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Abstract: Despite a growing number of effective therapeutic options for patients with pancreatic 

adenocarcinoma, the prognosis remains dismal mostly due to the late-stage presentation and spread 

of the cancer to other organs. Because a genomic analysis of pancreas tissue revealed that it may 

take years, if not decades, for pancreatic cancer to develop, we performed radiomics and fat fraction 

analysis on contrast-enhanced CT (CECT) scans of patients with historical scans showing no evi-

dence of cancer but who subsequently went on to develop pancreas cancer years later, in an attempt 

to identify specific imaging features of the normal pancreas that may portend the subsequent de-

velopment of the cancer. In this IRB-exempt, retrospective, single institution study, CECT chest, 

abdomen, and pelvis (CAP) scans of 22 patients who had evaluable historical imaging data were 

analyzed. The images from the “healthy” pancreas were obtained between 3.8 and 13.9 years before 

the diagnosis of pancreas cancer was established. Afterwards, the images were used to divide and 

draw seven regions of interest (ROIs) around the pancreas (uncinate, head, neck-genu, body (prox-

imal, middle, and distal) and tail). Radiomic analysis on these pancreatic ROIs consisted of first 

order quantitative texture analysis features such as kurtosis, skewness, and fat quantification. Of all 

the variables tested, fat fraction in the pancreas tail (p = 0.029) and asymmetry of the histogram 

frequency curve (skewness) of pancreas tissue (p = 0.038) were identified as the most important 

imaging signatures for subsequent cancer development. Changes in the texture of the pancreas as 

measured on the CECT of patients who developed pancreas cancer years later could be identified, 

confirming the utility of radiomics-based imaging as a potential predictor of oncologic outcomes. 

Such findings may be potentially useful in the future to screen patients for pancreatic cancer, 

thereby helping detect pancreas cancer at an early stage and improving survival. 
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1. Introduction 

Adenocarcinoma of the pancreas is one of the deadliest cancers, with an overall 5-

year survival rate of 5–10%, because it is usually diagnosed at an advanced stage (80% of 

cases) when few therapeutic options are effective [1,2]. Due to its insidious growth, few 

or no symptoms occur until late in the disease or after it has metastasized to other organs 

[1–3]. Yet, prompt intervention at an early stage of the disease would yield far better out-

comes and even the possibility of a cure [1–3]. Thus, early detection is critical.  

A key question regarding the dismal prognosis of patients with pancreatic cancer is 

whether it is the late diagnosis or the early dissemination of the disease to distant organs 
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that is the primary cause of death. To understand the genetic evolution of pancreatic can-

cer, a quantitative genomic analysis was performed on multiple individuals who had died 

from advanced and widely metastatic pancreas cancer [4]. This study revealed that it took 

at least a decade for the cancer to develop in the pancreas, and another 5 to 7 years to 

acquire its metastatic potential before ultimately leading to the patient’s death another 2 

years after that [4]. Such results not only contradict the idea that pancreatic cancers me-

tastasize very early in their development, but more importantly, they open a broad win-

dow of opportunity to diagnose pancreas cancer early and potentially intervene promptly 

while the disease is still curable [4]. 

Due to the significant impact on patient survival of early pancreatic cancer detection, 

identifying subtle changes on imaging years before the cancer forms could lead to effec-

tive patient screening. Malignant tumors, including pancreas cancer, typically display 

substantial intra-tumor heterogeneity in virtually all phenotypic features, such as cellular 

morphology, gene expression (including the expression of cell surface markers, growth 

factor and hormonal receptors), metabolism, growth pattern including motility, desmo-

plastic stroma, as well as angiogenic, proliferative, immunogenic, and metastatic potential 

[5–11]. Imaging techniques based on radiomic analysis, heretofore referred to as quantita-

tive texture analysis (QTA), can measure such intratumoral heterogeneity quantitatively, 

as was shown in several studies for different types of cancer including renal cell carci-

noma, breast, lung, pancreas, and colorectal liver metastases where computed tomogra-

phy (CT)-based texture features identified important prognostic factors linked to clinical 

outcomes [5–11]. These extracted QTA features can be used as inputs in machine learning 

algorithms to identify patterns and rules indiscernible to the naked eye. Once created and 

validated, such radiomic signatures can be used for the diagnosis and prognosis of cancer, 

and the longitudinal monitoring of tumor response after a therapeutic intervention [5–11].  

Given the lag time in the development of pancreas cancer and the recent evidence 

regarding the utility of CT-based texture analysis as a prognostic tool for oncologic out-

comes, we hypothesized that early changes in tissue texture within the normal pancreas 

of patients before they developed a readily visible pancreas cancer could be detected on 

contrast-enhanced CT (CECT) imaging, thereby revealing the signature of the pancreas 

cancer’s growth years before it actually developed. Therefore, the purpose of our study 

was to identify specific imaging features of the normal pancreas using QTA on CECT 

scans of patients who went on to develop pancreas cancer years later.  

2. Materials and Methods 

The study was an IRB-exempt, retrospective, single institution study consisting of 22 

patients (out of a total of 27 who underwent CT imaging) who had evaluable historical 

imaging data in the form of a CECT scan of the chest, abdomen, and pelvis (CAP) consid-

ered standard of care. The registry of patients from Hoag Memorial Hospital Presbyterian 

was queried for patients who had been diagnosed with pancreas cancer during the years 

2015–2017 and who also had a CT scan of the abdomen and pelvis between 3.8 and 13.9 

years prior. In total, 161 historical and 346 post-diagnosis CT scans from 27 patients were 

received, but as mentioned above, only 22 of the 27 patients had a full CECT historical 

imaging set (Portal Venous and/or Arterial) and a reference post-diagnosis imaging set 

that was used to identify the location of the pancreatic cancer. 

The pancreas was divided into 7 regions (uncinate, head, neck-genu, body (proximal, 

middle, and distal), and tail) after which regions of interest (ROIs) were drawn on the 

normal pancreas gland (PG) obtained from these CECT images. A total of 154 unique pan-

creatic regions in these 22 patients were ultimately reviewed and analyzed. The imaging 

selected for analysis consisted of “healthy” pancreas tissue obtained between 3.8 and 13.9 

years before the diagnosis of pancreas cancer was established. Although follow-up imag-

ing was not evaluated, the earliest post-diagnosis scan for each subject was used to deter-

mine the future location of pancreatic cancer. No clinical information, prior read results, 

or any additional information were provided to the readers. 
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All scans were collected, processed, and controlled for completeness prior to meas-

urement. Once a suitable imaging dataset was identified, it was transferred to TexRad 

(Essex, England) for QTA evaluation and Slice-O-Matic (Magog, QC, Canada) for fat frac-

tion measurements.  

2.1. QTA Analysis of the Pancreas 

A QTA evaluation of pancreas glands was measured at the single slice level in the 

axial view using TexRad. Due to the nature and angle of the imaging, the measured pan-

creas of each patient was drawn over the span of 1 to 3 slices to ensure full capture of all 

the pancreatic regions. Once the slice(s) with the most visible pancreatic regions was 

(were) identified, a 1–2 cm diameter ROI was drawn to capture the texture of the pancreas 

gland, as displayed in Figure 1 below. TexRad software contains a feature extraction al-

gorithm that performs a pre-processing filtering step (Laplacian of the Gaussian) and a 

spatial scaling factor (SSF) that helps to calibrate radiologic images obtained on a variety 

of potentially different scanners, and acquisition has been described previously [12]. The 

resultant QTA outputs provide a histogram frequency curve of first order radiomic clas-

sifiers that allows for 6 different intensity-based features at each of 6 different SSF levels 

(0, 2, 3, 4, 5, and 6) for a total of 36 unique values per ROI. The intensity features include 

(1) mean pixel value, (2) standard deviation, (3) mean positive pixel value, (4) skewness, 

(5) kurtosis, and (6) entropy.  

  
(a) (b) 

Figure 1. Regions of the Pancreas. This figure displays examples of the defined regions for the quan-

titative textural analysis (QTA) and fat quantification analysis of the pancreas: (a) the regions for the 

head and uncinate process of the pancreas; (b) the regions for the neck-genu, body, and tail of the 

pancreas. In this example, only 5 or the 7 ROIs are displayed. 

2.2. Fat Quantification in Slice-O-Matic 

The pancreas fat proportions in each region of the pancreas were calculated sepa-

rately in Slice-O-Matic by redrawing the ROIs of each region of the pancreas using a (sin-

gle vs. multiple slice) on the historical CECT. In this manner, the surface areas of each 

region that contained fat were divided by the total surface area of the regional ROI and 

the results were computed as the percent fat within a ROI. In this study a threshold pixel 

value range between −190 and 0 Hounsfield Units was used to define fat. 
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2.3. Statistical Analysis 

Student t-tests were performed to determine whether significant differences existed 

for each of the measurements collected, between the group of regions that later developed 

pancreatic cancer and those that did not. These differences were taken at the region level. 

Therefore, although each patient in this study developed pancreatic cancer later in life, 

there were regions of each pancreas that did not develop disease and could be considered 

“healthy” tissue. A standard p-value of 0.05 was used to determine the significance of the 

separation between means. For each available measurement, a Receiver Operating Char-

acteristic Area Under the Curve (ROC-AUC) was constructed to test the significance of 

said feature for binary classification purposes. Measurements that failed to achieve a reli-

able AUC (e.g., AUC ≥ 60% and p-value below the alpha level of 0.05) were converted 

from a continuous feature to a binary one by assigning a true or false value with respect 

to whether a subject’s measurement was above or below the population metric mean. Sig-

nificant predictors were then selected as candidates for risk ratio analysis. The proportions 

of healthy tissue and those that later developed lesions were then extrapolated and com-

pared against one another using the scikit-learn Python package [13]. Using these propor-

tions, risk ratios were then constructed to highlight the associated impact of being in either 

group with respect to lesion development. 

To assess the feasibility of using a signature compromised of QTA and Fat Quantifi-

cation variables to predict lesion development, multiple logistic regression models were 

created and analyzed. A stepwise process of feature extraction was used to fit the top 

performing Ordinary Least Squares (OLS) Logistic Regression model. For each SSF level, 

all the significant features (as determined by the T-test and ROC-AUC analyses) were 

used as initial inputs for model creation. Individual features would then be manually 

pruned to determine if the significance and accuracy of the model improved and/or stabi-

lized. Feature pruning would continue until each model began dramatically losing per-

formance (e.g., Pseudo R-squared and the p-values for Log-Likelihood Ratio and individ-

ual features would increase). Once the feature-pruning process was complete for each SSF 

level, the overall top performing model was determined by ranking the Log-Likelihood 

Ratio (LLR) p-values and relative model accuracies. 

3. Results 

3.1. Patient Demographics 

Our study population included 10 men and 12 women (mean age 79, range from 64 

to 96). The average BMI for this population was 28.1 (range from 18.0 to 42.8). The 22 

patients had stage 4 (n = 14), stage 2B (n = 2), stage 2A (n = 2), stage 1B (n = 1), stage 1A (n 

= 1), and stage 1 (n = 1) disease (one patient had no clinical stage). Most patients (n = 18) 

did not undergo surgical resection whereas four patients underwent surgical resection 

(two had a partial resection and two a complete resection). The historical CT scans were 

performed at a mean of 7.58 years prior to the CT that was used to diagnose pancreatic 

cancer (range 4.7 to 11.2 years). 

3.2. Radiomic Analysis 

Overall, the most comprehensive signature, as shown in Table 1, was obtained by 

applying a Spatial Scaling Factor (SSF) filter of 2 with the following features: mean pixel, 

skewness, whether a kurtosis value was above or below the population mean, and the 

proportion of pancreas fat observed. 
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Table 1. Ordinary Least Squares (OLS) Logistic Regression Model. 

Variable Name Coefficient Odds-Ratio p-Value 

Intercept −1.0574 0.347 0.007 

Mean −0.0338 0.967 0.005 

Skewness 1.0754 2.931 0.018 

Kurtosis Mean Split 0.9913 2.695 0.032 

Total Pancreas Fat % −2.9476 0.052 0.172 

Using the variables listed above, a logistic regression model was created to classify Lesion Develop-

ment of pancreatic regions. In total, this model was calculated using 154 regions, achieved a Pseudo-

R2 of 0.104, and retained statistical significance against the null model with a p-value of 0.004. 

The feature with the highest statistical significance was Mean Pixel value with a p-

value of 0.005. Skewness and kurtosis mean split were also statistically significant, with 

p-values of 0.018 and 0.032, respectively. The p-value for total pancreas fat was above the 

0.05 alpha threshold with a score of 0.172; therefore, it could not be deemed a reliable 

statistical feature when used by itself. Despite statistical insignificance, its inclusion im-

proved model performance metrics such as Pseudo R-squared and LLR p-value and it did 

not break collinearity assumptions with the other features. Figure 2 below shows that this 

model achieved a receiver operating characteristic area under the curve (ROC-AUC) score 

of 0.7392 and an LLR-p value of 0.004. 

 

Figure 2. OLS ROC Curve. Receiver operating characteristic (ROC) curve in patients (n = 22) for the 

prediction of pancreas cancer development using the following baseline SSF2 radiomic features 

(mean, skewness, kurtosis mean split, and total pancreas fat %). This model was statistically signif-

icant with an Area Under the Curve (AUC) = 0.7392, p-value = 0.004. 

The other main finding of the study was the discriminatory ability of the pancreatic 

fat to identify regions of the pancreas at risk of developing cancer. In particular, the pro-

portion of fat in the tail region when compared to the rest of the pancreas was a predictor 

of future tumor development in that region of the pancreas. Indeed, patients with a tail 

fat percentage higher than 33% had a 75% chance of developing pancreas cancer, whereas 

patients with a lower tail fat percentage (i.e., less than the threshold of 33%) had a 9.1% 

chance of developing pancreas cancer. In other words, patients who contained more than 

the 33% fat threshold in the tail of the pancreas were 8.25 times more likely to develop 

pancreas cancer. Figure 3, below, displays the ROC-AUC of this threshold on the sample 

of measurable pancreas tails. It should be noted that unlike the QTA analysis results from 

22 or 27 subjects with CECT scans available for analysis, the determination of regional 

pancreatic fat was possible in 26 or 27 subjects given that 4 additional subjects had non-

contrast enhanced CT available fat fraction determination.  
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Figure 3. Pancreas Tail ROC Curve. Tail pancreatic fat measurements in subjects (n = 26) using only 

the pancreatic tail fat percentage as a feature; a classifier with an ROC-AUC of 0.819 was noted (p = 

0.029). 

Other individual parameters include skewness at SSF0. In particular, the skewness 

of any region (threshold value = −0.078) was a predictor of future tumor development in 

that region of the pancreas. Pancreatic regions with a skewness value above the threshold 

had a 33.3% chance of developing pancreas cancer, whereas those with a skewness value 

below the −0.078 threshold had a 13.6% chance of developing pancreas cancer. In other 

words, the pancreatic regions with skewness values higher than the threshold of −0.078 

had a 2.46 risk ratio of developing pancreas cancer. Figure 4 displays the discriminative 

power of this relationship with an ROC curve. 

 

Figure 4. Lesion Skewness ROC Curve. Overall, SSF0 skewness was measurable on 154 pancreatic 

regions. Skewness measurements at baseline timepoints achieved a 0.625 ROC-AUC when discrim-

inating for future lesion development, with a statistical significance of 0.038. 

4. Discussion 

Our study showed that changes in texture in the pancreas, as measured on the CECT 

of patients who developed pancreas cancer years later, could be identified, thus confirm-

ing the potential utility of radiomics-based imaging as a potential predictor of oncologic 

outcomes. Although preliminary, the data demonstrated the feasibility of an imaging-

based analysis to identify specific features within the pancreas that would lead to the de-

velopment of cancer. In this manner, such methodology could be used as a potentially 

effective screening tool to identify populations at risk of developing pancreas cancer, 

thereby impacting clinical outcomes. As such, certain populations could be followed 

closely in order to offer prompt therapeutic intervention with curative intent as was 
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recently demonstrated for high-risk individuals in the multicenter Cancer of Pancreas 

Screening Study (CAPS-5), where the 5-year survival of the patients with a screen-de-

tected pancreas cancer was 73.3%, and median overall survival 9.8 years, compared with 

1.5 years for patients diagnosed with pancreas cancer outside surveillance (hazard ratio 

(95% CI); 0.13 (0.03 to 0.50), P = 0.003) [14].  

The study by Yachida et al. established for the first time that the timing of the genetic 

evolution of pancreas cancer was significantly longer than expected, where a decade or 

longer could occur between the initiating cellular mutation and the development of the 

parental, non-metastatic founder cell [4]. Then, a minimum of 5 more years would have 

to pass before cellular acquisition of metastatic ability and finally another 2 years before 

the patient affected by the cancer that had formed would succumb to the disease. This 

extremely slow progression from a single cellular mutation to a lethal cancer opened the 

door for intervention in the form of screening and therapy with curative intent [4]. One 

way to identify a population at risk of developing cancer is through imaging, as mam-

mography has done for decades in patients with breast cancer and chest CT more recently 

with lung cancer. This long timeline to the development of pancreas cancer opens a win-

dow of opportunity to identify imaging features in the pancreas itself that could become 

the signature or “biomarker’ of a future tumor.  

Our hypothesis that distinct imaging features would arise in pancreatic tissue during 

the development of pancreas cancer was proven true as advanced texture analysis on 

CECT revealed such features. In particular, the asymmetry (skewness) of the histogram 

frequency curve (HFC) of pancreas tissue on CECT and fat fraction in the pancreas tail 

were identified as the most important imaging signatures of interest warranting further 

testing in future studies. Such findings are in keeping with those in glioblastomas where 

skewness and kurtosis accurately reflected the microscopic composition of treated glio-

blastomas [15]. This allowed the identification of pseudo-progression or early tumor pro-

gression, and as such provided invaluable information about treatment failure. In our 

study, the skewness of the HFCs obtained in the regions of the pancreas that subsequently 

develop pancreas cancer was significantly different from that obtained in the regions that 

did not develop pancreas cancer (p = 0.033), therefore confirming the utility of skewness 

as a reliable tool to screen patients for pancreas cancer.  

Fatty infiltration of the pancreas or “fatty pancreas”, which is synonymous with fatty 

degeneration in the pancreas, has recently been found to affect pancreatic insulin secretion 

and potentially act as a risk factor for pancreatic cancer. Changes in the fatty content of 

the pancreas at pathology along with fibrosis and inflammatory cell infiltration were 

found to be independent determinants of the development of pancreas cancer. Since im-

aging with CT can assess the fat content of the pancreas, it could, in theory, be used as a 

reliable predictor of the development of pancreas cancer. This is precisely what Fukuda 

et al. demonstrated where the fat content within the pancreas measured on CT was 

strongly associated with a fatty pancreas at pathology, itself subsequently independently 

associated with the development of pancreas cancer [16]. That study therefore established 

a potential role for imaging as a useful predictor of pancreas cancer [16]. Our results con-

firmed those of Fukuda whereby patients in our cohort who had a higher fraction of fat 

in their pancreas were more likely to develop pancreas cancer years later than those who 

did not (p = 0.029). Interestingly, this association was only present in the tail of the pan-

creas. Other regions of the pancreas did not show any meaningful correlation. Neverthe-

less, if fatty metamorphosis of the pancreas turns out to be a driver of pancreas cancer, 

then early intervention with lifestyle changes, newer GLP-1 agonist agents, and/or bari-

atric surgery in obese individuals may help reduce the risk of developing pancreas cancer.  

The main limitation of our study is its small sample size (n = 22 patients) and the lack 

of controls. It would have been useful to compare the texture of patients who developed 

pancreas cancer to those who did not. The data we collected are a first step towards a 

larger clinical trial where our findings could be appropriately tested. In that sense, our 

study is akin to a pilot clinical trial where a hypothesis about the utility of analyzing 
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imaging texture as a potential screening tool for pancreas cancer was at the very minimum 

given some scientific credibility. Our findings will allow us and others to specifically test 

the veracity of using skewness and fat content within the pancreas for potential areas at 

risk of developing pancreas cancer. Another limitation is that the QTA analysis only pro-

vided first-order intensity-based classifiers. The use of first-order classifiers, however, 

seems justified as a pilot study as demonstrated by the importance of such features as 

skewness and kurtosis in other radiomic cancer studies. Nevertheless, other radiomic fea-

tures (e.g., second- and higher order classifiers) may provide additional support to 

strengthen our model. We are currently evaluating such features on our advanced image 

analysis platforms.  

In summary, we found that certain imaging features in the pancreas of patients who 

would develop pancreas cancer years later were sufficiently different such that they could 

be considered predictive of the development of pancreas cancer. Our findings open the 

door to larger clinical trials that could ultimately lead to effective screening programs for 

patients deemed at risk of developing pancreas cancer. As a result, prompt therapeutic 

interventions on patients diagnosed early with pancreas cancer could dramatically alter 

survival outcomes.  
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