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Abstract: The brain is the center of human control and communication. Hence, it is very important
to protect it and provide ideal conditions for it to function. Brain cancer remains one of the leading
causes of death in the world, and the detection of malignant brain tumors is a priority in medical
image segmentation. The brain tumor segmentation task aims to identify the pixels that belong to
the abnormal areas when compared to normal tissue. Deep learning has shown in recent years its
power to solve this problem, especially the U-Net-like architectures. In this paper, we proposed an
efficient U-Net architecture with three different encoders: VGG-19, ResNet50, and MobileNetV2. This
is based on transfer learning followed by a bidirectional features pyramid network applied to each
encoder to obtain more spatial pertinent features. Then, we fused the feature maps extracted from
the output of each network and merged them into our decoder with an attention mechanism. The
method was evaluated on the BraTS 2020 dataset to segment the different types of tumors and the
results show a good performance in terms of dice similarity, with coefficients of 0.8741, 0.8069, and
0.7033 for the whole tumor, core tumor, and enhancing tumor, respectively.

Keywords: brain tumor segmentation; deep learning; U-Net; encoder; pyramid neural network;
transfer learning; attention

1. Introduction

Brain tumors account for 85% to 90% of all primary central nervous system (CNS)
tumors. Worldwide, an estimated 308,102 people were diagnosed with a primary brain or
spinal cord tumor in 2020. Two years later, the number increased to 700,000 in the United
States, and approximately 88,970 more will be diagnosed according to the national brain
tumor society (NBTS). Globally, over 241,000 die each year because of brain tumors or
nervous system cancer and each year the number of people who die increases. Glioma is
one of the most common types of brain tumor and is also known as a primary brain tumor.
Although the exact origin of gliomas is still unknown, there are two grades of glioma:
low-grade glioma (LGG) and high-grade glioma (HGG). The latter is the most aggressive
and very infiltrative because it quickly spreads into other parts of the brain; thus, then early
detection of the tumor is very crucial because it enhances the rate of survival and facilitates
the therapy phase.

Medical imaging analysis comes to help patients and saves people’s lives by diagnosis
using new safety technology, such as positron emission tomography (PET), computed tomog-
raphy (CT), and magnetic resonance imaging (MRI). T1-weighted, T2-weighted, T1-weighted
with contrast enhancement (T1ce), and fluid-attenuated inversion recovery (FLAIR) are the
four modalities of MRI images, as seen in Figure 1, and each one is in 2D slices form and
puts all the slices together produce a 3D form of the brain. Utilization of multiple modalities
and sequences to segment the brain tumor can improve results and provide complementary
features on regions of different sub-gliomas. Semi-automatic and automatic approaches
have been proposed in the brain tumor segmentation area and the automatic one showed its
performance and a high potential for more accurate and reliable results.
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Therefore, numerous studies have proved to detect and segment different types
of brain tumors without using ground truth labels. Based on machine learning (ML)
algorithms, K-means clustering is frequently used to separate an interest region from an
image. K-means has undergone thorough testing in the segmentation of brain tumors and
has demonstrated acceptable accuracy [1,2]. Almahfud et al. [3] proposed a combination
of K-Means and Fuzzy C-Means. They applied this combination to make the image more
visible. Then, they mapped it, applied a median filter, and used morphological area
selection to eliminate small pixels and detect the location of the tumor [4]. A genetic
algorithm is relied on to create a new technique of segmentation discrete wavelet transform
and a fitness function variance as an objective function. This method obtained a high
performance in terms of accuracy.

For supervised approaches with ML, Cui et al. [5] extracted features using an intensity
texture after image registration in the preprocessing phase. Multi-kernel support vector
machine (SVM) is employed as a classifier and a region growing to postprocess the results.
Chen et al. [6] used N4ITK, histogram matching, and simple linear iterative clustering for
preprocessing, gray statistical and gray-level co-occurrence matrix for feature extracting,
and SVM as a classifier [7,8]. They employed other classifiers, random forest, morphological
techniques, and some filtering methods in postprocessing to segment tumors. Therefore,
the first used noise removal in preprocessing and the first higher-order plus texture as a
vector of features, and the second was based on histogram enhancement and Gabor wavelet
in addition to intensity in preprocessing and feature extracting, respectively.

The intensity non-uniformity in MRI imaging makes the feature’s extracted phase more
complex in ML methods, and the amount of this type of data affects the performance of most
ML algorithms and limits their results. Deep learning comes to solve this type of limitation
and it has proven its performance in medical imaging analysis and retrieval [9,10] in general,
and in medical imaging segmentation specifically. Convolution neural networks (CNNs) and
the encoder–decoder with skip connection is the first and the most used in this area. Therefore,
Pereira et al. [11] employed a custom CNN followed by bias field correction, intensity, patch
normalization, and data augmentation. The methods [12,13] integrated a full CNN to segment
different regions of the tumor, and then [12] FCNN was combined with conditional random
forest (CRF). On the other hand [13], a cascade of FCNN is proposed to decompose the
multi-classes segmentation problem into three binary segmentations.

Aboussaleh et al. [14] used the features extracted from the last convolution layer of
a CNN-proposed model, calculated a gradient of those features, stocked the mean and
the max of each one in two vectors, and multiplied them by the features component by
component. Finally, a thresholding and morphological process to postprocess the whole
tumor was used. This method did not use the mask, but it obtained a high performance
in terms of dice coefficient similarity. On the other hand, U-Net-like architectures showed
their majority and success. U-Net is a symmetric fully convolutional network proposed by
Ronneberger et al. [15] with a decoder path to ensure precise position and an encoder path to
capture context information. U-Net is still used as a reference in both 2D and 3D brain tumor
segmentation, and several methods were inspired by making adjustments to the encoder, skip
connection, or decoder parts. Liu et al. [16] proposed a novel cascade U-Net in which each basic
block is designed as a residual one to overcome the vanishing gradient problem. Additionally,
they designed some skip connections to enhance the features transmitted between the encoder
and decoder. Aboelenein et al. [17] introduced a hybrid two-track U-Net. They merged



Diagnostics 2023, 13, 872 3 of 19

two tracks, and each one employs a different kernel and number of layers to obtain a final
segmentation result. The architecture employed batch normalization and it chose Leaky ReLU
as an activation function. Recently, U-Net has been combined with transfer learning in the
latest research to solve a complex limitation of contraction path in U-Net. A lot of time is
spent on its execution using a pre-trained model and obtaining more significant features.
Moreover, U-Net-VGG16 [18] was one of those contributions. Then, they replaced the encoder
path with VGGNet [19]. The same idea was applied to several hybrid architectures replacing
VGG-Net with other CNN architectures, such as LeNet [20], AlexNet [21], MobileNet [22],
and ResNet [23]. Meanwhile, these methods still raise challenges to learning global semantic
information, which is critical for segmentation tasks; therefore, the attention mechanism was
introduced to overcome these challenges.

Fusing CNN-based methods, U-Net architectures and attention mechanisms can
allow for extracting more precise dense feature information in the downsampling, and
they can effectively recover spatial information and position details in the upsampling
path. In this context, Zhang et al. [24] proposed Attention Gate ResU-Net for automatic
MRI brain tumor segmentation. They employed a residual block and an attention gate
with a single U-Net architecture added into the skip connection part. On the other hand,
Wu et al. [25] developed a new method based on generative adversarial network (GAN)
named symmetric driven GAN. The method was trained and learned a non-linear mapping
betwixt the left and right brain images, along with the variability of the brains.

Another method that relies on GAN has been proposed by Dey et al. [26]. They
introduced a framework named the Adversarial-based Selective Network ASC-Net that
aims to decompose an image into two selective cuts based on a reference image distribution.
One cut will fall into the reference distribution, while other image content outside of the
reference image distribution will group into the other cut. These two cuts reconstruct the
original input image semantically and apply simple thresholding to regroup normal and
abnormal regions.

In this paper, we developed a new architecture belonging to U-Net-like ones. The
architecture consists of two parts: an encoder and a decoder. The first part used three
different pre-trained models of CNNs to create a multiple encoder in order to extract more
local features. We introduced the features extracted from each encoder as input into a
bidirectional feature pyramid network (Bi-FPN) to enrich them, and a concatenation has
been affected into those Bi-FPN outputs to obtain overall specific features. In the second
part, we upsampled the encoded feature map based on the attention mechanism that allows
us to better preserve fine details and ignore irrelevant information about those features
and to produce a segmentation mask that is the same size as the input image. Section 2
will describe the materials and methods and Section 3 will be devoted to representing the
results. Then, Section 4 is mainly concerned with discussion and conclusions.

2. Materials and Method
2.1. Data and Data Preparation
2.1.1. Dataset

The BraTS 2020 [27–29] contest provides a large training set of 369 MRI scans and a
validation set of 125 scans. Each scan was 240× 240× 155 in size, and each case had FLAIR,
T1, T1 extension, and T2 volumes. The dataset is co-registered, re-sampled to 1× 1× 1 mm3,
and skull-stripped. Segmented brain tumors include necrosis, edema, non-enhancing, and
enhancing tumors. The ground truth of the training set was only obtained by manual
segmentation results given by experts.
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2.1.2. Data Preparation

BraTS is a 3D dataset, and since our proposed architecture relies on 2D images, we
transformed each patient’s size from 240× 240× 155 to 240× 240 by choosing the middle
slice of each modality, cropped it to 224× 224 to eliminate some insignificant background
pixels, and applied Gaussian denoising, as seen in Figure 2. The z-score normalization
was performed by subtracting the mean µ of the input image i and divided by its standard
deviation σ to obtain i0, as Equation (1) demonstrated. Data augmentation was applied to
our data by simple transformation, such as flipping, rotating, adding noise, and translating.

i0 =
i− µ

σ
(1)
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2.2. Methods

The model architecture takes inspiration from the U-Net architecture represented in
Figure 3 to create a new enhanced model for brain tumor segmentation.
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We use three pre-trained models VGG-19, MobileNetV2 and ResNet50 in the encoder
part, deleting the layers of the classification stage and using fine tuning to retrain the
weights of all the convolution and pooling layers. Each pre-trained model takes as input
one slice (middle one) from the 155 that are possible and obtains an output feature at
five corresponding depths, which are the respective inputs of the Bi-FPN. Bi-FPN is an
enricher-features employed used in Efficient-Det.

The feature network’s outputs are combined into a decoder stage. In this stage, we
calculate the gating signal and make it as input with feature extraction in the encoder part
into an attention block, performing the same process for each depth, and finally an output
convolution block to obtain the brain tumor segmentation. Figure 4 illustrates an overview
of the proposed method.
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2.2.1. Encoder
Transfer Learning

Transfer learning is an approach for starting computer vision and language processing
tasks with pre-trained models by applying the knowledge from the source task to the
work at hand. Transfer learning seeks to enhance learning in the target task. It is a viable
technique for minimizing learning time. This technique might be connected to creating
deep learning models for image classification problems. Based on the ImageNet dataset
which contains more than 1.2 million images and 1000 targets, VGGNet19, MobileNetV2,
and ResNet50 are three of several pre-trained models used in classification. We employed
them in our encoder part by eliminating the classification stage (i.e., the fully connected
layers) since we need the output of the last layer of each convolution block the extraction
features stage (i.e., the convolutional and pooling layers). All these outputs will be used
as input to a Bi-FPN to extract more features. Fine tuning was applied to retrain all the
weights in order to adapt them to our segmentation problem.

• VGG-19

The VGG network, or VGGNet, is a deep neural network architecture. Its contribu-
tion is proving that the depth of the network is a critical component to achieving better
recognition or classification accuracy in CNNs. The VGG network is constructed with very
small 3× 3 filters. The reasoning behind the usage of 3 × 3 filters by VGGNet is that three
3 × 3 filters provide a receptive field of 7 × 7 filters, and two consecutive 3 × 3 filters pro-
vide a 5 × 5 effective receptive field. The number of filters doubles after every max-pooling
operation. VGG-16 and VGG-19 are illustrated in detail in Figure 5. The only difference
was in the number of layers because the first one used 16 layers and the second increased
the number to 19.
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• ResNet50

Residual networks, or ResNet50, is a variant of the ResNet model which has
48 Convolution layers along with 1 MaxPool and 1 Average Pool layer. ResNet is built of a
residual block, which is shown in Figure 6, by stacking residual blocks together, and each
residual block has two 3 × 3 convolution layers Periodically, we doubled the number of
filters and downsampled using stride 2. The ResNet does not have fully connected layers
to output the 1000 classes.
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• MobileNetV2

MobileNetV2, illustrated in Figure 7, is a new version of MobileNetV1 [30]. Therefore,
MobileNetV1 is based on depthwise separable convolution in the first layer to reduce the
complexity cost and model size of the network, and a 1× 1 convolution in the second layer
was used for building new features through computing linear combinations of the input
channels. On the other hand, MobileNetV2 used two types of blocks. One is a residual
block with a stride of 1, and the other one is a block with a stride of 2 for downsizing.
They employed 3 layers for both types of blocks, but they started with the layer of 1× 1
convolution with ReLU6. After a layer of depthwise convolution was applied, the last layer
was 1× 1 convolution but without any non-linearity.

ReLU6 = min(max(x, 0), 6) (2)
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Bi-Directional Feature Pyramid Network (Bi-FPN)

The Bi-FPN is based on the traditional top-down feature pyramid network (FPN),
as seen in Figure 8, developed in 2017 by Lin et al. [31]. It takes level 3–7 input fea-
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tures
→
p

in
=

(
pin

3 , . . . . . . . . . , pin
7
)

where pin
i represents a feature level with a resolution of

1/2i for the input. The conventional top-down FPN aggregates multi-scale features in a
top-down manner:

pout
7 = Conv

(
pin

7
)

pout
6 = Conv

(
pin

6 + Resize
(

pout
7

))
. . . . . .

pout
3 = Conv

(
pin

3 + Resize
(

pout
4

)) (3)

where Resize is usually upsampling and downsampling operation and Conv is usually a
convolution operation for feature processing. Top-down FPN is inherently limited by the
one-way information flow. To address this issue, BiFPN integrates bidirectional cross-scale
connections [32–34]. The cross-scale connection’s intuition is a node that has one input edge
with fusion features having more contribution than the input edge with no feature fusion,
adding an extra edge from the original input to the output node if they are at the same level and
treating each bidirectional (top-down and bottom-up) path as one feature network layer and
repeats the same layer multiple times to enable more high-level feature fusion. Furthermore, a
depthwise separable convolution was adopted [35] for feature fusion and batch normalization
and activation were added after each convolution to further increase efficiency.
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In our paper, the BiFPN takes as input a list of features extracted from the classification
stage blocks of each pre-trained model. f1

in, f2
inand f3

in where f1
in is the list of the first

pretrained model VGG-19 features. f2
in is the list of ResNet50 features and f3

in is the list
of MobileNetV2 features. Then, each list contains five layers L1, L2, L3, L4 and L5. The
output of this network will be a list of features, f1

out, f2
outand f3

out, such that each one
corresponds to its input feature list. In another way, applying BiFPN to f1

in generates f1
out,

f2
in generates f2

out, and f3
in generates f3

out. The 5-level Bi-FPN layers employed in each
pre-trained model made the output calculus as follows:

L4
mid = Conv(L4

in + Resize
(

L5
in))

L3
mid = Conv(L3

in + Resize(L4
mid))

L2
mid = Conv(L2

in + Resize(L3
mid))

L1
out = Conv(L1

in + Resize(L2
mid))

L2
out = Conv(L2

in + L2
mid + Resize(L1

out))

L3
out = Conv(L3

in + L3
mid + Resize(L2

out))

L4
out = Conv(L4

in + L4
mid + Resize(L3

out))

L5
out = Conv(L5

in + Resize(L4
out))

(4)
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Li
in is an element of the list fi

in which contains the output of each depth’s pre-trained
model. It will be the Bi-FPN input layer. Li

mid and Li
out are the middle and output Bi-FPN

layers respectively. Finally, we obtained three lists of features f1
out, f2

outand f3
out. These

lists will be merged to obtain a global list of specific features that will act as the input for
our decoder path.

Our proposed encoder is represented with details in Figure 9.
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2.2.2. Decoder

In this section, for each decoder layer Di, each deconvolution block named UpAtt
starts with a block of attention followed by an upsampling to increase the dimension and a
double convolution block in the end. A double convolution block contains two convolution
layers. It consists of a batch normalization layer and is activated by the activation function,
ReLU. The last features obtained in global specific features will play the bottleneck role;
then, four decoder layers will be obtained after each UpAtt, and a final output block that
contains a convolution layer will be affected to obtain the segmented image with a different
type of tumor. Adding an attention mechanism to our decoder generates layers containing
more pertinent and deeper feature representation, and it pays attention to a small region of
a brain tumor which improves the segmentation effect of brain tumors. Attention blocks
or attention gates (AGs) are inspired by human mechanism attention which naturally
concentrates on the region of interest and develops the ability to suppress unnecessary
feature responses in feature maps while highlighting significant feature information critical
for a specific task. The basic schematic of the attention gate is illustrated in Figure 10.

Where xl is the feature map of the l layer and gi, is the gating signal vector used
for each pixel i to select the focus regions on a coarser scale. The attention coefficient αi
belongs to the interval [0; 1]. It identifies prominent image regions and curbs useless feature
information to preserve only the activations relevant to the specific task. The AG output is
the wise multiplication between the attention coefficient αi and the feature map xl .

xoutput = xl · αi (5)
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Brain tumor segmentation is a multiple semantic class task. Then, we employ a multi-
dimensional attention coefficient [36] to focus on a subset of target regions. The multi-
dimensional attention coefficient can be computed as:

αi = σ2

(
ψT

(
σ1

(
WT

x xl + WT
g gi + bg

))
+ bψ

)
(6)

where σ1 is defined as a ReLU function σ1(x) = max(0, x) and σ2 is the Sigmoid function.
σ2(x) = 1

1+e−x , Wx, Wg, and ψ are linear transformations, and bg and bψ are biased terms.
A 1× 1 has been used as a channel-wise convolution for more performance to the linear
transformation on the feature map xl and sigma gate gi. Xavier normalization is employed
to normalize parameters followed by the back-propagation algorithm to update weights. To
continue our decoder path, we concatenate the AG output with the deconvoluted bottleneck
and apply double convolution to this concatenation to obtain the output of our decoder
block UpAtt. Figure 11 shows the details of our decoder’s proposed method.

D1 = UpAtt(ybootlneck, AGout)

D2 = UpAtt
(

D1, AGout)
D3 = UpAtt

(
D2, AGout)

D4 = UpAtt
(

D3, AGout)
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A final block will be applied to the last decoder layer D4 to obtain the final result. The
block contains a convolution layer with four outputs. Each one corresponds, respectively,
to the four classes defined as background, necrotic core, non-enhancing tumor peritumoral
edema, and enhancing, followed by batch normalization and the SoftMax activation function.

Figure 12 shows the encoder, decoder, and the image segmented, which resumes the
proposed architecture, for brain tumor segmentation task.
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3. Results

In this section, we will present some implementation details of our model and cover
the results obtained through our method based on some proposed evaluation metrics.

3.1. Implementation Details

In this experiment, we used SIMPLTIK, a multidimensional open-source program
Image analysis was performed with Python for image registration and segmentation to read
MRI images from BraTS2020 data with the NIFTI format type. The experiment was carried
out on the Kaggle platform in a virtual instance equipped with CPUs, 13GB memory, and
an HDD drive of 73 GB. During the training of the model, acceleration was performed
on Tesla (P100-PCIE-16GB) GPU (16GB video memory) and it takes 7 h to converge. The
absence of a server with high performance makes our execution environment very limited
and required optimized data by employing a lonely image from a 3D dataset to be able to
execute our code in the Kaggle platform. The transfer learning used in our method forces
us to have the number three as the number of channels in the input image size. This is why
we must choose three sequences among the four possible (t1, t2, T1ce, and flair) for each
input image, which makes the number of potential cases keeping the importance of order
24. For this, Kronberg et al. [37] proposed the best order to be carried out after comparing
all the possible cases to the case or the absence of one or more sequences. From this article,
the best recommended order we use is [t1, t1ce, t2]. Note that in each sequence, we chose
the 90th slice of 155 (the slice when all the different types of tumors appear). The training
dataset was divided randomly into the train, validation, and test subsets with 80:10:10
ratios. The parameters chosen for each pretrained model in the encoder part is explained in
Section 2.2.1. For Bi-FPN networks, we employed a block of convolution with 32 kernels.
The size of each one equals 1 and has a stride of 1. On the other hand, the stride of each
upsampling and downsampling operation is 2. The block of depthwise convolution used
after each resizing operation (upsampling and downsampling) employed a kernel size of
3 and a stride of 1. Table 1 shows the output of each encoder after applying the Bi-FPN
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networks before passing to the decoder part of the architecture. This last part is based on
the attention mechanism. Next, we used in each depth of our decoder an attention block
that takes as input the features obtained from the encoder and its corresponding gating
signal and 128 as the number of kernels. This block is followed by an upsampling operation
with a stride of 2 and a double convolution layer with 128 kernels with a size 3. The final
convolution block, applied to obtain our output, employed 4 kernels with a size 1 and a
SoftMax function activation. The loss function used for our model was the dice loss [38]
which is used by computing the following average:

Dice(P, G) =
2 ∑N

i=1 pigi

∑N
i=1 pi2 + ∑N

i=1 gi2
(7)

where P represents the predicted value and G stands for the mask which represents the
ground truth, pi ∈ P and gi ∈ G. To minimize this loss function, we used an Adam optimizer
with an initial learning rate of α0 = 10−4 and progressively decreased it according to:

α = α0 ×
(

1− e
Ne

)0.9
(8)

where e is an epoch counter and Ne is the total number of epochs. In our case, the maximum
number of epochs = 350 and in every epoch, the batch size = 5. Finally, a model checkpoint
callback is used in conjunction with training to save the best weights of our model.

Table 1. The main layers’ output size of our proposed architecture.

Layer Output Size

Input (224,224,3)
VGG-19 + BiFPN 1 [(224,224,32), (112,112,32), (56,56,32), (28,28,32), (14,14,32)]

MobileNetV2 + BiFPN 2 [(224,224,32), (112,112,32), (56,56,32), (28,28,32), (14,14,32)]
ResNet50 + BiFPN 3 [(224,224,32), (112,112,32), (56,56,32), (28,28,32), (14,14,32)]
Fusion of 1, 2, and 3 [(224,224,32), (112,112,32), (56,56,32), (28,28,32), (14,14,32)]
Attention decoder (224,224,128)

Output (224,224,4)
1 Encoder1, 2 Encoder2, 3 Encoder3.

3.2. Evaluation Metrics

We have utilized various evaluation parameters to evaluate the performance of our
proposed method, each of which is defined below:

• Accuracy: Formally, accuracy has the following definition:

Accuracy =
TruePositive + TrueNegative

Total

• Precision: Formally, precision has the following definition:

Precision =
TruePositive

TruePositive + FalsePositive

• Recall: Formally, recall has the following definition:

Recall =
TruePositive

TruePositive + FalseNegative

• F1-score: Formally, F1-score has the following definition:

F1 score = 2× Precision× Recall
Precision + Recall
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• The DSC represents the overlapping of predicted segmentation with the manually
segmented output label and is computed as:

DSC = 2× |G ∩ S|
|G|+ |S|

• The IoU is used when calculating mean average precision (mAP). It specifies the
amount of overlap between the predicted and ground truth, and it is computed as:

IoU = 2× Area o f Overlap
Area o f Union

• The Hausdorff95 distance measures the distance between the surface of the real area
and the predicted area which is more sensitive to the segmented boundary defined as:

Haus95(T, P) = max{ sup inf
t∈T , p∈P

d(t, p), sup inf
p∈P , t∈T

d(t, p)}

where sup denotes the supremum, in f denotes the infimum, and t and p denote the points
on the surface T of the ground truth area and the surface P of the predicted area. d (·, ·) is a
function of the distance between the points t and p.

3.3. Results and Discussion

In this subsection, we will discuss all the results obtained from our method, analyze
them, compare them with some state of art methods, and visualize some qualitative results.
To evaluate our model, we divided the BraTS 2020 training dataset into three subsets:
training, validation, and test, with a ratio of 80:10:10 (295 for training, 37 for validation, and
37 for test). Tables 2 and 3 show high performance in all metrics, especially in terms of the
dice similarity coefficient of the whole tumor, Hausdorff95 distance of all the three types of
tumors, precision, F1-score, recall, and accuracy for both subsets. Therefore, the proposed
method achieved 87.89% and 78.39% of DSC and IoU of the whole tumor in the validation
subset better than the DSC and IoU calculated from the test subset that achieved 87.89%
and 77.64%, respectively. The evaluation metrics of the core tumor and enhancing tumor
show their higher rank in comparison to validation ones, where they achieved 80.69% and
70.33% DSC of core tumor and enhancing tumor, respectively, 67.63% and 54.24% IoU of
core tumor and enhancing tumor, respectively, 0 mm, 1 mm, and 0 mm of HD95 whole,
core, and enhancing tumor, respectively. Good and acceptable results have been obtained
in terms of precision, F1-score, and recall, where they all crossed the 83% and had a great
accuracy of 99.77%, 99.23%, and 98.30% of the whole tumor, core tumor, and enhancing
tumor, respectively. Figure 13 illustrates the curve of the accuracy, the loss, and the dice
score of the training and validation subsets in terms of the number of epochs. The metrics
converge after 350 epochs. To save memory and time, we stopped at this number regardless
of the values initialized to the kernels.

Table 2. Metrics of our method on the BraTS 2020 training dataset.

Subset DSC
(%)

IoU
(%)

HD95
(mm)

WT TC EnT WT TC EnT WT TC EnT

Training 92.11 90.30 88.78 82.25 78.90 76.55 0.0 1.00 0

Validation 87.89 76.45 67.63 78.39 61.88 51.09 0.0 2.00 2.84

Test 87.41 80.69 70.33 77.64 67.63 54.24 0.0 1.00 0.0
“WT” means “whole tumor”, “TC” means “core tumor”, “EnT” means “enhancing tumor”.
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Table 3. Precision, F1-score, recall, and accuracy of our method on the BraTS 2020 training dataset.

Subset Precision (%) F1-Score (%) Recall (%) Accuracy (%)

WT TC EnT WT TC EnT WT TC EnT WT TC EnT

Training 91.19 90.65 88.41 90.5 89.13 86.19 90.08 88.77 84.06 99.90 99.45 98.79

Validation 87.50 85.34 83.66 87.3 84.91 82.44 86.22 84.04 82.15 99.20 98.10 97.15

Test 90.40 89.79 86.23 88.9 88.54 83.93 87.88 87.04 82.98 99.77 99.23 98.30
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To demonstrate the strength of our method, a comparison study has been conducted
and showed in Table 4, between our proposed approach and some approaches from
the state of art section and some others out of the state of the art. The unsupervised
methods [3,14,25,39] in this comparison study are limited to calculating the metrics of the
whole tumor because of the variation of the pixel’s intensities of each image in the BraTS
2020 dataset that makes the initialization of kernels and the choice of the corresponding
thresholds a very hard task. This justifies the performance obtained from these methods,
which yielded good results in comparison with the several methods that are not based on
the labels (ground truth). The supervised methods [15,17,18,24,40–42] reach high results,
especially those based on the U-Net architecture. Our approach exceeds all the others in
terms of DSC that concerns the whole and the core tumor at 87.41% and 80.69%, respectively.
On the other hand, HTTU-Net [17] obtains the best score of DSC in terms of the enhancing
tumor equal to 80.80%.

The main contribution employed in our method is very significant. It produces an
efficient U-Net architecture that generates very important results. The combination of
these three modifications (multiple encoders, BiFPN, and attention mechanisms) makes our
U-Net more powerful. However, the omission of any of these modifications can negatively
affect our method and degrade its results. Table 5 showed an ablation study of our
method. Therefore, the results obtained when using one encoder (VGG-19, MobileNetV2,
or ResNet50) with a simple decoder, containing an upsampling operation followed by
concatenation and a convolution operation, are less than the results obtained when we
employed the three different encoders and combined them after applying a BiFPN followed
by a simple decoder. The ablation study demonstrated that the use of attention in the
decoder phase, using a single encoder or multiple decoders, degrades the results. This
shows the impact of BiFPN on the performance of our proposed approach.
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Table 4. Performance comparison between our proposed method and different supervised and
non-supervised approaches on different BRATS datasets.

Method Data Performance
of (%)

WT TC EnT

Bisecting (no
initialization) [39]

MRI collected by
authors ACC 83.05 - -

Aboussaleh et al. [14] BraTS2017 DSC 82.35 - -

Wu et al. [25] BraTS2018 DSC (avg)
61.90 - -

K-means and FCM
[3]

https:
//radiopaedia.org/

(accessed on 1
September 2022)

ACC 56.40 - -

U-Net [15] BraTS2020 DSC 80 DSC 62 DSC 60

U-Net-VGG16 [18]
Data approved by

Dr. Soetomo
Surabaya

ACC (avg)
96.10 - -

Single path
MLDeepMedic [42] BraTS2017 DSC 79.73 DSC 71.59 DSC 68.14

Fang et al. [40] BraTS2018 DSC 85.60 DSC 72.20 DSC 72.60

Chen et al. [41] BraTS2018 DSC 83.60 DSC 68.90 DSC 78.30

HTTU-Net [17] BraTS2018 DSC 86.50 DSC 74.50 DSC 80.80

AGResU-Net [24] BraTS2019 DSC 87 DSC 77.70 DSC 70.90

Our method BraTS2020 DSC 87.41 DSC 80.69 DSC 70.33
“-” means “none”, “avg” means “average”, “ACC” means “accuracy”.

Table 5. The proposed method ablation study.

Method DSC
(%)

IoU
(%)

HD96
(mm)

Accuracy
(%)

WT TC EnT WT TC EnT WT TC EnT AVG

U-Net 80.0 62.0 60.0 67.0 52.0 42.0 2.84 2.0 2.83 92.0

VGG-19 + Decoder 81.32 75.13 61.66 68.53 60.17 44.57 2.0 2.00 0.0 97.26

MobileNetV2 + Decoder 86.43 80.51 71.25 76.11 67.44 55.34 1.0 1.00 0.0 97.0

ResNet50 + Decoder 85.78 78.77 70.51 75.09 64.97 54.45 2.0 1.13 0.0 97.0

3Encoder + Decoder 84.77 77.13 67.01 73.57 62.77 50.39 2.0 1.41 0.0 98.29

3Encoder + AttDecoder 79.16 72.89 61.92 62.86 55.86 45.07 3.0 2.00 0.0 97.11

3Encoder + BiFPN + Decoder 86.88 80.55 70.11 76.58 67.51 54.11 0.0 1.00 0.0 98.99

3Encoder + BiFPN+
AttDecoder (our method) 87.41 80.69 70.33 77.64 67.63 54.24 0.0 1.0 0.0 99.10

“AVG” means “average”.

Figures 14 and 15 illustrate a qualitative result of our method from the validation and
test subset, respectively. Globally, the whole tumor has been segmented very well and
also the images without the tumor have a good result (no segmentation in the prediction
images). In addition, the core tumor has been segmented in an acceptable way. Some
images are good for visualization and others are not. Finally, many images of initial tumors
are not well segmented. This last type of tumor needs improvement, which is our objective
for future work.

https://radiopaedia.org/
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4. Conclusions

In this paper, we proposed an efficient U-Net architecture specialized for brain tumor
segmentation. Three main combinations made a new contribution and achieved a good
performance based on different metrics. The encoder of our approach used three different
pretrained models: VGG-19, MobileNetV2, and ResNet50, applying a BiFPN to each one
to generate more spatial significant features before the fusion operation. At the decoder
part, we employed the attention mechanism. This has proven itself in medical image
analysis, especially in segmentation problems by focusing more on different types of
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tumors to facilitate the segmentation task. We have trained and evaluated our method on
the BraTS2020 dataset using ground truths (extracted by medical experts), compared our
results with some states of artworks, and found that our experimental results show a high
capacity and performance of different sub-regions of the tumor. Future work will focus on
improving these results, especially enhancing tumors and adopting our method for the 3D
segmentation of brain tumors.

Author Contributions: Conceptualization, I.A. and J.R.; methodology, I.A. and J.R.; software, I.A.;
validation, J.R.; formal analysis, I.A. and J.R.; investigation, J.R.; resources, I.A.; data curation, I.A.
and J.R.; writing—original draft preparation, I.A. and J.R.; writing—review and editing, I.A., J.R.,
K.E.F., M.A.M. and H.T.; visualization, I.A.; supervision, I.A.; project administration. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: We use open data from Kaggle BraTS2020. The link is https://www.
kaggle.com/datasets/awsaf49/brats20-dataset-training-validation (accessed on 1 January 2022).

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References
1. Dhanachandra, N.; Manglem, K.; Chanu, Y.J. Image Segmentation Using K-means Clustering Algorithm and Subtractive

Clustering Algorithm. Procedia Comput. Sci. 2015, 54, 764–771. [CrossRef]
2. Kaur, N.; Sharma, M. Brain tumor detection using self-adaptive K-means clustering. In Proceedings of the 2017 International

Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Chennai, India, 1–2 August 2017;
pp. 1861–1865.

3. Almahfud, M.A.; Setyawan, R.; Sari, C.A.; Rachmawanto, E.H. An effective MRI brain image segmentation using joint clustering
(K-Means and Fuzzy C-Means). In Proceedings of the 2018 International Seminar on Research of Information Technology and
Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 21–22 November 2018; IEEE: New York, NY, USA, 2018.

4. Chandra, G.R.; Rao, K.R.H. Tumor Detection In Brain Using Genetic Algorithm. Procedia Comput. Sci. 2016, 79, 449–457. [CrossRef]
5. Cui, B.; Xie, M.; Wang, C. A Deep Convolutional Neural Network Learning Transfer to SVM-Based Segmentation Method for

Brain Tumor. In Proceedings of the 2019 IEEE 11th International Conference on Advanced Infocomm Technology (ICAIT), Jinan,
China, 18–20 October 2019; pp. 1–5.

6. Chen, W.; Qiao, X.; Liu, B.; Qi, X.; Wang, R.; Wang, X. Automatic brain tumor segmentation based on features of separated local
square. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017.

7. Hatami, T.; Hamghalam, M.; Reyhani-Galangashi, O.; Mirzakuchaki, S. A Machine Learning Approach to Brain Tumors
Segmentation Using Adaptive Random Forest Algorithm. In Proceedings of the 2019 5th Conference on Knowledge Based
Engineering and Innovation (KBEI), Tehran, Iran, 28 February–1 March 2019.

8. Fulop, T.; Gyorfi, A.; Csaholczi, S.; Kovacs, L.; Szilagyi, L. Brain Tumor Segmentation from Multi-Spectral MRI Data Using
Cascaded Ensemble Learning. In Proceedings of the 2020 IEEE 15th International Conference of System of Systems Engineering
(SoSE), Budapest, Hungary, 2–4 June 2020.

9. Shen, D.; Wu, G.; Suk, H.-I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [CrossRef]
[PubMed]

10. Qayyum, A.; Anwar, S.M.; Awais, M.; Majid, M. Medical image retrieval using deep convolutional neural network. arXiv 2017,
arXiv:1703.08472. [CrossRef]

11. Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.
IEEE Trans. Med. Imaging 2016, 35, 1240–1251. [CrossRef] [PubMed]

12. Zhao, X.; Wu, Y.; Song, G.; Li, Z.; Fan, Y.; Zhang, Y. Brain tumor segmentation using a fully convolutional neural network
withconditional random fields. In International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain
Injuries; Springer: Cham, Switzerland, 2016; pp. 75–87.

13. Wang, G.; Li, W.; Ourselin, S.; Vercauteren, T. Automatic brain tumor segmentation using cascaded anisotropic convolution-
alneural networks. In International MICCAI Brainlesion Workshop; Springer: Cham, Switzerland, 2017; pp. 178–190.

14. Aboussaleh, I.; Riffi, J.; Mahraz, A.M.; Tairi, H. Brain Tumor Segmentation Based on Deep Learning’s Feature Representation.
J. Imaging 2021, 7, 269. [CrossRef] [PubMed]

https://www.kaggle.com/datasets/awsaf49/brats20-dataset-training-validation
https://www.kaggle.com/datasets/awsaf49/brats20-dataset-training-validation
http://doi.org/10.1016/j.procs.2015.06.090
http://doi.org/10.1016/j.procs.2016.03.058
http://doi.org/10.1146/annurev-bioeng-071516-044442
http://www.ncbi.nlm.nih.gov/pubmed/28301734
http://doi.org/10.1016/j.neucom.2017.05.025
http://doi.org/10.1109/TMI.2016.2538465
http://www.ncbi.nlm.nih.gov/pubmed/26960222
http://doi.org/10.3390/jimaging7120269
http://www.ncbi.nlm.nih.gov/pubmed/34940736


Diagnostics 2023, 13, 872 18 of 19

15. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Munich,
Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015.

16. Liu, H.; Shen, X.; Shang, F.; Ge, F.; Wang, F. CU-Net: Cascaded U-Net with loss weighted sampling for brain tumor segmentation.
In Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy; Springer: Cham, Switzerland, 2019;
pp. 102–111.

17. Aboelenein, N.M.; Songhao, P.; Koubaa, A.; Noor, A.; Afifi, A. HTTU-Net: Hybrid Two Track U-Net for Automatic Brain Tumor
Segmentation. IEEE Access 2020, 8, 101406–101415. [CrossRef]

18. Pravitasari, A.A.; Iriawan, N.; Almuhayar, M.; Azmi, T.; Irhamah, I.; Fithriasari, K.; Purnami, S.W.; Ferriastuti, W. UNet-VGG16
with transfer learning for MRI-based brain tumor segmentation. TELKOMNIKA (Telecommun. Comput. Electron. Control.) 2020, 18,
1310–1318. [CrossRef]

19. Kamilaris, A.; Prenafeta-Boldú, F.X. A review of the use of convolutional neural networks in agriculture. J. Agric. Sci. 2018, 156,
312–322. [CrossRef]

20. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

21. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. In Advances
in Neural Information Processing Systems; 2012; pp. 1097–1105. Available online: https://proceedings.neurips.cc/paper/4824
-imagenet-classification-with-deep-convolutional-neural-networks.pdf (accessed on 20 February 2023).

22. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

23. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

24. Zhang, J.; Jiang, Z.; Dong, J.; Hou, Y.; Liu, B. Attention gate resU-Net for automatic MRI brain tumor segmentation. IEEE Access
2020, 8, 58533–58545. [CrossRef]

25. Wu, X.; Bi, L.; Fulham, M.; Feng, D.D.; Zhou, L.; Kim, J. Unsupervised brain tumor segmentation using a symmetric-driven
adversarial network. Neurocomputing 2021, 455, 242–254. [CrossRef]

26. Dey, R.; Hong, Y. Asc-net: Adversarial-based selective network for unsupervised anomaly segmentation. In Proceedings of the
24th International Conference on Medical Image Computing and Computer Assisted Intervention—MICCAI 2021, Strasbourg,
France, 27 September–1 October 2021; Springer: Cham, Switzerland, 2021.

27. Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The
Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 2015, 34, 1993–2024. [CrossRef]
[PubMed]

28. Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, J.S.; Freymann, J.B.; Farahani, K.; Davatzikos, C. Advancing The
Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 2017, 4, 170117.
[CrossRef] [PubMed]

29. Bakas, S.; Reyes, M.; Jakab, A.; Bauer, S.; Rempfler, M.; Crimi, A.; Shinohara, R.T.; Berger, C.; Ha, S.M.; Rozycki, M.; et al.
Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival
Prediction in the BRATS Challenge. arXiv 2018, arXiv:1811.02629.

30. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

31. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

32. Kong, T.; Sun, F.; Tan, C.; Liu, H.; Huang, W. Deep feature pyramid reconfiguration for object detection. In Proceedings of the
Computer Vision—ECCV 2018: 15th European Conference, Munich, Germany, 8–14 September 2018.

33. Kim, S.-W.; Kook, H.-K.; Sun, J.-Y.; Kang, M.-C.; Ko, S.-J. Parallel feature pyramid network for object detection. In Proceedings of
the Computer Vision–ECCV 2018: 15th European Conference, Munich, Germany, 8–14 September 2018.

34. Zhao, Q.; Sheng, T.; Wang, Y.; Tang, Z.; Chen, Y.; Cai, L.; Ling, H. M2Det: A Single-Shot Object Detector Based on Multi-
Level Feature Pyramid Network. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA,
27 January–1 February 2019; AAAI: Menlo Park, CA, USA, 2019.

35. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1610–02357.

36. Shen, T.; Zhou, T.; Long, G.; Jiang, J.; Pan, S.; Zhang, C. Disan: Directional self-attention network for RNN/CNN-free language
understanding. In Proceedings of the 32th AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018;
pp. 5446–5455.

37. Kronberg, R.M.; Meskelevicius, D.; Sabel, M.; Kollmann, M.; Rubbert, C.; Fischer, I. Optimal acquisition sequence for AI-assisted
brain tumor segmentation under the constraint of largest information gain per additional MRI sequence. Neurosci. Inform. 2022,
2, 100053. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.2998601
http://doi.org/10.12928/telkomnika.v18i3.14753
http://doi.org/10.1017/S0021859618000436
http://doi.org/10.1109/5.726791
https://proceedings.neurips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://proceedings.neurips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://doi.org/10.1109/ACCESS.2020.2983075
http://doi.org/10.1016/j.neucom.2021.05.073
http://doi.org/10.1109/TMI.2014.2377694
http://www.ncbi.nlm.nih.gov/pubmed/25494501
http://doi.org/10.1038/sdata.2017.117
http://www.ncbi.nlm.nih.gov/pubmed/28872634
http://doi.org/10.1016/j.neuri.2022.100053


Diagnostics 2023, 13, 872 19 of 19

38. Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Jorge Cardoso, M. Generalised dice overlap as a deep learning loss function for
highly unbalanced segmentations. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support;
Springer: Cham, Switzerland, 2017; pp. 240–248.

39. Mahmud, M.R.; Mamun, M.A.; Hossain, M.A.; Uddin, M.P. Comparative Analysis of K-Means and Bisecting K-Means Algo-
rithms for Brain Tumor Detection. In Proceedings of the 2018 International Conference on Computer, Communication, Chemical,
Material and Electronic Engineering (IC4ME2), Rajshahi, Bangladesh, 8–9 February 2018.

40. He, H.; Fang, L. Three pathways U-Net for brain tumor segmentation. In Pre-Conference Proceedings of the 7th Medical Image
Computing and Computer-Assisted Interventions (MICCAI) BraTS Challenge, Granada, Spain, 16 September 2018; pp. 119–126.

41. Chen, W.; Liu, B.; Peng, S.; Sun, J.; Qiao, X. S3D-UNET: Separable 3D U-Net for brain tumor segmentation. In Proceedings of the
4th International Workshop, Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, BrainLes 2018, Held
in Conjunction with MICCAI 2018, Granada, Spain, 16 September 2018; Lecture Notes in Computer Science. Springer: Berlin,
Germany, 2019; Volume 11384.

42. Chen, S.; Ding, C.; Liu, M. Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recognit.
2019, 88, 90–100. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.patcog.2018.11.009

	Introduction 
	Materials and Method 
	Data and Data Preparation 
	Dataset 
	Data Preparation 

	Methods 
	Encoder 
	Decoder 


	Results 
	Implementation Details 
	Evaluation Metrics 
	Results and Discussion 

	Conclusions 
	References

