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Abstract: The current practice of determining histologic grade with a single molecular biomarker can
facilitate differential diagnosis but cannot predict the risk of lesion progression. Cancer is caused
by complex mechanisms, and no single biomarker can both make accurate diagnoses and predict
progression risk. Modelling using multiple biomarkers can be used to derive scores for risk prediction.
Mathematical models (MMs) may be capable of making predictions from biomarker data. Therefore,
this study aimed to develop MM–based scores for predicting the risk of precancerous cervical lesion
progression and identifying precancerous lesions in patients in northern Thailand by evaluating the
expression of multiple biomarkers. The MMs (Models 1–5) were developed in the test sample set
based on patient age range (five categories) and biomarker levels (cortactin, p16INK4A, and Ki–67
by immunohistochemistry [IHC], and HPV E6/E7 ribonucleic acid (RNA) by in situ hybridization
[ISH]). The risk scores for the prediction of cervical lesion progression (“risk biomolecules”) ranged
from 2.56–2.60 in the normal and low–grade squamous intraepithelial lesion (LSIL) cases and from
3.54–3.62 in cases where precancerous lesions were predicted to progress. In Model 4, 23/86 (26.7%)
normal and LSIL cases had biomolecule levels that suggested a risk of progression, while 5/86
(5.8%) cases were identified as precancerous lesions. Additionally, histologic grading with a single
molecular biomarker did not identify 23 cases with risk, preventing close patient monitoring. These
results suggest that biomarker level–based risk scores are useful for predicting the risk of cervical
lesion progression and identifying precancerous lesion development. This multiple biomarker–based
strategy may ultimately have utility for predicting cancer progression in other contexts.

Keywords: machine learning; mathematical model; cervical cancer; biomarker; risk score; HPV

1. Introduction

Almost all cervical cancers and their precursor lesions, including squamous intraep-
ithelial lesions (SIL) and cervical intraepithelial neoplasia (CIN), are caused by persistent
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infection with high–risk (HR) human papillomavirus (HPV) genotypes [1–5]. Cytopathol-
ogy reveals metaplastic cervical epithelium in approximately 20–30% of HPV–infected
patients, but these features generally resolve spontaneously within one year after HPV
infections [6]. In the history model of HPV–driven cervical carcinogenesis, abnormal cells
gradually grow, progress to precursor lesions (i.e., CIN 3, approximating carcinoma in situ),
and invade [6,7]. It is estimated that over 70% of women worldwide will be infected with
HPV during their lifetime [8]. However, infections persist in fewer than 10% of women,
who then experience an increased risk of developing carcinomas in situ [1–3]. These carci-
nomas gradually grow into large precancerous lesions that have a 30–50% risk of invasion
over the remainder of a woman’s life [9]. Among HR–HPV genotypes, HPV16 and HPV18
confer the highest risk of carcinoma in situ and of invasive cancer [10]. Various biomarkers
can predict a small proportion of HPV infections associated with carcinoma in situ. For
example, an increased expression of the viral oncogenes E6 and E7, which interfere with
cell cycle control and apoptosis and induce chromosomal instability [11], is a hallmark of
the transition from acute infection to carcinoma in situ. These oncoproteins also induce
abnormal chromosome copy numbers and microRNA expression. Techniques for detecting
HR–HPV E6/E7 ribonucleic acid (RNA) have been developed; their sensitivity and speci-
ficity for detecting CIN 2 have been reported to be 71.4% and 75.8%, respectively [12–16].
Detection of E6/E7 RNA may be more useful than HR–HPV DNA testing for diagnosing
CIN 2+ and predicting disease progression [17]. Real–time multiplex nucleic acid sequence-
based assays (e.g., the NucliSENS EasyQ HPV assay) show that HPV E6/E7 RNA testing
has a specificity of 50% and a positive predictive value (PPV) of 62% for CIN 2+, both of
which are higher than the corresponding values for HPV DNA testing (specificity of 18%
and PPV of 52%). The higher specificity and PPV of HPV E6/E7 RNA testing are valuable
in predicting insignificant HPV DNA infection among cases with borderline cytological
findings [18]. Moreover, droplet digital PCR is more sensitive than real-time PCR for
detecting HPV DNA and RNA [19,20]. Transcriptionally active HR-HPV in patients with
head and neck squamous cell carcinoma (HNSCC) was previously visualized using a novel
E6/E7 RNA in situ hybridization (ISH) method [21,22]. Additionally, chromogenic ISH and
p16INK4A/Ki–67 dual immunohistochemical staining on formalin-fixed paraffin-embedded
(FFPE) cervical specimens correlated with E6/E7 RNA expression [23]. Therefore, the
detection of HPV E6/E7 RNA, combined with human protein biomarker assays, may
facilitate the diagnosis of abnormal cervical lesions and predict their progression.

In developed countries, molecular techniques for HPV DNA detection (e.g., Hybrid
Capture® 2) are combined with assays for host protein biomarkers, such as p16INK4A and
Ki–67, for the early detection of abnormal cervical lesions and the prediction of lesion
grades; p16INK4A is a surrogate biomarker for HPV in women with invasive cervical cancer,
and its expression is highly associated with pathological grading [24,25]. The histologic
evaluation of p16INK4A and Ki–67 improves diagnostic accuracy [26]; dual staining was
introduced mainly to increase the reproducibility and specificity of stand–alone p16INK4A

staining. Regardless of HPV status, diffuse p16INK4A immunostaining is a hallmark of
high-grade squamous intraepithelial lesions [27] and is an efficient screening tool [28].
Several candidate biomarkers and combinations thereof are being explored to predict
the transition step [29]. However, which biomarkers should be used clinically remains
unknown. At present, many clinicians and researchers continue to rely on traditional
histological gradations—CIN 1, CIN 2, and CIN 3 (including carcinoma in situ); however,
this approach is limited by subjectivity and poor reproducibility, especially in diagnosing
CIN 1 and CIN 2 [30]. The accuracy of histopathological diagnosis is also limited by the
tendency of colposcopic biopsies to miss small CIN 3 lesions almost 50% of the time [31].
Discovering biomarkers to clarify the risk of progression in the pathogenesis of cervical
cancer is a major goal [32].

A preliminary study by our group found that the expression of HR-HPV E6/E7 RNA
is positively associated with the expression of cortactin. The CTTN gene, which encodes
cortactin (the “cortical actin-binding protein”) is located on chromosome 11q13. Cortactin
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recruits Arp2/3 complex proteins and binds to actin microfilaments. It also promotes
lamellipodia and invadopodia formation, cell migration, endocytosis, cell mortality, and
tumor invasiveness [33,34]. Cortactin is overexpressed in many cancers [35,36] at high
risk of invasiveness and metastasis, including hepatocellular carcinoma [37], colorectal
cancer, glioblastoma, HNSCC, oral squamous cell carcinoma, lung squamous cell carcinoma,
gliosarcoma, breast cancer, and melanoma [35]. Amplification of the CTTN gene and the
resulting overexpression of cortactin have been observed in 15% of primary metastatic
breast carcinomas and nearly 30% of HNSCCs [33,38]. Cortactin may also be associated with
E6/E7 RNA in HR-HPV-associated cervical cancer and is a potential diagnostic biomarker
studied by our group. Furthermore, the majority of these highly sensitive techniques have
not yet been introduced to clinical practice.

Over the last two decades, a variety of machine learning techniques and feature
selection algorithms have been widely applied to determine disease prognosis and predict
certain conditions [39]. These techniques are used in conjunction with logistic regression
models to assess the importance of various genes. After important genes are identified, the
same logistic regression model is then used for cancer classification and risk prediction [39].
Several prediction models are currently widely used in clinical practice, including the model
for breast cancer incidence [40,41] and the predictive risk-scoring model for central lymph
node metastasis [42]. The prediction model for breast cancer recurrence can be viewed
at https://breast.predict.nhs.uk/predict.html (accessed on 8 March 2023). Mathematical
models (MMs) are also used to determine the likelihood of relapse and predict responses to
chemotherapy among patients with breast cancer [43], as well as to diagnose precancerous
cervical lesions and predict progression [44,45].

In the comparison between histopathological method and modelling using multiple
biomarkers, this study showed more advantages that can be used to derive scores for
risk prediction, not only for the diagnosis of cervical lesion from similar biopsy samples.
However, the current practice of histologic grading or using a single molecular biomarker
can facilitate differential diagnosis.

Our study investigated the expression of cortactin in FFPE cervical specimens with
diverse lesion grades in combination with other related biomarkers. Biomarkers p16INK4A

and Ki–67 were used as protein biomarker controls during immunohistochemical (IHC)
staining. HPV E6/E7 RNA ISH was also used. The relationship between IHC staining
and ISH data was evaluated in association with clinical characteristics, and MMs were
developed to estimate risk scores using linear regression analysis. Receiver operating
characteristic (ROC) curves and areas under the curve (AUC) were used to identify the
best MMs. Risk scores from the model were then used to predict the risk of abnormal or
precancerous cervical lesion progression and may have utility in other cancer contexts in
the future.

2. Materials and Methods
2.1. Specimens

Three hundred and sixty-three FFPE cervical tissue samples were collected from women
who underwent routine cervical cancer testing with a colposcopy at Phayao Hospital, Phayao,
Thailand in 2012 (233 samples) and 2013 (130 samples). This work was approved by the
Human Research Ethics Committee of the University of Phayao (2/015/59) and Phayao
Hospital (HE–59–02–0008). The sample size was calculated according to the known prevalence
of HPV in the community as follows: N (case/age group) = Z2

1−a P(1 − P)/d2”. The required
number of participants was calculated from a mean ± SD of 52.9 ± 32.1% of HPV prevalence,
a Z of 1.96 for the 95% confidence level, and a d of 0.05 [46].

All FFPE cervical tissues were reviewed by two pathologists, and the following
histopathological grades were assigned: normal (211 cases), low-grade squamous intraep-
ithelial lesion (LSIL; 65 cases), HSIL (58 cases), and invasive cervical cancer (squamous cell
carcinoma [SCC]; 29 cases). The 233 samples collected in 2012 were defined as the “test
sample set” and the 130 samples collected in 2013 as the “confirmed sample set” (Table 1).

https://breast.predict.nhs.uk/predict.html
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The test sample set was used to develop the MM using a linear regression model, and the
confirmed sample set was used to test the regression model.

Table 1. Characteristics of the samples.

Group 1
(233 Cases)

Group 2
(130 Cases)

Total
(363 Cases) p-Value

Age (years) Mean 46.14 45.89 46.05 0.835 *
SD 10.81 11.21 10.93

Age groups
(years)

19–30 11 (4.72%) 10 (7.69%) 21(5.78%)
31–40 56 (24.03%) 28 (21.53%) 84 (23.14%)
41–50 94 (40.34%) 43 (33.07%) 137 (37.74%)
51–60 54 (23.17%) 38 (29.23%) 92 (25.34%)
>60 19 (8.15%) 11(8.46%) 29 (7.98%)

Pathological
grades

Normal 156 (66.95%) 55 (42.30%) 211 (58.12%)
LSIL 34 (14.59%) 31 (23.84%) 65 (17.90%)
HSIL 24 (10.30%) 34 (26.15%) 58 (15.97%)
SCC 19 (8.15%) 10 (7.69%) 29 (7.98%)

Note: * Student t-test, Group 1 = test sample set, Group 2 = confirmed sample set.

2.2. Tissue Microarray (TMA) Preparation

The selected areas of the FFPE cervical tissues were stained with hematoxylin and
eosin and graded by a pathologist according to the World Health Organization criteria.
Paraffin tissue blocks were made by removing 1.5 mm cores of the tissues and organized
into TMAs (Arraymold, Salt Lake City, UT, USA).

2.3. HR-HPV E6/E7 RNA Chromogenic ISH

E6/E7 RNA chromogenic ISH was performed using the RNAscope 2.5 HD Detection
Kit (BROWN) and Quick Guide for FFPE Tissues (Advanced Cell Diagnostics, Hayward,
CA, USA) with specific combinations of E6 or E7 probes to detect 18 different HR-HPV types
when low copy target gene expression was anticipated (1–20 copies per cell). The FFPE
sections (5 µm) were de–paraffinized through xylene and ethanol washes and treated as
follows: pre–treatment 1 (endogenous hydrogen peroxide block solution) for 10 min at
RT; pre–treatment 2 for 45 min at 105 ◦C; and pre–treatment 3 (protease digestion) for
30 min at 40 ◦C. After the treatments, the sections were rinsed with water. The tissues were
hybridized in a hybridization solution with E6/E7 RNA chromogenic ISH probes in a moist
chamber and without a cover slip for 2–3 h at 40 ◦C. Thereafter, the hybridized probe’s
signal was amplified through the serial application of Amp 1 (pre–amplifier step), Amp 2
(signal enhancer step), Amp 3 (amplifier step), Amp 4 (label probe step), Amp 5, and Amp 6
(signal amplification steps); this was followed by the washing steps. Horseradish peroxi-
dase (HRP) activity was then evaluated through the application of 3, 3′–diaminobenzidine
(DAB) for 10 min at RT. The sections were then counterstained with hematoxylin, cleared
in xylene, and mounted with Permount. The expression signal data were recorded ac-
cording to negative and positive staining. The internal controls used for the RNAscope
chromogenic ISH were proprietary probes for human sequence ubiquitin C (positive control
to demonstrate detectable RNA in the FFPE samples) and Bacillus subtilis (B. subtilis) dapB
RNA targets (negative control). Ubiquitin C staining was scored to confirm the presence of
the signal and its intensity. B. subtilis dapB staining was reviewed to confirm the absence
of staining.

2.4. IHC Staining

IHC staining was performed on the TMAs to determine the expression of cortactin,
p16INK4A, and Ki–67. Briefly, following de–paraffinization and re–hydration, the tissue
sections on the slides were antigen-retrieved using a target retrieval solution (citrate buffer,
pH 6.0) at 105 ◦C in an autoclave for 30 min. Rabbit monoclonal anti–cortactin antibody
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clone Ep1922Y (Abcam, Cambridge, MA, USA), mouse monoclonal anti–human p16INK4A

clone D25 (EMD Millipore Corporation, Temecula, CA, USA), and Ki–67 monoclonal an-
tibody clone 20Raj1 (eBioscienceTM, Thermo Fisher Scientific, San Diego, CA, USA) were
applied at dilutions of 1:200, 1:100, and 1:100, respectively, in 1× phosphate-buffered saline
for 60 min. This was followed by incubation with secondary detection antibodies using
the Genemed Power–StainTM 1.0 Poly HRP DAB Kit for Mouse + Rabbit (Sakura Finetek,
Torrance, CA, USA). Immunostaining results were evaluated using light microscopy with
a 40× objective, and both Allred score (AS; score and intensity of staining) and posi-
tive/negative status were recorded.

IHC staining patterns were scored in reference to the proportion of cells that stained:
0 = negative; 1 = rarely positive (<1%); 2 = focally positive (1–25%); 3 = variably positive
(25–75%); and 4 = uniformly positive (>75%). In terms of the staining intensity, the IHC
staining patterns were scored as follows: 0 = negative; 1 = weakly positive; 2 = moderately
positive; and 3 = strongly positive. These scores were added to achieve an Allred scored
(AS) ranging from 0 to 7 [47].

The criteria for distinguishing positive and negative IHC statuses are shown in Table 2.

Table 2. Criteria for distinguishing positive and negative IHC statuses.

Biomarkers Pattern of Expression Interpretation

p16INK4A

(1) Staining was assessed as strong positive (block
positive) according to the amount of uniform strong
positive staining in the cytoplasm and nucleus in ~1/3
to 3/3 thickness, signal strength (which would appear as
a dark brown color), and diffusion (the signal involved
>50% of the epithelium).

“Positive”

(2) Positive ambiguous results were further grouped
into three patterns:
(2.1) Strong/basal (strong, diffuse, continuous staining
of the lower third of the epithelium without upward
extension).
(2.2) Weak/diffuse (weak, diffuse, discontinuous
staining reaching at least two third of the epithelium).
(2.3) Strong/focal (strong, focal, and discontinuous
staining located at any level of the epithelium).

“Positive”

(3) Negative results were defined as either the total
absence of staining or weak, focal, and discontinuous
staining.

“Negative”

Ki–67 Negative Ki–67 staining was defined as either the total
absence of staining or weak basal staining. “Negative”

Cortactin

(1) Negative, weak cytoplasmic and/or nuclear staining.
(2) Weak focal staining in the cytoplasm or nucleus
(heterogeneous).

“Negative”
“Normal cortactin expression”

(3) Uniformly strong cytoplasmic staining, “positive
cytoplasmic overexpression,” or strong focal staining in
the cytoplasm or nucleus (heterogeneous).
(4) Uniform strong cytoplasmic staining, focal nuclear
staining, and “positive nuclear and cytoplasmic
overexpression”.
(5) Strong cytoplasmic membrane staining.

“Positive”

Note: IHC = immunohistochemistry.

2.5. Mathematical Models (MM) and Risk Score Development

A linear regression model in SPSS version 16 was used to develop the MMs for the
expected cervical lesion grade. The model stepwise was Y = β0 + β1 X1 + β2 X2 + β3
X3 + . . . + βn Xn [48–50]. Y is the dependent variable, where 1 represents a normal
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value and 3, 4, and 5 represent LSIL, HSIL, and SCC, respectively. The independent
variables (X, X1, X2, X3 . . . Xn) consisted of the five age groups (groups 1–5: 19–30, 31–40,
41–50, 51–60, and >60 years, respectively); IHC results of p16INK4A, Ki–67, and cortactin;
and E6/E7 RNA ISH results. The IHC positive/negative status was recorded as “2”
(positive) or “1” (negative), whereas the AS of the staining intensity ranged from 0 to 7.
The E6/E7 RNA expression in the chromogenic ISH was recorded as “2” (positive) or “1”
(negative) (Supplementary Table S1). B (β0, β1, β2, β3 . . . βn) was the regression coefficient
demonstrated as tolerance (0–1) and variance inflation factor (VIF; 1 to infinity). When
the tolerance or VIF was near 1, a smaller association with the dependent variable (Y) was
considered. When tolerance was near 0 or the VIF was high (>1), a high association with
the dependent variable was considered. To develop the linear regression model, we used
the test sample set (233 samples) (Table 1). The expected cervical lesion grade and risk
score for the progression of abnormal cervical precancerous lesions were calculated.

2.6. Statistical Analysis

Statistical analysis was performed using SPSS version 16. The correlations between the
cervical grade and the protein marker (positive/negative) were evaluated using the Pearson
Chi-square test (significance level: p < 0.05). The correlations between the cervical grade
and the protein marker (AS) were evaluated using one-way ANOVA (significance level:
p < 0.05). The MM was included in the regression analysis (significance level: p < 0.05), and
the ROC curves and AUC were evaluated using SPSS.

3. Results
3.1. Baseline Characteristics

A total of 363 FFPE cervical tissue samples were studied. These samples were retrieved
in 2012 (233 samples) and 2013 (130 samples) from women aged 19–95 years. Table 1
shows the sample characteristics. The most common age group in both 2012 and 2013
was the 41–50–year age group. LSILs and HSILs were common based on the abnormal
histopathological grades.

3.2. HR–HPV E6/E7 RNA Chromogenic ISH

Positive E6/E7 RNA signals were mostly present in the cells (Figure 1). An increase in
positive E6/E7 RNA signals was associated with a severe grade of cervical lesions (Table 3).
Table 4 shows the sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) of RNA E6/E7 for detecting LSIL+ * and HSIL+ ** compared with
normal cervical tissues. An association between p16INK4A and RNA E6/E7 was found in
this study, which was consistent with Zappacosta R. et al. (2013) [32].
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Figure 1. ISH staining of HPV E6/E7 RNA: (A) was normal, (B, C) were LSIL, (D, E) were HSIL, (F) 
is positive cervical cell line control. 

Table 3. Correlation between the pathological grades and IHC staining results (positive/negative 
status and mean ± SD Allred score). 

Biomarkers  N Normal 
(211 Cases) 

LSIL 
(65 Cases) 

HSIL 
(58 Cases) 

SCC 
(29 Cases) 

Total 
(363 Cases) p–Value 

p16INK4A 
P/N 

P 9 (4.2%) 7 (10.8%) 40 (69.0%) 28 (96.6%) 103 (28.4%) 0.000 * 
N 202 (95.2%) 58 (89.2%) 18 (31.0%) 1 (3.4%) 260 (71.6%)  

AS 
Mean 0.35 1.46 4.62 6.24 1.70 0.000 ** 

SD 1.15 2.25 2.98 1.38 2.70  

Ki-67 
P/N P 52 (24.6%) 18 (27.7%) 50 (86.2%) 27 (93.1%) 147 (40.5%) 0.000 * 

 N 159 (75.4%) 47 (72.3%) 8 (13.8%) 2 (6.9%) 216 (59.5%)  

Figure 1. ISH staining of HPV E6/E7 RNA: (A) was normal, (B,C) were LSIL, (D,E) were HSIL, (F) is
positive cervical cell line control.



Diagnostics 2023, 13, 1084 8 of 19

Table 3. Correlation between the pathological grades and IHC staining results (positive/negative
status and mean ± SD Allred score).

Biomarkers N Normal
(211 Cases)

LSIL
(65 Cases)

HSIL
(58 Cases)

SCC
(29 Cases)

Total
(363 Cases) p–Value

p16INK4A
P/N

P 9 (4.2%) 7 (10.8%) 40 (69.0%) 28 (96.6%) 103 (28.4%) 0.000 *
N 202 (95.2%) 58 (89.2%) 18 (31.0%) 1 (3.4%) 260 (71.6%)

AS
Mean 0.35 1.46 4.62 6.24 1.70 0.000 **

SD 1.15 2.25 2.98 1.38 2.70

Ki-67

P/N P 52 (24.6%) 18 (27.7%) 50 (86.2%) 27 (93.1%) 147 (40.5%) 0.000 *
N 159 (75.4%) 47 (72.3%) 8 (13.8%) 2 (6.9%) 216 (59.5%)

AS Mean 1.1226 1.2923 5.2241 5.9655 2.1923 0.000 **
SD 1.84 2.10 2.19 1.90 2.68

Cortactin

P/N P 84 (39.8%) 50 (76.9%) 46 (79.3%) 24 (82.8%) 204 (56.2%) 0.000 *
N 127 (60.2%) 15 (23.1%) 12 (20.7%) 5 (17.2%) 159 (43.8%)

AS Mean 2.74 4.40 5.09 5.65 3.64 0.000 **
SD 2.36 2.45 2.27 2.68 2.62

RNA E6/E7
N Normal

(154 cases)
LSIL

(62 cases)
HSIL

(75 cases)
SCC

(29 cases)
Total

(320 cases) p–Value

P/N P 71 (46.1%) 49 (79.0%) 69 (92.0%) 28 (96.6%) 217 (67.8%) 0.000 *
N 83 (53.9%) 13 (21.0%) 6 (8.0%) 1 (3.4%) 103 (32.2%)

Note: * Pearson Chi–Square, ** one–way ANOVA, P/N = positive or negative status, AS = Allred score, SD =
standard deviation.

Table 4. Sensitivity, specificity, PPV, and NPV of several markers for detecting the pathological grades.

Sensitivity Specificity PPV NPV

LSIL+ * vs. Normal
p16INK4A 49 96 89 72

Ki-67 63 75 65 74
Cotactin 79 60 59 80

RNA E6/E7 88 54 67 81

HSIL+ ** vs. Normal
p16INK4A 78 94 81 93

Ki-67 89 75 52 95
Cotactin 80 51 34 89

RNA E6/E7 93 44 45 93
Note: PPV = Positive predictive value. NPV = Negative predictive value. LSIL+ * indicates cervical lesion grades
of LSIL and more severe (HSIL and SCC). HSIL+ ** was cervical lesion grades as HSIL and SCC.

3.3. p16INK4A and Ki–67 Immunostaining

The expression patterns of p16INK4a and Ki–67 are shown in Figures 2 and 3, respec-
tively. A positive expression and the AS of p16INK4a and Ki–67 were significantly associated
with increasing severity grades of the cervical lesions, as shown in Table 3. Table 4 shows
the sensitivity and specificity of p16INK4A and Ki–67 for detecting LSIL+ and normal cases
and for detecting HSIL+ and normal cases, respectively.
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Figure 2. IHC staining of p16INK4A: (A, B) were normal, (C–E) were HSIL, (F) was SCC. Figure 2. IHC staining of p16INK4A: (A,B) were normal, (C–E) were HSIL, (F) was SCC.
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Figure 3. IHC staining of Ki–67: (A) was Normal, (B) was LSIL, (C,D) were HSIL, (E,F) were SCC.

3.4. Cortactin Immunostaining

Five expression patterns of cortactin were observed according to their localization,
staining, and intensity (Table 2). Positive cortactin staining was detected at significant
levels in 84/211 normal cases (39.8%), 50/65 LSIL cases (76.9%), 46/58 HSIL cases (79.3%),
and 24/29 SCC cases (82.8%). Figure 4 shows strong positive cytoplasmic overexpression
staining (>75%, 2–3+) in some cases, with significant levels in 30/211 normal cases (14.21%),
28/65 LSIL cases (43.1%), 34/58 HSIL cases (58.6%), and 23/29 SCC cases (79.3%). Addi-
tionally, positive cortactin staining was characterized as a cytoplasmic membrane-positive
staining pattern detected at significant levels in 10/211 normal cases (4.7%), 7/65 LSIL cases
(10.8%), 3/58 HSIL cases (5.2%), and 10/29 SCC cases (34.5%). Meanwhile, the nuclear
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positive staining pattern was detected only in 1/58 (1.7%) HSIL case. The mean ASs were
2.7406, 4.4000, 5.0862, and 5.6552 for the normal cervical tissue, LSIL, HSIL, and SCC,
respectively (Table 3). Positive cortactin staining was generally detected with significant
differences across different grades of cervical lesions.
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3.5. Mathematical Models (MM)

The MMs developed were simple linear regression models that included indepen-
dent variables that consisted of age range (five categories) and the following biomarkers:
cortactin, p16INK4A, Ki–67, and HPV E6/E7 RNA. The coefficients of the independent vari-
ables in the best five MMs are shown in Table 5. Table 6 shows the five best MMs used for
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calculating the expected value (mean ± SD) for each cervical lesion grade shown in Table 7,
Supplementary Figure S1 and Supplementary Table S2. The risk score for the prediction of
abnormal cervical progression and precancerous lesion was calculated on the basis of the
mean ± SD of each cervical lesion grade. Based on the expected values (mean ± SD), none
of the models could differentiate between the normal and LSIL cases (p > 0.05); therefore,
the normal cases were included with the LSIL cases in the confirmed sample set. In model
3, the risk score for the progression from LSIL was 2.60 (mean ± SD: 1.4843 ± 1.10780).
The risk scores for the progression from HSIL (mean ± SD: 3.5374 ± 1.01427) and SCC
(mean ± SD: 3.9516 ± 0.41838) ranged from 3.54 to 4.56 and from 3.95 to 4.37, respectively
(Table 7). In model 4, the risk scores were 2.60 for LSIL, 3.62–4.85 for HSIL, and 4.23–4.76
for SCC. In model 5, the risk scores were 2.56 for LSIL, 3.56–4.66 for HSIL, and 4.03–4.48 for
SCC. Supplementary Table S3 shows the sensitivity and specificity of the five best models.
Models 1–5 yielded a greater association with the variables with the disease outcome (OR)
than did the other models. Models 3–5 revealed a great association with the variables
with the disease outcome (OR). Models 2 and 3 could not differentiate between HSIL and
SCC (p > 0.05). Interestingly, the predictive value of Models 1, 4, and 5 could significantly
differentiate (1) the normal cases from HSIL–SCC (p < 0.001); (2) LSIL from HSIL–SCC
(p < 0.001); and (3) HSIL from SCC (p < 0.05). The ROC curve and AUC of Models 3, 4,
and 5 are shown in Supplementary Figure S2. These MMs might have good value for the
detection of cervical lesion progression and precancerous lesions.

Table 5. Coefficients of the linear regression models (five best models).

Model
Unstandardized Coefficients Sig. Collinearity Statistics

B Std. Error Tolerance VIF

Model 1
(Constant) 1.150 0.101 0.000

p16INK4A AS 0.197 0.038 0.000 0.574 1.742
Ki–67AS 0.269 0.039 0.000 0.574 1.742

Model 2

(Constant) 0.358 0.235 0.130
Ki–67AS 0.267 0.037 0.000 0.574 1.742

p16INK4A P/N 0.172 0.037 0.000 0.555 1.801
CortactinP/N 0.570 0.154 0.000 0.938 1.066

Model 3

(Constant) −0.346 0.314 0.272
Ki–67 AS 0.245 0.037 0.000 0.556 1.799

p16INK4A AS 0.152 0.036 0.000 0.539 1.854
CortactinP/N 0.557 0.150 0.000 0.937 1.067

RNA E6/E7 P/N 0.518 0.159 0.001 0.841 1.189

Model 4

(Constant) 0.535 0.506 0.292
Ki–67AS 0.387 0.074 0.000 0.134 7.446

p16INK4A AS 0.142 0.036 0.000 0.531 1.883
CortactinP/N 0.530 0.148 0.000 0.931 1.074

RNA E6/E7 P/N 0.506 0.157 0.002 0.840 1.190
Ki-67 P/N −0.786 0.356 0.029 0.166 6.040

Model 5

(Constant) 0.920 0.534 0.087
Ki–67AS 0.387 0.073 0.000 0.134 7.446

p16INK4A AS 0.139 0.036 0.000 0.530 1.886
CortactinP/N 0.539 0.147 0.000 0.930 1.075

RNA E6/E7 P/N 0.517 0.155 0.001 0.839 1.191
Ki–67P/N −0.747 0.353 0.036 0.165 6.057

Age groups −0.153 0.073 0.039 0.987 1.014

Note: P/N = positive or negative status, AS = Allred scored, B = regression coefficient, Std. Error = Standard
Error, VIF = variance inflation factor.
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Table 6. Equations of the linear regression models for calculating the expected value.

Model Equations

Model 1 Y = 1.150 + 0.197 (p16INK4A AS) + 0.269 (Ki–67AS)
Model 2 Y = −0.358+ 0.267 (Ki–67AS) + 0.172 (p16INK4A P/N) + 0.570 (CortactinP/N)
Model 3 Y = −0.346 + 0.245 (Ki–67AS) + 0.152 (p16INK4AAS) + 0.557 (CortactinP/N) + 0.518 (RNA E6/E7 P/N)
Model 4 Y = 0.535 + 0.387 (Ki–67AS) + 0.142 (p16INK4A AS) + 0.530 (CortactinP/N) + 0.506 (RNA E6/E7 P/N) − 0.786 (Ki–67 P/N)

Model 5 Y = 0.920 + 0.387 (Ki–67 AS) + 0.139 (p16INK4A AS) + 0.539 (Cortactin P/N) + 0.517 (RNA E6/E7 P/N) − 0.747 (Ki–67 P/N) −
0.153 (Age groups)

Note: P/N = positive or negative status, AS = Allred scored. Means of the expected values from five lin-
ear regression models in clinical pathological grades (each sample) of confirmed sample sets were shown in
Supplementary Figure S5.

Table 7. Means and SDs of the expected values from the linear regression models and clinical
pathological grades of the test and confirmed sample sets.

Test Sample Set Confirmed Sample Set
N Mean SD p–Value N Mean SD p–Value

Model 1

Normal 156 1.4913 0.53391 0.000 55 1.6146 0.5864 0.000
LSIL 34 1.6402 0.87461 31 1.9450 0.8526
HSIL 24 3.4301 1.01324 34 3.4906 1.0748
SCC 19 3.9961 0.39674 10 3.9619 0.7745
Total 233 1.9170 1.06639 130 2.3646 1.2106

Model 2

Normal 156 0.8589 0.49971 0.000 55 1.0939 0.7041 0.000
LSIL 34 1.0008 0.63920 31 1.3892 0.7130

HSIL 24 2.3430 0.73615 34 2.3541 0.7170
SCC 19 2.6392 0.33303 10 2.5678 0.7772
Total 233 1.1770 0.82221 130 1.6073 0.9170

Model 3

Normal 156 1.2044 0.65480 0.000 55 1.2069 0.8686 0.000
LSIL 34 1.4843 1.10780 31 2.1960 0.9162
HSIL 24 3.5374 1.01427 34 3.3083 1.1946
SCC 19 3.9516 0.41838 10 3.9686 0.7087
Total 233 1.7096 1.22683 130 2.2048 1.3778

Model 4

Normal 156 1.4316 0.73041 0.000 55 1.7865 0.9271 0.000
LSIL 34 1.6542 0.98381 31 2.0258 1.1043
HSIL 24 3.6226 1.23028 34 3.8366 1.1726
SCC 19 4.2301 0.52538 10 4.2166 1.2110
Total 233 1.9180 1.25429 130 2.5667 1.4364

Model 5

Normal 156 1.2014 0.62799 0.000 55 1.1862 0.8520 0.000
LSIL 34 1.4728 1.08656 31 2.2305 0.9044
HSIL 24 3.5554 1.10289 34 3.3733 1.2589
SCC 19 4.0282 0.45701 10 3.9481 0.7920
Total 233 1.7140 1.24210 130 2.2197 1.4076

Note: one–way ANOVA.

Models 3, 4, and 5 were selected to assess the risk of abnormal cervical lesion progres-
sion and precancerous lesions in the confirmed sample set. The expected value (Y) was
calculated in each case and compared with the risk score. When Y was equal to or lower
than the risk score, the cervical lesions were suggested to have biomolecules characteristic
of the baseline (i.e., normal tissues). When Y was higher than the risk score, the individuals
were expected to be at risk of progression or to have “risk biomolecules.” Such individuals
should be monitored. For example, when a histopathological LSIL case was evaluated by
Model 3 and showed a predictive value of 1.59 (risk score: <2.60), the presence of LSIL with
“baseline characteristic biomolecules” was suggested. However, when a histopathological
LSIL case showed a predictive value of 3.02 (risk score: >2.60), it was suggested to be an
LSIL case with present “risk biomolecules”. For the prediction of precancerous lesions in
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the normal and LSIL cases, the cases were predicted to have precancerous lesions when Y
was higher than the risk score for HSIL (risk score: >3.54).

Supplementary Figures S3 and S4 demonstrate the prediction of cervical lesions us-
ing Models 3, 4, and 5. Model 4 showed the highest detection rate of cases with risk
biomolecules in the LSIL (23/86 normal + LSIL cases, 26.7%) and HSIL groups (29/34 cases,
85.3%). The traditional histologic grading of the biopsies did not identify the 23 nor-
mal and LSIL cases. Without this knowledge, 23 patients would not have undergone
close monitoring.

The next best models were Models 5 and 3. Model 4 best predicted the cases with
precancerous lesions in the LSIL (5/86 cases, 5.8%) and HSIL groups (24/34 cases, 70.6%),
while Models 3 and 5 predicted the cases with precancerous lesions in 3/86 (3.5%) cases
in the LSIL group and 20/34 (58.8%) cases in the HSIL group. As shown in Table 8, the
risk scores obtained by Models 3, 4, and 5 were suitable for detecting abnormal cervical
lesions among patients in the LSIL group and for determining the risk of LSIL and HSIL.
The ROC curve and AUC of Model 4 were significantly higher than those of Models 3
and 5 (p = 0.000) in terms of predicting the histopathological normal and LSIL cases with
risk biomolecules and precancerous lesions (Supplementary Figures S3 and S4). In the
comparison between the sensitivity and specificity of Models 3 to 5 to distinguish between
normal tissue and LSIL+HSIL in the confirmed sample set (Supplementary Figure S3),
the AUC values for predicting risk biomolecules were 0.757, 0.793, and 0.751, respectively.
In the comparison between the sensitivity and specificity of Models 3 to 5 to distinguish
between LSIL and HSIL in the confirmed sample set (Supplementary Figure S4), the AUC
values for predicting precancerous lesions were 0.777, 0.824, and 0.762, respectively.

Table 8. Sensitivity, specificity, PPV, and NPV of the pathological grade in Models 3 to 5 in the
confirmed sample set.

Risk Biomolecules Prediction Precancerous Lesion Prediction
LSIL Group (Normal + LSIL) vs. HSIL LSIL Group (Normal + LSIL) vs. HSIL

Sensitivity Specificity PPV NPV OR Sensitivity Specificity PPV NPV OR

Model 3 68 84 62 87 10.8 59 97 87 86 39.5
Model 4 85 73 56 93 15.9 71 94 83 89 38.8
Model 5 68 83 61 87 9.9 56 97 86 84 35.0

Note: PPV = Positive predictive value, NPV = Negative predictive value, OR = odds ratio.

4. Discussion

As previously reported, atypical cervical cells slowly grow and progress to precan-
cerous lesions over a period of 10–20 years. Patients with these abnormal cells need to be
monitored closely to prevent cervical cancer. In low–income countries, including Thailand,
it is difficult to monitor these patients since they are usually lost in the follow–up. In this
study, we were able to collect data from the initial presentations of our patients; however,
we were unable to obtain follow–up results. Some of the patients might be at risk of
developing cervical cancer.

Many studies have reported the clinical significance of p16INK4A and Ki–67 expres-
sion as risk factors for cervical cancer. However, to date, no biomarkers have accurately
predicted the progression of abnormal cervical cells and the development of precancerous
lesions. The present study aimed to develop MMs and risk scores using a new biomarker,
cortactin, combined with p16INK4A, Ki–67, and HPV mRNA. We intended to identify the
best MM and risk score to predict the progression from normal cervical tissues to LSILs
and HSILs and the risk of developing cervical precancerous lesions. We found that the
sensitivity, specificity, PPV, and NPV of p16INK4A/Ki–67 were 68%, 69%, 61%, and 74%
for detecting LSIL+ and 92%, 68%, 91%, and 96% for detecting HSIL+, respectively. These
results are comparable to those of other studies. Li and colleagues found that the sensitivity,
specificity, PPV, and NPV of p16INK4A/Ki–67 FFPE were 94%, 88%, 69%, and 98% for CIN
2+ detection, respectively, and 84%, 96%, 88%, and 96%, respectively, for CIN 3+ detec-
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tion [51,52]. Among women with CIN 2, positive IHC staining for p16INK4A and Ki–67 was
strongly associated with disease progression [53].

Cortactin can promote cell migration, cell mortality, and tumor invasiveness in
melanoma, colorectal cancer, and glioblastoma [33,34], and its expression was demonstrated
to be significantly associated with poorer survival rates in patients with OSCC [54–56].
Meta-analyses have concluded that an overexpression of p16INK4A [57,58] in cervical cancer
relates to increased overall and disease-free survival rates, which differs from the function
of cortactin. We found that cortactin staining (Table 3) might be a useful molecular diag-
nostic aid for cervical cancer screening, based on its sensitivity and specificity. However,
the cellular functions of cortactin in cervical cancer require further investigation. The ab-
normal expression of cortactin was manifested both in intensity and localized distribution
(Table 2). Correspondingly, a study of invasive and metastatic melanomas showed cortactin
expression with a high density of (very strong) expression in SCC of 83% [59]. However,
different distribution patterns of cortactin were also seen, such as in cases of nevi. This
study reported that weak staining with low intensity was evenly distributed in the cy-
toplasm in normal nevi tissue and that strong staining was found in the cytoplasm of
high-grade lesions. In contrast, strong staining was accentuated in the cell’s periphery
in most melanomas. This was also seen in cultured melanoma cells, in which cortactin
was distributed in the membrane ruffles and lamellipodia [59]. Therefore, the level of
protein expression and the distribution of cortactin may reflect the abnormal upregulation
of protein expression. The expression of cortactin in cervical cancer, which is reported for
the first time by our group, may act as a biomarker for cervical cancer progression.

An increased expression of HR-HPV E6 and E7 correlates with the progression to
high-grade lesions [60] and eventually to carcinoma in situ. These oncoproteins have
been shown to induce abnormal chromosome copy numbers and miRNA expression in
infectious processes [12–16]. The detection of HPV E6/E7 RNA was combined with assays
of biomarkers of human DNA, RNA, or protein for the diagnosis and prediction of abnormal
cervical lesions. The sensitivity and specificity of HPV E6/E7 RNA for detecting high-grade
cytology (CIN 2) were 71.4% and 75.8% [12–16], respectively. The corresponding values for
detecting CIN 2+ and CIN 3+ were 87.0% (75.6–93.6) and 88.0% (70.0–95.8), respectively.
The specificity of HPV E6/E7 RNA was 82.5% (77.3–86.8) for detecting CIN 2+ and 39.6%
(34.0–45.5) for detecting CIN 3+ [59]. Herein, the sensitivity and specificity of HPV E6/E7
RNA were 88% and 54% for predicting LSIL+, and they were 93% and 44% for predicting
HSIL+, respectively (Table 4). The presence of HPV E6/E7 RNA was associated with
the future development of CIN 2+ among women with LSIL [60]. Moreover, the higher
specificity (54% for LSIL+ and 44% for HSIL+) and NPV (81% for LSIL+ and 93% for
HSIL+) of HPV E6/E7 mRNA testing are valuable in predicting clinically insignificant HPV
DNA infections and helping to avoid aggressive procedures (biopsies and over–referral
for transient HPV infections), as well as for reducing patients’ anxieties and frequencies of
follow up [18,61].

Several prediction models are currently widely used in clinical practice, including the
model for breast cancer incidence, the Adjuvant Online Decision Aid [41,44,62] and that
from http://www.predict.nhs.uk/predict.html (accessed on 8 March 2023), which uses
MMs to determine the likelihood of relapse and to predict responses to chemotherapy for
breast cancer [41]. Three of our five best MMs were evaluated using the confirmed sample
set; Model 4. with risk scores of >2.60 and >3.62. showed the highest sensitivity for predict-
ing risk biomolecules in the normal and LSIL cases and precancerous lesions, respectively.

The mean time for abnormal cervical cell progression from LSIL to HSIL with 8/45 (18%)
oncogenic HPV types was 73.3 months (95% CI: 64.8–81.8 months). For non-oncogenic HPV
(1/28, 4%), the mean time was 91.3 months (95% CI: 85.1–97.4 months), while for the 2/44
(5%) cases negative for HPV, the mean time was 83.5 months (95% CI: 78.0–89.1 months) [63].
In Model 4, 10/31 (32%) cases with LSIL and positive risk biomolecules included 25% of those
with oncogenic HPV infection and 75% of those without HPV infection. Five patients with
LSILs were younger than 25 years (3/5 cases, mean score >2.60). Bruno (2020) reported that

http://www.predict.nhs.uk/predict.html
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the CIN 2 regression rates in women over 25 years of age are poor [64]. Herein, 26 patients
with LSIL were older than 25 years (6/26 [23%]). Therefore, the risk score determined using
Model 4 might predict the spontaneous regression or progression of LSIL [64] in women over
25 years of age. In addition, we found that 5/86 (5.8%) normal and LSIL cases with “risk
biomolecules” were predicted to have precancerous lesions (>3.62), which might progress to
cancerous lesions.

Our model also suggested that 13–14/34 (38–41%) cases of HSIL with “risk biomolecules”
(3.95–4.23) might progress to cervical cancer. This is in broad agreement with the findings
by Austin (2020), wherein they determined that only around 30% of CIN 3 lesions would
progress to cervical cancer in 30 years [65]. However, this study found that slides suffer from
issues such as the positions of the biopsies.

Wu et al. (2021) validated a prediction model in two cohorts in China with a follow-
up duration of 3 years. In the first cohort, 42 cases were diagnosed as CIN 2+, with
thirty-seven cases predicted to progress and five cases to not progress. In the second
cohort, 28 cases were diagnosed as CIN 2+, with 11 cases predicted to progress and
17 cases to not progress [66]. Although this is a starting point for research using machine
learning, our study demonstrates that machine–learning–based algorithms using input
data from the expression levels of multiple biomarkers have potential for diagnosing
and predicting disease progression [67,68] and consequently for solving health problems
currently considered unsolvable, such as cancer.

5. Conclusions

MM-based analysis of the expression levels of multiple biomarkers, including p16INK4A,
Ki–67, cortactin, and HPV E6/E7 RNA, can provide a risk score for predicting the pro-
gression of abnormal cervical cells and the development of precancerous lesions in pa-
tients with normal histology and LSILs. For example, the relevant equation (Model 4)
was Y = 0.535 + 0.387 (Ki–67AS) + 0.142(p16INK4A AS) + 0.530(cortactinP/N) + 0.506(RNA
E6/E7P/N) − 0.786 (Ki–67P/N). These results suggest that monitoring patients with MM–
based analyses of multiple biomarkers could help physicians design optimal therapeutic
strategies and help predict cancer progression in the future.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics13061084/s1, Tables S1–S3, Figures S1–S5.
Supplement Table S1 Experimental results of substituting values in the development of mathe-
matical models. Supplement Table S2 The expected prediction value from development of mathe-
matical models. Supplement Table S3 Sensitivity, specificity, PPV and NPV of pathological grades
analyzed by models 1 to 5 in the test sample set. Supplement Figure S1 Means of the expected
values from the linear regression models and clinical pathological grades of confirmed sample sets.
Supplement Figure S2 ROC curves and AUCs of models 1 to 5. Supplement Figures S3–S4 ROC
curves and AUC of models 3 to 5. Supplement Figure S5 Means of the expected values from the
5 linear regression models.
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