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Abstract: The electrocardiogram (ECG) is the most common technique used to diagnose heart diseases.
The electrical signals produced by the heart are recorded by chest electrodes and by the extremity
electrodes placed on the limbs. Many diseases, such as arrhythmia, cardiomyopathy, coronary heart
disease, and heart failure, can be diagnosed by examining ECG signals. The interpretation of these
signals by experts may take a long time, and there may be differences between expert interpretations.
Since technological developments are intertwined with the medical sciences, computer-assisted
diagnostic methods have recently come forward. In computer science, machine learning techniques
are often preferred for automatic detection. Quantum-based structures have emerged to increase the
machine learning algorithm’s speed and classification performance. In this study, a quantum-based
machine learning algorithm is applied to classify heart rhythms. The ECG properties were converted
to qubit structure using principal component analysis (PCA). The resulting qubits are classified
using the quantum support vector machine (QSVM) algorithm. Quantum computer simulation over
Qiskit was used for classification studies. Within the scope of experimental studies, comparisons
between classical SVM and QSVM were made using different data amounts and qubit numbers. In
the results of the analysis, classical SVM achieved 86.96% accuracy, and QSVM achieved 84.64%
accuracy. Despite the fact that the entire dataset was not used due to various limitations, these
successful performances were achieved. Classification of medical data such as that from ECG has
shown that quantum-based machine learning frameworks perform well despite current resource
constraints. In this respect, the study includes essential contributions to the use of quantum-based
machine learning methods on signal data in medicine.

Keywords: electrocardiography classification; quantum computing; machine learning; quantum
support vector machine

1. Introduction

Early diagnosis of cardiovascular diseases is critical in determining treatment and
preventing important risks, such as mortality. Rhythm disorders (arrhythmias) occur in the
heart due to cardiovascular diseases. Electrocardiography (ECG) is the general diagnostic
method used to diagnose arrhythmias. Electrical signals of the heart are recorded with
an ECG and interpreted by experts through observation. One of the main reasons that
many diseases cannot be treated is the lack of timely intervention. Due to factors such as
a rise in patient numbers, the inadequate quality of medical equipment, and a shortage
of doctors, early diagnosis may be delayed. In addition to these parameters, the results
of the analyses take a long time [1]. Since the heart is one of the vital organs in the body,
there is a great deal of research in computer science regarding heart disease. Li et al. [2]
have developed a custom networking structure called a Beat-aligned Transformer (BaT) to
take advantage of the repetitive features of ECG data. The concept of “deep learning” [3,4],
in which both classification and feature inference have coexisted recently as a result of
improvements in machine learning, has rapidly become widespread. In ECG analysis, deep
learning architectures have also provided good performances. Baloglu et al. [5] applied
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a convolutional neural network (CNN) for the diagnosis of myocardial infarction (MI)
by processing the 12-leads ECG signal. As a result of their analysis, high performance
results were achieved. In another study for MI, Yıldırım et al. [6] developed a deep neural
network (DNN) trained with surface ECG to detect clinical MI disease in people. The
superiority of the developed model was demonstrated by comparing it with Q-wave
analysis. Similarly, it has produced positive results in the treatment of atrial fibrillation
(AF) caused by cardiovascular conditions [7,8].

Computational power in the advancement of machine learning methods is mostly
based on hardware, and parallel software improvements produce significant impacts. The
purpose of machine learning is to increase speed and performance. An outcome can be
obtained more quickly if all potential solutions are calculated. One of the main reasons
for entering the quantum world is that a resolution can be made quickly by following
a different path for each possibility. Quantum physics, one of the important subjects of
physics, is a field that contains theories about the entire subatomic microscopic particle
system. It has been researched from a very different perspective in recent years as a result of
its contributions to the world of informatics [9]. Unlike the bits used in classical computers,
qubits are used in quantum computers. A qubit can take the values 1 or 0, or it can be both
1 and 0 simultaneously. As a result, quantum computers can compute multiple probabilities
at the same time [10].

In recent years, quantum-based machine learning algorithms have rapidly become
popular in the literature. Maheshwari et al. [11] evaluated analysis results by applying
both classical and machine learning algorithms to diabetic patient data. Gupta et al. [12]
compared deep learning (DL) and quantum machine learning (QML) algorithms in another
study on diabetes. Zhang and Ni [13] have suggested in their research that some of
the supervised and unsupervised machine learning algorithms based on the quantum
circuit model focus on the quantum base. As a result of their studies, they determined that
quantum algorithms show a speed-up in results compared to their classical versions. Blance
and Spannowsky [14] aimed to increase performance in solving classification problems by
combining quantum computing methods with classical neural network techniques.

In this study, the use of quantum-based machine learning algorithms in ECG analysis,
which is one of the important problems in the medical field, is proposed. For this purpose,
an ECG dataset [15] containing four different rhythms was analyzed using both the classical
and quantum-based support vector machine (SVM) methods. For quantum SVM, qubits
were created with principal component analysis (PCA), a size reduction algorithm, in
parallel with the existing hardware resources. Comparisons between the performances of
classical SVM and quantum support vector machine (QSVM) were examined, with both
the number of data points and qubit numbers increasing at different rates.

The organizational structure of this study is as follows. In Section 2, the materials
and methods are introduced. In Section 3, details about the experimental studies are given.
Sections 4 and 5 conclude our study; this includes the discussion and results, respectively.

2. Materials and Methods

In this article, analyses were performed with a quantum computer simulator using
a dataset of ECG signals. The dataset was converted from bit form to qubit form [16].
Following the data preparation for analysis, a classification procedure was carried out
using the QSVM method from open-source Qiskit codes [17]. The classical SVM algorithm
was applied to the dataset in qubit form, which was labeled by reducing its size. The
purpose of this was to compare the performances of the QSVM and SVM algorithms on the
same data. A block representation of the materials and methods used in the study is given
in Figure 1.
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Figure 1. Illustration of the proposed methods. 
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2.1. Arrhythmia Dataset

In this study, the dataset created by Zheng et al., which contains ECG data from
10,588 patients, was used [15]. This dataset was created from the Chapman University
and Shaoxing and Ningbo People’s Hospital (Chapman) database. The dataset includes
raw ECG signals from 12 leads and 11 clinically obtained ECG features. These features
are: ventricular rate (VR), atrial rate (AR), QRS duration (QRSD), Q interval, QT corrected,
R axis, T axis, QRS count, Q onset, Q offset, and T offset.

The noise-free ECG dataset consists of 12-lead ECG signals sampled at 500 Hz and
categorized by 11 rhythm classes. These are atrial flutter (AF), atrial fibrillation (AFIB), atrial
tachycardia (AT), atrioventricular node reentrant tachycardia (AVNRT), atrioventricular
reentrant tachycardia (AVRT), sinus irregularity (SI), sinus atrium to atrial wandering
rhythm (SAAWR), sinus bradycardia (SB), sinus rhythm (SR), sinus tachycardia (SINT), and
supraventricular tachycardia (SVT). Murat et al. [18], using this data in their study, created
4 different class labels by converting classes with a small number of patients into groups
that are related to each other. Information about these four rhythm classes combined is
given in Table 1.

Table 1. Information on the merged ECG rhythm classes’ labels.

Merged Rhythms New Class

AF + AFIB AFIB
SVT + AT + SAAWR + SINT + AVNRT + AVRT GSVT
SB SB
SR + SI SR

AF: atrial flutter, AFIB: atrial fibrillation, AT: atrial tachycardia, AVNRT: atrioventricular node reentrant tachycardia,
AVRT: atrioventricular reentrant tachycardia, SI: sinus irregularity, SAAWR: sinus atrium to atrial wandering
rhythm, SB: sinus bradycardia, SR: sinus rhythm (), SINT: sinus tachycardia, and SVT: supraventricular tachycardia.

2.2. Proposed Method

This study employs the recently popular quantum-based machine learning approaches
in classifying heart arrhythmias. For this purpose, first, size reduction was performed on
a determined dataset using the PCA technique. The features reduced by the dimension
reduction technique were converted to qubit format and used in the classification stage of
the QSVM algorithm. Apart from the QSVM algorithm, there are quantum classification
algorithms such as quantum neural network (QNN) [19,20], quantum K-nearest neighbors
(Q-KNN) [21,22], and quantum means (Q-Means) [23]. The QSVM algorithm is preferred in
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this study, because SVM is mainly used in classical algorithms in ECG classification. Since
it is aimed at comparing classical and quantum-based ML, QSVM has been determined as
the most suitable algorithm. A block representation of the proposed method within the
scope of the study is given in Figure 2.
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2.2.1. Principal Component Analysis (PCA)

One of the earliest statistical tools, PCA is a method for converting oversized data
into lower-dimensional data to reduce cost and speed. PCA maintains changes in data,
allowing data to be expressed, at least at a loss, with fewer components than in its original
state. In doing so, it aims to determine the best transformation and ensure that all the
resulting components are independent of each other. In this direction, the variance of the
data, eigenvalues, and eigenvectors are used while making calculations [24]. As a result of
applied mathematical operations, it is ensured that the original dataset is expressed with
different axes. Thus, more efficient analyses can be made, as the data is provided from a
different perspective.

2.2.2. Quantum Support Vector Machine (QSVM)

The orientation of computer science toward the quantum world has paved the way for
the use of quantum-based programming in the classification stages. To run the SVM algo-
rithm on a quantum computer, the algorithm must be rescheduled according to quantum
rules [25]. The QSVM algorithm, a quantum adaptation of SVM, performs the computations
for the basic SVM using the laws of quantum mechanics. Whereas classical SVM requires
a graphics processing unit (GPU) or central process unit (CPU) to increase performance,
QSVM uses the power of quantum software. When performing QML operations, classical
data are converted into quantum data (qubits) to be used in quantum computers. Then,
the processing steps required by the QML algorithm are applied. The result obtained is
returned in the classical form [26].

2.2.3. Experimental Setups

The ECG dataset used consists of 10,588 pieces of data. Since there is no access to
quantum computers in the real environment, the dataset was run using the Qiskit frame-
work in the existing computer architecture through the Anaconda package program. Since
a real quantum computer cannot be used, the large amount of data creates a disadvantage
in execution time. Data with a reduced original number of data are called a data case. The
number of data is reduced using 7 different test sizes for data cases. The quantum computer
system is still in development. Therefore, it can serve with limited qubits. PCA, one of
the conversion methods, was used to avoid exceeding the qubit limit while preserving
the structure of the features. SVM and QSVM performances were compared for 5 data
cases: 3, 5, 7, 9, and 11. The attribute numbers given here as dim also indicate the qubit
numbers simultaneously.

The dataset, which initially had 11 dimensions, was reduced to 4 dimensions by
applying PCA. Quantum simulation is provided in the classical computer with ZZFea-
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tureMap [27], which is used for the qubits to enter the entanglement state. The circuit
model of ZZFeatureMap is given in Figure 3a. A quantum circuit model for the case in
which the number of qubits is determined to be 3 is shown in Figure 3b.
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In this study, the Qiskit Library was used for the QSVM implementation [26]. Qiskit is
an open-source, quantum-computing environment developed by IBM. Thanks to the Qiskit
library, quantum experiments can be run on classical computers with quantum simulations.
The Qiskit environment is used with the Python programming language. Various libraries
must be added to Qiskit to perform quantum computations [28]. These libraries include
Qiskit Terra, Qiskit Aer, Qiskit Ignis, Qiskit Nature, Qiskit Machine Learning, Qiskit
Finance, and Qiskit Optimization. Many of these libraries were used during this study.
Computer features used in the experimental studies are as follows: an Intel(R) Xeon(R)
W-2245 with CPU@ 3.90GHz 3.91 processor, 32 GB RAM, and a NVIDIA Quadro RTX
4000 video card.

3. Experimental Results

This section presents the performance results of the QSVM method on heart rate data.
QSVM and SVM algorithms are compared with two different scenarios, data states, and
qubit numbers. In the first scenario planned, the performances of the QSVM algorithm
were analyzed using different qubit numbers. Performance comparisons were made with
the performances of the SVM algorithm for the same data cases. In the second scenario, the
ways in which the change in the data space affects the performance of the QSVM algorithm
are observed. The results obtained here are compared with the SVM algorithm as in the
first scenario.

3.1. Scenario 1: Different Number of Qubits

PCA has been applied to 11 features (dimensions) of the ECG signals in the dataset
used in this study and has been made available for the QSVM algorithm. The “fea-
ture_and_label_transform” plugin in Qiskit was used to re-label qubits after the PCA
application. As a result of the applications, the dataset was reduced to dim 3, dim 5, dim 7,
dim 9, and dim 11. The dimensions achieved after these reductions now constitute qubits.
Figure 4 below gives the analysis visuals for the SVM and QSVM algorithms in different
data states for four different qubit values: Q (3), Q (5), Q (7), and Q (9).

When Table 2 is examined, it is determined that the QSVM performance is lower than
or nearly equal to the general SVM. Among the results obtained for five qubits, it is seen
that the QSVM algorithm is superior to SVM in the case of 3133 pieces of data. Even though
there is only a very slight difference in this instance, it is projected that the QSVM algorithm
will perform better under the right circumstances. Table 2 was obtained with average
values based on 10 different cases. When the results in the Q (5) analyses for the 3133 pieces
of data are examined, the QSVM achieved a performance of 80.90% accuracy, whereas the
SVM showed a result of 78.84% accuracy under the same conditions. The confusion matrix
of this situation is shown in Figure 5.
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Method

Amount of Data

Data Case 1 Data Case 2 Data Case 3 Data Case 4 Data Case 5 Data Case 6 Data case 7

209 418 625 800 1031 1534 3133

Qubit = 3

SVM 65.09 ± 6.03 70.29 ± 2.95 72.14 ± 2.61 72.56 ± 2.60 77.23 ± 2.58 73.25 ± 2.17 74.50 ± 0.86
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Qubit = 7

SVM 69.23 ± 5.28 76.42 ± 4.60 78.11 ± 3.79 78.57 ± 2.23 79.12 ± 2.40 80.39 ± 1.84 81.95 ± 1.19
QSVM 65.76 ± 5.17 69.17 ± 3.75 75.45 ± 3.09 76.62 ± 2.59 76.17 ± 2.96 79.13 ± 1.72 81.82 ± 1.47

Qubit = 9

SVM 71.93 ± 4.04 78.59 ± 4.35 79.70 ± 3.21 79.92 ± 2.16 80.00 ± 2.18 81.40 ± 1.51 83.17 ± 1.38
QSVM 71.05 ± 6.10 69.32 ± 3.44 78.73 ± 2.94 77.21 ± 3.31 79.44 ± 2.87 79.53 ± 1.61 82.73 ± 1.13

Qubit = 11

SVM 74.23 ± 4.87 78.16 ± 3.87 79.70 ± 3.21 80.37 ± 2.16 80.87 ± 2.24 81.52 ± 1.61 -
QSVM 72.69 ± 6.10 72.12 ± 3.10 78.73 ± 2.94 79.35 ± 1.86 77.98 ± 1.86 79.70 ± 1.90 -

SVM: Support Vector Machine, QSVM: Quantum Support Vector Machine.
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QSVM, (b) confusion matrix for SVM.

In Table 3, the precision, sensitivity, specificity, and F1 score performance metrics for
the provided confusion matrices are given.

Table 3. Comparisons of quantum support vector machine (QSVM) and support vector machine
(SVM) classifier performance metrics, detailed.

Classifier
Performance Metrics (%)

Class Precision Sensitivity Specificity F1-Score

QSVM

AFIB 61.53 50.52 92.82 55.48
GSVT 77.41 82.05 92.83 79.66

SB 90.22 97.82 93.98 93.86
SR 81.69 77.67 95.07 79.62

SVM

AFIB 57.25 37.36 91.92 45.21
GSVT 71.85 82.90 87.58 76.98

SB 89.62 98.64 91.21 93.91
SR 6.38 5.55 94.44 5.93

QSVM: Quantum Support Vector Machine, SVM: Support Vector Machine, AFIB: Atrial Flutter (AF), Atrial
Fibrillation (AFIB), GSVT: Supraventricular Tachycardia (SVT) + Atrial Tachycardia (AT) + Sinus Atrium to
Atrial Wandering Rhythm (SAAWR) + Sinus Tachycardia (SINT) + Atrioventricular Node Reentrant Tachycardia
(AVNRT) + Atrioventricular Reen-trant Tachycardia (AVRT), SB: Sinus Bradycardia, SR: Sinus Rhythm

When examining the tables and figures provided, performance increases as the amount
of data increases. SVM achieved 83.17% accuracy, and QSVM achieved 82.73% accuracy as
the highest performance (see Table 2) for Qubit = 9. The confusion matrix obtained from
the QSVM algorithm is given in Figure 6a.

The lowest performance is observed when the number of data cases and qubits is
the least. In the case of data number 209 for Qubit = 3, the worst results were obtained,
with 65.09% accuracy with the SVM and 59.51% accuracy with the QSVM (See Table 2).
The confusion matrix of these values is given in Figure 6b. The information, including the
confusion matrices’ performance metrics, is shown in Table 4.
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Table 4. Performance metrics of QSVM with the highest accuracy and lowest accuracy.

Classifier
Performance Metrics (%)

Class Precision Sensitivity Specificity F1-Score

QSVM(H)

AFIB 75.34 53.65 95.56 62.67
GSVT 77.73 90.05 93.15 83.43

SB 95.51 100.00 96.89 97.70
SR 79.39 81.44 95.01 80.40

QSVM(L)

AFIB 38.09 38.09 84.33 38.08
GSVT - 0 - 84.61

SB 55.71 97.50 51.56 70.90
SR 23.07 11.11 87.01 14.99

QSVM(H): Quantum Support Vector Machine (highest accuracy), QSVM(L): Quantum Support Vector Machine
(lowest accuracy), AFIB: Atrial Flutter (AF), Atrial Fibrillation (AFIB), GSVT: Supraventricular Tachycardia
(SVT) + Atrial Tachy-cardia (AT) + Sinus Atrium to Atrial Wandering Rhythm (SAAWR) + Sinus Tachycardia
(SINT) + Atrioventricular Node Reentrant Tachycardia (AVNRT) + Atrioventricular Reentrant Tachycardia (AVRT),
SB: Sinus Bradycardia, SR: Sinus Rhythm

When analyzing the results, the reduction in qubits significantly affects the perfor-
mance rate. As the number of qubits and size increase, the data attributes become clearer.
This has increased the performance. At the same time, the increase in the sample used for
the analysis also positively affects the performance.

3.2. Scenario 2: Different Amount of Data

The arrhythmia dataset used in this study consists of 10588 pieces of patient data. The
analysis takes a very long time due to the quantity of data. For this reason, data cases
have been created using seven different test sizes while designing the data to obtain faster
results by reducing the amount of data. Information about these data cases is given in
Table 2. These results were obtained by calculating the mean and standard deviation of
10 different random state values. Figure 7 shows the performance variation in the qubits
for each data case.

When Table 2 and Figure 7 above are examined, the highest performance for Data
Case 7 was observed as 83.17 ± 1.38 with the SVM and 82.73 ± 1.13 with the QSVM in Q (9).
Table 2 shows the performance of Q (9) in bold in all data cases. When the number of qubits
is at its maximum and the number of data increases, the performance gradually increases,
as the sample space to be used in the classification increases, as shown in Table 2. The main
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reason that the analysis could not be conducted with the total size of the dataset is that the
studies take longer as the amount of data increases. For this reason, the amount of data
was increased gradually. The experiment was carried out with a maximum of 3133 pieces
of data. Further data analysis was not possible due to hardware restrictions.
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4. Discussion

In this study, quantum-based machine learning algorithms are used to recognize heart
rhythm classes automatically. Since quantum technology is a newly developing field, it
has not been possible to develop a new algorithm due to structural deficiencies. The main
purpose of the article is to observe the effects of parameters such as the qubit and data
number on the performance using existing techniques. The results of various studies on
similar datasets and the proposed method are compared in Table 5. Some of the studies in
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Table 5 are given performance comparison purposes, because they use the same dataset.
In a study by Aziz et al. [29], in the SVM classification made for the SPNH database, the
highest performance of 84.2% accuracy was obtained in the PR + RT + Age + Sex classes
compared to other combinations. In MLP, on the other hand, 90.7% success was achieved
under the same conditions. In an article by Sepahvand et al. [30], the model proposed by
the authors is a CNN model, which is the teacher and student model. As a result of their
studies, they obtained 98.96% accuracy in the teacher model and 98.13% accuracy in the
student mode for seven rhythm classes. Faust et al. [31] achieved 99.98% success in the
SPNH dataset with the ResNet deep learning algorithm used by the authors in their study.
Dhananjay et al. [32] compared classical classification algorithms as well as their proposed
model, the CatBoost model, in their study. Whereas 71% success was achieved with SVM,
the success rate was 99% with the method suggested by the authors. Murat et al. [18] used
deep learning algorithms to reduce property sizes using PCA with the SPNH dataset. They
achieved a success rate of 84.06% in the SVM algorithm. Baygin et al. [33] presented a new
classification model for the classification of ECG data, also affected by the homomorphically
irreducible tree (HIT) problem with the SPNH dataset. The model they installed consisted
of HIT model creation, maximum absolute pooling (MAP), Chi2 selective, and the SVM
algorithm in classification. Their success rate was 97.18%.

Table 5. Comparison of some studies with Chapman dataset and some metrics of the proposed study.

Reference Classifier Accuracy (%) F1—Score Sensitivity Specificity

Aziz et al. [29] SVM
MLP

84.2
90.7

-
-

-
-

-
-

Sepahvand et al. [30] Teacher Model CNN
Student Model CNN

98.96
98.13

98.65
96.47

98.01
95.82

98.00
97.86

Faust et al. [31] ResNet 99.98 - 99.94 100.00

Dhananjay et al. [32] SVM
CatBoost

71.00
99.00

66.11
99.00

72.50
99.17

-
-

Murat et al. [18]

K-NN 80.94 77.92 78.03 93.75
SVM 84.06 80.49 81.13 94.77
RF 90.30 88.52 88.65 96.86
NB 79.90 75.71 76.42 93.38

GBC 87.68 85.21 85.53 96.03
ABC 77.27 72.81 73.36 92.72
DTC 85.78 83.46 83.54 95.41
MLP 77.71 74.20 75.34 92.76
QDA 77.01 72.79 73.62 92.44

Baygin et al. [33] SVM 97.18 - - -

Proposed Method SVM
QSVM

86.96
84.64

82.41
81.15

81.70
81.13

95.61
95.00

SVM: Support Vector Machine, MLP: Multi-Layer Perceptron, CNN: Convolutional Neural Network, ResNet:
Residual Network, K-NN: K-Nearest Neighbours, RF: Random Forest, NB: Naïve Bayes, GBC: Gradient Boosting
Classifiers, ABC: AdaBoost Clas-sifier, DTC: Decision Tree Classifiers, QDA: Quadratic Discriminant Analysis,
QSVM: Quantum Support Vector Machine.

According to Table 5, it is observed that the QSVM algorithm performs poorly com-
pared to other studies. The entire Chapman database could not be run in the QSVM
algorithm, as the analysis took too long due to hardware deficiencies. Although only about
30% of the dataset was used in the study, the SVM algorithm achieved 86.96% success
(for Data Case 2—Q (11)), and the QSVM algorithm achieved 84.64% success (for Data
Case 7—Q (9)). Though the runtime takes hours for the case in which QSVM achieves
84.64% success, the SVM algorithm gives results in about 2 s under the same conditions
(Data Case 7—Q (9)). These results show that the simulation environment creates a disad-
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vantage in terms of time in quantum-based algorithms. However, it is clear that the QSVM
algorithm competes with the classical SVM in terms of accuracy.

To the best of the authors’ knowledge, this study is the first to classify an ECG dataset
using the QSVM algorithm. It aims to form a basis for future studies in the field of ECG. In
addition to adding to the limited studies using QML in the literature, this study presents
comparisons with classical SVM using the quantum-based SVM algorithm, which has not
been used before in the classification of ECG data. The research shows that the QSVM
method offers a comparable performance to the traditional SVM technique. It is predicted
that the increase in the number of qubits, known as the size, and the increase in the amount
of data in the classical environment will positively affect the algorithm. It is thought
that this performance will become more competitive when the existing deficiencies are
eliminated, and the entire dataset is run. For these reasons, the QSVM algorithm gives
promising results in ECG diagnosis.

The main limitations of this study include the following. An IBM Q computer could
not be used in this study due to the preprocessing processes applied. Instead, analyses were
performed on a classical computer by creating a quantum environment. PCA was used
because it has a qubit limitation. Due to the structural features of PCA, there may be a loss
of features while reducing the size. This can negatively affect performance. The purpose of
using quantum computers is basically to provide acceleration. However, the desired level
could not be reached at the time of calculation, since the adaptation process with today’s
computers has not yet been realized. Though the increase in the number of data causes
an increase in performance, the results of the analyses take longer than with the classical
algorithms. Since a quantum-based algorithm was used in this study, the entire dataset
could not be used in the analysis due to hardware deficiencies. The primary purpose of
this study was to demonstrate the usability of quantum machine learning algorithms that
are under development for use with medical data such as ECG data. The analysis results
given here were obtained using the Qiskit simulation environment. Analyses could not
be performed in the real circuit due to issues with the use of the Noisy Intermediate-Scale
Quantum (NISQ). Although a low performance was achieved according to state-of-the-arts
studies, it is thought that this performance will improve when various limitations are
overcome. If the same analyses were performed on the actual circuit, faster execution
would probably be possible. The limitations will be eliminated in future studies, and
analyses will be applied in the NISQ environment. Comparisons are limited due to the fact
that we do not have the source codes and parameter values of the studies conducted on the
same dataset [18,29–33]. For example, the effects of the amount of data on other methods
have not been clearly demonstrated.

In future studies, it is estimated that if the deficiencies of hardware are eliminated,
and the entire dataset is used, both algorithms will provide better performances close to
those of the classical studies existing. For performance comparisons, QML algorithms other
than QSVM should also be used. It is known that the IBM Q computer is advantageous in
terms of time in different datasets. After the Chapman dataset is made suitable, we aim to
carry out analyses in an IBM Q real computer environment. After these studies, a detailed
comparison with the results of the simulation environment will be presented.

5. Conclusions

In this study, quantum machine learning algorithms were used to classify arrhythmias.
For a quantum-based machine learning algorithm to be applied, the dataset must first
be converted to qubit format, known as quantum bits. A dimension reduction method,
principal component analysis (PCA), has been applied. Reduced size classes were converted
to qubit form with a converter. ECG features for 10,588 pieces of patient data were used in
a quantum simulator on a classical computer. Different rates of dimensionality reduction
were applied for the bits converted to qubit form. Classical SVM and QSVM algorithms
were applied to this new qubit-format dataset, and the performances were compared.
The QSVM algorithm’s performance seemed comparable to that of the traditional SVM.
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This performance of the QVSM on a limited number of ECG data is an important step in
QML algorithms. Future research should aim to compare outcomes when various QML
algorithms are applied to ECG signals.
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