∣× 100

MSE =
1
n ∑n

t=1(ŷt − yt)
2

RMSE =

√
1
n ∑n

t=1(ŷt − yt)
2 =
√

MSE
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In time-series analysis, measurement tools such as Akaike’s information criterion
(AIC) and the Bayesian information criterion (BIC) are commonly used to determine the
appropriate length for distributed lag for the ARIMA model. As a result, model selection
is based on the model with the lowest AIC and BIC values to provide measures of model
performance, resulting in the selection of the best ARIMA model. Meanwhile, three
parameters such as C are used as measurement tools to determine the best fitted model for
LSSVMs models. Meanwhile, for the LSSVMs models, two parameters such as γ and σ are
used as the measurement tools to determine the best fitted model.

Incorrect LSSVM model parameter selection can lead to over or underfitting of the
training data. The parameter sets of the LSSVMs model with the lowest MSE value, as with
the ARIMA model, will be selected for use in the best fitting model. As a result, for the
hybrid models, the ARIMA first functioned as a pre-processor, filtering the linear pattern
of datasets. The ARIMA model’s error term is then fed into the SVM in the hybrid models.
LSSVMs were used to reduce the ARIMA error function.

3. Results and Discussion
3.1. Application of the Hybrid Model of COVID-19 in Malaysia

This section examined the proposed model’s performance in two ways: first, the
performance of the proposed models compared to ARIMA, SVM, LSSVM, ARIMA–SVM,
and ARIMA–LSSVM models; second, the percentage improvement of the proposed models
compared to ARIMA and SVM models. Since the World Health Organization (WHO)
declared COVID-19 to be a worldwide pandemic, the COVID-19 time-series datasets have
been extensively studied. The predictive capability of the developed novel models was then
compared using three well-known datasets of daily COVID-19 cases in Malaysia—daily
new positive cases data, daily new fatalities cases data, and daily new recovered cases data—
to demonstrate the performance of the proposed model in terms of accuracy, effectively,
and accurately. All these data are reported from the 1 October 2020 to 4 November 2022
and retrieved from the COVIDNOW website at https://covidnow.moh.gov.my/, accessed
on 10 January 2023.

The minimum value of new death, new cases, and new recovered cases in Table 1 is 0,
2600, and 1.8, respectively, while the maximum value of new cases, death, and recovered
cases is 33,872.0, 592, and 33,406, respectively. Similarly, the mean and median for new
cases, deaths, and recovered cases are 6322.7, 47.51, and 6415.5, respectively, where the
parentheses indicate the median (3471, 11, 3447.0). The first quartile values for daily new
cases, death cases, and recover cases are 1922, 4, and 1843, respectively. The number of daily
new cases, deaths, and recoveries in the third quartile is 6824, 58, and 6775, respectively.
Furthermore, the standard deviations for new cases, deaths, and recoveries are 7097.8,
81.12, and 7058.3 percentiles, respectively.

Table 1. Descriptive statistics of COVID-19 daily new cases, death, and recovered cases of Malaysia.

New Case New Death New Recovered

Min 2.60000 × 102 0 1.8
1st Qu 1.9220 × 103 4 1.8430 × 103

Median 3.4710 × 103 11 3.4470 × 103

Mean 6.4155 × 103 47.5098 6.3227 × 103

3rd Qu 6.8240 × 103 58 6.7750 × 103

Max 3.3406 × 104 592 3.3872 × 104

SD 7.0978 × 103 81.1215 7.0583 × 103

Furthermore, this section discusses the process of proposed models for both parts,
i.e., Part I (Linear Modelling) and Part II (Nonlinear Modelling), using three well-known
COVID-19 datasets, namely daily new positive cases, daily new deaths cases, and daily
new recovered cases, to demonstrate the effectiveness of the proposed models. Both linear

https://covidnow.moh.gov.my/


Diagnostics 2023, 13, 1121 10 of 32

and nonlinear modelling, as well as the data used in this study, are carried out using
R programming.

Part I (Linear Modelling)—ARIMA is used to generate the best ARIMA model for the
daily new positive case dataset (2, 1, 2). ARIMA is the best fitting ARIMA model for the
daily new death case dataset (1, 1, 2). Meanwhile, the best ARIMA model is reported as
ARIMA in the case of the daily new recovered cases dataset (0, 1, 1). Table 2 summarizes
the results of this ARIMA (p, d, q) model. Table 3 displays the estimates for all parameters.
The p-values for all parameters are small, as shown in this table. As a result, for confirmed,
recovered, and death cases, the models were statistically significant and could be used to
forecast the future [37,38].

Table 2. The best ARIMA (p, d, q) model selection.

COVID-19 Daily Cases ARIMA (p, d, q) AIC BIC

Daily New Positive Cases (2, 1, 2) 12,564.54 12,587.73
Daily New Deaths Cases (1, 1, 2) 6930.12 6948.63

Daily New Recovered Cases (0, 1, 1) 13,044.74 13,054.01

Table 3. Parameter estimates of ARIMA models and their p-values.

Model Parameters Estimate Z-Stat p-Value

New Case ARIMA (2, 1, 2)
θ1 1.2408 120.085 2.2 × 10−16

θ2 −0.9715 −98.320 2.2 × 10−16

ϕ1 −1.2628 −42.225 2.2 × 10−16

ϕ2 0.8738 48.102 2.2 × 10−16

Recovered Case ARIMA (0, 1, 1) 2.2 × 10−16

ϕ1 −0.3473 −9.953 2.2 × 10−16

Death Case ARIMA (1, 1, 2) 2.2 × 10−16

θ1 0.8595 19.852 2.2 × 10−16

ϕ1 −1.6196 −35.651 2.2 × 10−16

ϕ2 0.7039 20.432 2.2 × 10−16

Part II (Nonlinear Modelling)—Based on the concepts of support vector machine
design and the use of pruning algorithms in R-programming software, an optimal machine
learning algorithm was created. For the daily new positive COVID-19 cases datasets,
parameters γ = 264, σ = 0.008 show the smallest values of MSE i.e., 6,661,412 (see Table 4).
Therefore, this parameters value was selected for use in the best-fitting model for the
datasets of daily new positive COVID-19 cases. Whereas the smallest value of MSE is
250.887 and 21114252 (Table 4), with parameters γ = 877, σ = 0.006 and γ = 334, σ = 0.008
are selected as the best-fitting model for daily new death and daily new recovered cases of
COVID-19, respectively.

Table 4. LSSVMs Model Parameters for the daily new COVID-19 cases datasets.

COVID-19 Daily Cases LSSVM Parameter MSE

γ = 11, σ = 0.008 11,432,512
γ = 38, σ = 0.008 10,235,488

Daily New Positive Cases γ = 74, σ = 0.008 9,025,413
γ = 110, σ = 0.008 8,014,123
γ = 264, σ = 0.008 6,661,412
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Table 4. Cont.

COVID-19 Daily Cases LSSVM Parameter MSE

γ = 25, σ = 0.006 1678.364
γ = 56, σ = 0.006 1233.481

Daily New Deaths Cases γ = 277, σ = 0.006 965.143
γ = 436, σ = 0.006 554.368
γ = 877, σ = 0.006 250.887

γ = 54, σ = 0.008 28,412,113
γ = 89, σ = 0.008 27,140,039

Daily New Recovered Cases γ = 125, σ = 0.008 26,412,142
γ = 275, σ = 0.008 23,032,256
γ = 334, σ = 0.008 21,114,252

3.1.1. New Positive Cases Data Forecasts

The daily new positive cases datasets series contains 765 data points and is recoded
from 1 October 2020 to 4 November 2022 (see Figure 2). The number of daily new positive
COVID-19 cases in Malaysia has increased significantly twice since July 2021, but has now
dropped below 5000 new cases. However, it has continued and increased to a maximum
of 33,406.00 around March–April 2022. This figure is expected to fall precipitously un-
til 5 November 2022. The COVID-19 datasets have been extensively used with a wide
range of linear and nonlinear time-series models, including ARIMA and machine learning
methods [7–9,11,13,16,19–26]. The analysis of daily new positive cases of COVID-19 is
critical as an indicator of the effectiveness of preventive measures that have been taken,
are being taken, and will be taken by authorities to control the spread of this epidemic
more effectively.
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Therefore, a similar approach to that used by Aisyah et al. [15] is used to investigate
the performance of the proposal models on daily new positive cases of COVID-19 datasets,
where the dataset is divided into two samples, known as training sample and testing
sample. According to Aisyah et al. [15] and Nurul Hila et al. [16], datasets should be
divided into two parts to achieve the best results: 70–80% for training and the remaining
20–30% for testing [39,40]. The training data are used to assemble the models, while the
testing data are used to evaluate the forecasting performances of the models based on
statistical measurements. Thus, the daily new positive cases of the COVID-19 dataset
are divided into two samples in this study: the training dataset and the test dataset. The
training datasets contain 612 observations from day 1 to day 612, accounting for 80% of
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the datasets used exclusively to formulate from 1 October 2020 to 4 June 2022. In order to
evaluate the forecasting performance of proposed models, the test sample datasets used
approximately 153 observations from days 613–765 (20%) from the 5 June 2022 to the 4
November 2022

Table 5 displays the performance of the proposed model on the daily new positive
COVID-19 case datasets. The proposed models produced results in terms of measurement
error terms, namely MSE and MAE, which have smaller values of 10634.1142 and 46.54471,
respectively. Similar results were obtained from the testing datasets, with MSE, MAPE,
RMSE, and MAE values of 25478.114, 0.01547, 159.6182, and 75.6987, respectively. The
findings are examined in greater detail using figures such as those shown in Figure 3a–e
based on these numerical results. The estimated values for the proposed model (test
sample) of daily new positive COVID-19 cases are shown in this figure. The proposed
model line, as seen in this figure, closely matches the actual data. Figure 4a–e show the
estimated values of our model for test sample data of ARIMA, SVM, LSSVM, ARIMA-SVM,
and ARIMA–LSSVM models for COVID-19 cases. A comparison of the proposed model’s
(ARIMA–LSSVM) lines for the test sample (Figure 4e) with the lines from the ARIMA, SVM,
LSSVM, and ARIMA–SVM models (Figure 4a–d) clearly shows that the proposed model’s
lines are somewhat close to the actual data. When we compared the performance of our
proposal models to the performance of ARIMA, SVM, LSSVM, and ARIMA–SVM models,
we discovered that our proposal models are efficient, accurate, and precise. In addition, the
number of daily new positive COVID-19 cases is plotted, as shown in Figure 5. The daily
new positive cases of COVID-19 for Malaysia are forecasted based on this figure for the
next three weeks.

Table 5. Performance measures of the proposed model for daily new positive COVID-19 cases datasets.

MODELS
TRAIN TEST

MSE MAE MSE MAPE RMSE MAE

ARIMA 929,843.169 611.0274 298,988.28 0.15167 546.7982 397.57
SVM 8,355,184.483 2001.644 274,588.16 0.15421 524.0116 390.3848

LSSVM 1084.1527 739.5387 83,026.550 0.07580 288.1432 205.6450
ARIMA–SVM 42,552.7137 90.34845 61,223.474 0.05633 247.4337 146.9841

ARIMA–LSSVM 10,634.1142 46.54471 25,478.114 0.01547 159.6182 75.6987

Based on Table 6, we examined the performance of the proposed models for the daily
newly positive COVID-19 cases dataset by comparing the percentages of MSE, MAPE,
RMSE, and MAE. The study hypothesis investigates the assumptions of the proposed
hybrid model (ARIMA–LSSVM) approach to single ARIMA, SVM, LSSVM models, as
well as hybrid ARIMA–LSSVM models. The proposed model outperformed the ARIMA–
SVM model in MAE, MAPE, MSE, and RMSE, with improvements of 48.50%, 72.54%,
58.39%, and 35.50%, where the parentheses indicate an ARIMA, SVM, and LSSVM model,
respectively, that results in the following: 80.96%, 89.80%, 91.48%, 70.81%; 80.61%, 89.97%,
90.72%, 69.54%; 63.20%, 79.59%, 69.31%, 44.60%. As a result of these findings (Tables 5
and 6 and Figures 3–5), it is possible to conclude that the proposed model produced greater
accuracy and efficiency than ARIMA and SVM.

Table 6. Percentage improvement of the proposed models with other forecasting models (the COVID-
19 cases of daily new positive cases).

Model MAE MAPE MSE RMSE

ARIMA 80.9596549 89.80022417 91.47855762 70.80857252
SVM 80.60920917 89.96822515 90.72133554 69.53918577

LSSVM 63.18962289 79.59102902 69.31329316 44.60455773
ARIMA–SVM 48.49871517 72.5368365 58.38505669 35.49051726
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Figure 3. Results obtained from the proposed model for daily new positive COVID-19 cases dataset: (a) actual data vs. ARIMA model, (b) actual data vs. LSSVM
models, (c) actual data vs. SVM model, (d) actual data vs. ARIMA–SVM models, (e) actual data vs. ARIMA–LSSVM models.
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3.1.2. New Deaths Cases Data Forecasts

In addition to the Malaysian daily new positive COVID-19 cases datasets, the Malaysian
daily new deaths cases datasets are taken into account and used to evaluate the perfor-
mance of the proposed models. This dataset, like the daily new positive dataset and the
daily new death case dataset, has a recording period of 1 October 2020 to 4 November
2022 (see Figure 6) and contains 765 data points divided into two samples. As the number
of daily positive COVID-19 cases reported rises, so does the number of deaths, which
now stands at around 600. The training dataset contains 612 observations (80%) from 1
October 2020 to 4 June 2022, and the test sample contains approximately 153 observations
(20%) from 5 June 2022 to 4 November 2022 to evaluate the prediction performance of the
proposed model.
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A similar approach to the daily new positive cases of the COVID-19 dataset was
used to study the performance of the proposed model on the daily new death cases of the
COVID-19 dataset. The dataset was divided into two samples, namely training sample
and testing sample. It accounts for approximately 80% of the daily new death cases in the
COVID-19 dataset for the training sample (involving 612 observations with the period 1
October 2020 until 4 June 2022). The remaining 20% is for the test sample, which includes
approximately 153 observations from 5 June 2022 to 4 November 2022.

As shown in Table 7, the performance of the proposed models using the daily new
deaths datasets from COVID-19 is first characterized by statistical measurements such
as MSE, MAPE, RMSE, and MAE. The results for the training data in this table show
that the proposed model produces the smallest MSE and MAE values of 19.6422 and
1.03218, respectively, when compared to ARIMA, SVM, LSSVM and ARIMA–SVM. The
same pattern can be seen in the test data, where all the statistical measures used have the
lowest values when compared to the ARIMA, SVM, LSSVM, and ARIMA–SVM models.

Table 7. Performance measures of the proposed model for daily new deaths COVID-19 cases datasets.

MODELS
TRAIN TEST

MSE MAE MSE MAPE RMSE MAE

ARIMA 697.999 11.8083 6.06741 0.56838 2.46321 1.92791
SVM 1409.19 21.8006 5.38920 0.53687 2.32146 1.85605

LSSVM 505.181 11.4309 5.38920 0.53687 2.32146 1.85605
ARIMA–SVM 49.4459 3.53812 0.92630 0.19088 0.96303 0.76230

ARIMA–LSSVM 19.6422 1.03218 0.89114 0.18741 0.94400 0.72364
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The study then examines the estimated value of the suggested model for the COVID-19
case dataset for daily deaths, as shown in Figure 7a–e. This graph makes it abundantly
clear that the proposed model line and the observed data are nearly identical. Additionally,
Figure 8a–e each show the estimated values for the test sample for ARIMA, SVM, LSSVM,
ARIMA–SVM and ARIMA–LSSVM the suggested models. Once more, it is obvious that
when compared to ARIMA, SVM, LSSVM, and ARIMA–SVM models, the test sample
lines for our suggested model (Figure 8e) are somewhat close to the actual data. This
demonstrates that the outcomes of our suggested model are in line with prior findings
and are more effective, accurate, and precise than those of ARIMA, SVM, LSSVM, and
ARIMA–SVM models. The number of daily COVID-19 death cases is also plotted, just
like in Figure 9. The daily new death cases of COVID-19 in Malaysia are anticipated to
decline because of this number over the course of the following three weeks, indicating a
downward trend.

As shown in Table 8, a similar method in the daily addition of positive COVID-19
case dataset is used to investigate the performance of the proposed model for the daily
recorded death COVID-19 case dataset using percentages MSE, MAPE, RMSE, and MAE.
Again, the percentage of improvement shows that our proposed model outperforms the
ARIMA–LSSVM models for all statistical measures, with results of 5.07%, 1.82%, 3.80%,
and 1.98%, respectively; there are also improvements (62.47%, 67.03%, 85.31%, 61.68%;
61.61%, 66.74%, 83.92%, 59.90%; 61.01%, 65.10%, 83.50%, 59.34%) for MAE, MAPE, MSE,
and RMSE. The ARIMA, SVM, LSSVM, and ARIMA–SVM model results are shown in
parentheses. The presented results (see Tables 7 and 8 and Figures 7–9) clearly show that
our proposed model outperforms the ARIMA, SVM, LSSVM, and ARIMA–SVM models in
terms of efficiency and accuracy.

Table 8. Percentage improvement of the proposed models with other forecasting models (the COVID-
19 cases of daily new death cases).

Model MAE MAPE MSE RMSE

ARIMA 62.46505283 67.02734086 85.31267872 61.67602437
SVM 61.60592539 66.73588924 83.92334934 59.90434808

LSSVM 61.01182619 65.09210796 83.46433608 59.33593514
ARIMA–LSSVM 5.071494162 1.81789606 3.795746518 1.976054744

3.1.3. New Recovered Cases Data Forecasts

The investigation to study the performance of the proposed model is continued with
the dataset of new daily recovered cases of COVID-19 in Malaysia. Predicting Malaysia’s
daily new recovered COVID-19 cases is just as important as the previous two datasets. The
data used in this paper include daily observations from 1 October 2020 to 4 November 2022,
for a total of 765 data points in the time series (Figure 10). The number of patients recovered
from COVID-19 exhibits the same trend, with a significant increase twice. Beginning in
July 2021, the number of recovered patients increases exponentially until it reaches over
22,500.00 in August 2021 (the time-series plot is shown in Figure 10) and then drops.
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Figure 7. Results obtained from the proposed model for daily new death COVID-19 cases dataset: (a) actual data vs. ARIMA model, (b) actual data vs. LSSVM
models, (c) actual data vs. SVM model, (d) actual data vs. ARIMA–SVM models, (e) actual data vs. ARIMA–LSSVM models.
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However, around March–April 2022, the number of recovered COVID-19 cases in-
creased again to a maximum of 33,872.00, then decreased and showed a relatively stable
movement after that. This dataset is also divided into two samples, namely the training
dataset and the test dataset. The training dataset, which included 612 observations (80%)
from 1 October 2020 to 4 June 2022, was used in the same way as the previous datasets
to formulate the model. In contrast, the test sample uses approximately 153 observations
(20%) for the period 5 June 2022–4 November 2022. Table 9 displayed the performance of
the proposed model on the daily new recovered COVID-19 case datasets based on training
and testing samples. The results in Table 9 clearly show that the proposed training sample
model produces the smallest MSE and MAE values, with 47602.551 and 80.2214, respec-
tively, when compared to the MSE and MAE models of the ARIMA, SVM, LSSVM, and
ARIMA–LSSVM models. For the test sample, the same scenario as the training sample pro-
duced the smallest MSE, MAPE, RMSE, and MAE with values of 13004.11, 0.0125, 114.0351,
and 54.14471, respectively, when compared to ARIMA, SVM, LSSVM, ARIMA–SVM and
ARIMA–LSSVM models.

Table 9. Performance measures of the proposed model for daily new recovered COVID-19 cases datasets.

MODELS
TRAIN TEST

MSE MAE MSE MAPE RMSE MAE

ARIMA 1,802,678.36 804.4378 271,462.22 0.1560 521.0203 387.2768
SVM 7,636,804.13 1890.917 239,672.00 0.1504 489.5630 371.6573

LSSVM 1,206,113.52 723.9413 149,871.53 0.1127 387.1324 285.9190
ARIMA–SVM 99,205.699 136.8519 26,108.02 0.0396 161.5797 104.1002

ARIMA–LSSVM 47,602.551 80.2214 13,004.11 0.0125 114.0351 54.14471

Figure 11a–e shows the estimated value of the dataset for daily new recovered COVID-
19 cases for the test sample. Once more, this graph demonstrates how closely the predicted
value from the proposed models seems to match the actual values. Figure 12a–e present an
additional analysis of the outcomes of the proposed model. These plots (Figure 12a–e) show
the predicted values for the test samples derived from ARIMA, SVM, LSAVM, ARIMA–
SVM and ARIMA–LSSVM models. In these models, however, the proposed model is close
to the true value because, as we shall see in Figure 11e, the proposed model dominates them.
As shown in Figure 13, the number of daily new recovered COVID-19 cases is plotted. This
figure makes it abundantly clear that the suggested model maintains the data’s original
sharpness. The daily new recovered COVID-19 cases for Malaysia are predicted from this
figure for the upcoming three weeks, and it suggests that these cases will rise in the days to
come in Malaysia.
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Figure 11. Results obtained from the proposed model for daily new recovered COVID-19 cases dataset: (a) actual data vs. ARIMA model, (b) actual data vs. LSSVM
models, (c) actual data vs. SVM model, (d) actual data vs. ARIMA–SVM models, (e) actual data vs. ARIMA–LSSVM models.
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Figure 12. Models’ prediction of daily new recovered COVID-19 cases dataset (20% test sample): (a) actual data vs. ARIMA model, (b) actual data vs. SVM model,
(c) actual data vs. LSSVM models, (d) actual data vs. ARIMA–SVM models, (e) actual data vs. ARIMA–LSSVM models.
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recovered COVID-19 cases of the 80% training and 20% testing set.

Figure 13. Actual and three weeks ahead forecasted values of ARIMA, SVM, LS–SVM, ARIMA–SVM and ARIMA–LSSVM models for daily new recovered COVID-19
cases of the 80% training and 20% testing set.



Diagnostics 2023, 13, 1121 29 of 32

As shown in Table 10, further research was completed to determine how well the
proposed models performed for the daily newly recovered COVID-19 case datasets for
MSE, MAPE, RMSE, and MAE in terms of the percentage. When comparing the results
of the proposed model to ARIMA, SVM, LSSVM, and ARIMA–SVM models, the results
show a better improvement when looking at the percentage of improvement for statistical
measurements such as MSE, MAPE, RMSE, and MAE, with results of 47.99%, 68.43%,
50.20%, and 9.42% improvement (86.02%, 91.99%, 95.21%, 78.11%; 85.43%, 91.69%, 94.57%,
76.71%; 81.06%, 88.91%, 91.32%, 70.54%). The results reported in the parentheses are the
ARIMA, SVM, LSSVM, and ARIMA–SVM models. As a result, based on the findings,
the proposed model has produced results that are more accurate and effective than those
produced by ARIMA, SVM, LSSVM, and ARIMA–SVM models.

Table 10. Percentage improvement of the proposed models with other forecasting models (the
COVID-19 cases of daily new recovered cases).

Model MAE MAPE MSE RMSE

ARIMA 86.01911863 91.98717949 95.20960596 78.11311767
SVM 85.43154944 91.68882979 94.57420558 76.70675684

LSSVM 81.06291992 88.90860692 91.32316191 70.54364347
ARIMALSSVM 47.98789051 68.43434343 50.19112901 29.42485968

4. Conclusions

In conclusion, predicting the spread of COVID-19 with accuracy and efficiency is
essential but frequently challenging for decision-makers, especially the front-line workers
and health care authorities. Despite what might seem to be an endless spread of COVID-19,
there have been numerous efforts to develop time-series models and ongoing research to
enhance forecasting model efficacy. One of the most well-liked types of hybrid models that
divide time series into linear and non-linear forms is the hybrid approach. In this study, a
hybrid model that combines some linear and non-linear predictions is proposed. Utilizing
three well-known COVID-19 datasets—daily new positive cases, daily new death cases,
and daily new recovered cases—revealed that our proposed models were demonstrated
as having the highest efficiency, accuracy, and precision. In comparison to ARIMA, SVM,
LSSVM, and ARIMA–SVM models, the proposed model with cross-validation check based
on MSE, RMSE, MAE, and MAPE makes the most accurate predictions. In terms of
performance (the proposed models compared to ARIMA, SVM, LSSVM and ARIMA–SVM
models) for both the training and testing datasets, the proposed models’ performance yields
the smallest values of MSE, RMSE, MAE, and MAPE. This indicates that the proposed
model’s predicted value is more closely aligned with the observed value. Therefore, our
proposed models had a higher level of precision and could be suggested for COVID-19
forecasting. It can be concluded that the proposed model may be the most efficient and
effective way to increase prediction accuracy performance, especially since it is important
to anticipate and stop the spread of COVID-19 cases.

5. Limitations and Future Recommendation

In this research study, an attempt was made to predict the overall number of confirmed
cases, fatalities, and recoveries of COVID-19 in Malaysia. Investigating SVM performance
with various kernel functions and developing the best hyperparameters for the SVM fore-
casting model can help to increase the forecast’s accuracy in upcoming work. Since only
one-step-ahead forecasting is considered in this paper, multi-step forecasts can be cen-
tralised in subsequent work. It has been demonstrated that multi-step forecasts can greatly
increase the trading system’s realism [41,42]. Additionally, to improve the performance
of the model in terms of efficiency and accuracy of dataset prediction, hybrid approaches
such as bootstrap and double bootstrap methods [16,43,44] can be considered in the hy-
bridization of ARIMA and SVM. Given the dearth of researchers using bootstrap in daily
COVID-19 forecasting cases, it is a reliable method. Numerous studies have demonstrated
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that the bootstrap resampling method yields a more precise estimate [45]. Future studies
should also consider (i) the clinical and behavioural aspects such as actions, cognition, and
emotions and (ii) the possibility of the underreporting of cases and deaths, as well as delays
in notifications, in order to avoid biased predictions, forecasts, and results.
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