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Abstract: (1) Background: The effect of tumor immunotherapy is influenced by the immune microen-
vironment, and it is unclear how lipid metabolism and ferroptosis regulate the immune microenvi-
ronment of uterine corpus endometrial carcinoma (UCEC). (2) Methods: Genes associated with lipid
metabolism and ferroptosis (LMRGs-FARs) were extracted from the MSigDB and FerrDb databases,
respectively. Five hundred and forty-four UCEC samples were obtained from the TCGA database.
The risk prognostic signature was constructed by consensus clustering, univariate cox, and LASSO
analyses. The accuracy of the risk modes was assessed through receiver operating characteristic
(ROC) curve, nomogram, calibration„ and C-index analyses. The relationship between the risk
signature and immune microenvironment was detected by the ESTIMATE, EPIC, TIMER, xCELL,
quan-TIseq, and TCIA databases. The function of a potential gene, PSAT1, was measured by in vitro
experiments. (3) Results: A six-gene (CDKN1A, ESR1, PGR, CDKN2A, PSAT1, and RSAD2) risk
signature based on MRGs-FARs was constructed and evaluated with high accuracy in UCEC. The
signature was identified as an independent prognostic parameter and it divided the samples into
high- and low-risk groups. The low-risk group was positively associated with good prognosis, high
mutational status, upregulated immune infiltration status, high expression of CTLA4, GZMA and
PDCD1, anti-PD-1 treatment sensitivity, and chemoresistance. (4) Conclusions: We constructed a
risk prognostic model based on both lipid metabolism and ferroptosis and evaluated the relationship
between the risk score and tumor immune microenvironment in UCEC. Our study has provided new
ideas and potential targets for UCEC individualized diagnosis and immunotherapy.

Keywords: lipid metabolism; ferroptosis; immunotherapy; prognostic marker; uterine corpus
endometrial carcinoma

1. Introduction

Uterine corpus endometrial carcinoma (UCEC) is one of the most common gyneco-
logic malignancies, with an increasing incidence of about 1% per year [1]. Approximately
15% of UCEC patients are diagnosed at an advanced stage, and approximately 15–20% of
patients will experience relapse after primary surgical treatment [2,3]. Although surgery,
carboplatin/paclitaxel systemic chemotherapy, and hormone therapy are effective treat-
ments, patients with advanced disease, recurrence, or drug resistance still have poor
prognoses [4,5]. In recent years, it has been reported that patients with advanced endome-
trial cancer may benefit from immunotherapy. The main immunotherapy approaches
include immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT), cancer vaccines,
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and lymphocyte-promoting cytokines. For example, dostarlimab, a drug that inhibits the
programmed cell death 1 and programmed cell death ligand 1 pathway, can improve the
prognosis of patients receiving platinum chemotherapy or progressive mismatch repair
deficiency endometrial cancer [6]. However, the effect of immunotherapy is not ideal due
to the complexity of the immune microenvironment and differences in the response to
immunotherapy [7,8]. Therefore, it is vital to identify potential diagnostic and prognos-
tic targets or risk signatures and to tailor individualized immunotherapy strategies for
improving the outcomes of UCEC patients.

Obesity is an independent risk factor for UCEC [9]. Almost all UCEC patients with
obesity have altered lipid metabolism [10]. Tan et al. built an 11 lipid metabolism gene (LMG)
signature to reflect the prognosis of UCEC patients [11]. Lipids are susceptible to oxidation by
oxygen free radicals. Overproduction and elimination failure of lipid peroxidation are the main
reasons for the novel iron-dependent cell death ferroptosis [12–14]. Liu et al., Wang et al., and
Wei et al. constructed a ferroptosis-related gene signature to predict the prognosis of UCEC
patients [15–17]. Lipid synthesis, storage, and degradation processes can be regulated by
ferroptosis [18,19]. Iron depletion leads to a large amount of lipid accumulation in breast cancer
cells [20]. Iron accumulation is due to altered lipid metabolism associated with increased
oxidative stress in myelodysplastic syndromes [21]. Ferroptosis is closely associated with lipid
metabolism pathways [22,23]. Inhibiting β-oxidation can restore tumor cell sensitivity to
ferroptosis [24]. Upregulating stearoyl CoA desaturase 1 (SCD1), the rate-limiting enzyme
in fatty acid synthesis, increases the resistance of tumor cells to ferroptosis. Increasing
evidence suggests that lipid metabolism and ferroptosis closely affect each other [25,26].
However, the interaction and shared role of ferroptosis and lipid metabolism in UCEC
remains unclear.

In the present study, we aimed to construct a prognostic risk signature based on both
lipid metabolism and ferroptosis to comprehensively analyze their combined effects on
UCEC. We screened six risk genes (CDKN1A, ESR1, PGR, CDKN2A, PSAT1, and RSAD2)
as reliable diagnostic and prognostic biomarkers and divided UCEC patients into high- and
low-risk groups based on their risk score. Then, we estimated differences in immune score,
immune infiltration, immune checkpoint, immunotherapy, and chemotherapy response
between the high- and low-risk groups. The findings provide a new idea for individualized
therapy strategies to improve the prognosis of UCEC patients.

2. Materials and Methods
2.1. Dataset Information

Sequencing RNA data (HTSeq-FPKM) and clinical information were obtained from
The Cancer Genome Atlas (TCGA) database, and 579 cases were selected for study, includ-
ing 544 UCEC samples and 35 normal samples. The detailed clinical information of the
UCEC patients is shown in Table S1.

2.2. Extraction of Lipid-Metabolism-Related and Ferroptosis-Associated Genes

Lipid-metabolism-related genes (LMRGs) were collected from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database and the Molecular Signatures Database (MSigDB),
including the GSEA, HALLMARK, and REACTOME databases [27]. The detailed gene
sets are shown in Table S2. A total of 1457 genes were selected for analyses after remov-
ing duplicate genes (Table S3). In addition, we downloaded 288 ferroptosis-associated
genes (FAGs) from the FerrDb database (http://zhounan.org/ferrdb/legacy/index.html,
accessed on 1 June 2022). After removing the replicates, 259 individual FAGs were used for
further investigation.

2.3. Construction of the LMRG and FAR Prognostic Signature

The evaluation of the differentially expressed LMRGs (DE-LMRGs) was performed
using the default settings for the “lmFit”, “eBayes”, and “topTable” functions in the “limma”
R package. The screening criteria were p < 0.05, |Log2 Fold Change (FC)| > 1, and a false
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discovery rate (FDR) < 0.05. Then, univariate Cox regression analysis was applied to
determine LMRGs with overall survival (OS) in UCEC by using the coxph function in the
“survival” R package at p < 0.05. The molecular classification of DE-LMRGs in UCEC was
analyzed by the “ConsensusClusterPlus” R package. Principal component analysis (PCA)
was performed to identify the grouping ability of our model with the R package “stats”.
Then, the FAGs interacted with the results of the consensus clustering approach, and the
genes of interaction were selected for further study.

We performed univariate cox and least absolute shrinkage and selection operator
(LASSO) analyses to identify significant prognostic genes based on both LMRGs and FARs
with a threshold of p < 0.05. Then, a risk score signature was created by considering the
estimated cox regression correlation coefficients and the expression values of the optimized
LMRGs and FARs. The formula is risk score = Σi1expGenei*coeffi. According to the
median value of the calculated risk scores from the TCGA-UCEC, the patients were divided
into low- and high-risk groups. The prognostic ability and stability of the signature was
measured by the Kaplan–Meier (K–M) analysis, multivariate Cox regression analysis, and
receiver operating characteristic (ROC) curve with the “Survival” and “sevivalROC” R
package (p < 0.05).

2.4. Functional Enrichment Analysis

To examine the distinction between the high- and low-risk group of our model, we
further carried out gene set variation analysis (GSVA) using the “GSVA” function with
method parameters (min.sz = 10, max.sz = 500, verbose = TRUE) of the “GSVA” R pack-
age, and conducted KEGG pathway analysis and Gene Ontology (GO) analysis via the
“clusterProfiler (version 3.14.3)” R package (p < 0.05).

2.5. Tumor Mutational Burden (TMB) Analysis

We downloaded the somatic mutation data from TCGA. Using Perl, we calculated
the TMB value of each sample and divided all samples into high- and low-TMB groups
based on the median TMB [28]. Then, K–M analysis was used to assess survival differences
between the groups. We also calculated the expression differences in TMB between the
high- and low-risk groups and analyzed the relationship between TMB and the risk score
(p < 0.05)

2.6. Immune Infiltration of the Prognostic Model

The CIBERSORT algorithm was utilized to evaluate the 22 types of immune fractions
between the high- and low-risk groups, and the results were visualized with the “vioplot”
R package. Then, we used the Tumor Immune Estimation Resource (TIMER) to evaluate
correlations between expression of six model genes and the immune infiltration level of
tumor-infiltrating immune cells. We also analyzed the relationship between innovative
targeted therapy and risk prognostic models. The Wilcoxon test was used to detect ex-
pression of potential immune checkpoints between the high-risk and low-risk groups
(p < 0.05). Furthermore, we downloaded clinical data from The Cancer Immunome Atlas
(TCIA) to predict the response to immune checkpoint blockade (CTLA-4 and PD-1) in
patients in the high- and low-risk groups by the immunophenoscore. In addition, ac-
cording to the Genomics of Drug Sensitivity in Cancer (GDSC) database, the R package
“pRRophetic” was used to measure the half-maximal inhibitory concentration (IC50) of
chemotherapeutic drugs.

2.7. Cell Culture

The UCEC cell lines Ishikawa, HEC-1A, HEC-1B, and ECC-1 were obtained from
the American Type Culture Collection (ATCC). The HEC-1A cell lines were cultured in
McCoy’s 5A (Gibco, New York, NY, USA) supplemented with 10% fetal bovine serum (FBS,
Biological Industries, Kibbutz Beit-Haemek, Israel) and 1% penicillin/streptomycin (P/S);
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the others were cultured in RPMI 1640 culture medium with 10% FBS and 1% P/S. All of
the cells were cultured at 37 ◦C in a humidified incubator under 5% CO2.

2.8. Small Interfering RNA (siRNA) Transfection

The siRNA PSAT1 and scrambled control sequences were obtained from Gene Pharma
(Shanghai, China). The details of the sequences are as follows: si-PSAT1-1: forward
5′-CAGUGUUGUUAGAGAUACAdTdT-3′, reverse 5′-UGUAUCUCUAACAACACUGdTdT-
3′; si-PSAT1-2: forward 5′-GCUGUUCCAGACAACUAUAdTdT-3′, reverse 5′-UAUAGUUGU
CUGGAACAGCdTdT-3′. siRNA transfection was carried out using Lipofectamine 2000 (Invit-
rogen, Carlsbad, CA, USA).

2.9. Quantitative Real-Time PCR (qRT–PCR)

Total RNA was extracted using TRIzol reagent (Sangon Biotech, Shanghai, China) after
transfecting siRNA for 48 h, and reverse transcription was performed using PrimeScriptTM
RT Reagent Kit (TAKARA, RR047A). QRT–PCR was conducted with the SYBR Green qPCR
Supermix kit (Invitrogen). The primers used were purchased from Tsingke Biotechnology
Co (Beijing, China), as follows: PSAT1 Forward 5′-ACTTCCTGTCCAAGCCAGTGGA-3′;
PSAT1 Reverse 5′-CTGCACCTTGTATTCCAGGACC-3′; GAPDH Forward 5′-GGAGCGA
GATCCCTCCAAAAT-3′; GAPDH Reverse 5′-GGCTGTTGTCATACTTCTCATGG-3′.

2.10. Western Blot Analysis

Total proteins were obtained from cells using PIPA buffer (New Cell & Molecular
Biotech, Suzhou, China) at 72 h after siRNA transfection, separated by sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), and transferred to polyvinyli-
dene fluoride (PVDF) membranes (Millipore, New York, NY, USA). The membranes were
blocked using 5% BSA for at least 1 h at room temperature and incubated with PSAT1
(10501-1-AP, Proteintech, Wuhan, China) or GAPDH (10494-1-AP, Proteintech) at 4 ◦C
overnight. The next day, the membranes were incubated with secondary antibody (GB23303,
Servicebio, Shanghai, China) for 1 h at room temperature, and bands were detected
by chemiluminescence.

2.11. Cell Proliferation Assay

Cell proliferation was detected by the Cell Counting Kit-8 assay (CCK-8) and colony
formation assay. For CCK-8, the cells were seeded into 96-well plates at a density of
2000 cells/well after 72 h of transfection. At the indicated time, CCK-8 solution (10 µL)
was added to each well of the culture medium. Cell viability was measured using an
automatic enzyme-linked immune detector after incubation for 1 h. For the colony forma-
tion assay, 1000 transfected cells were seeded into six-well plates for 10–14 days, and the
culture medium was changed every three days. After staining with 0.1% crystal violet and
photographing, cell colonies were statistically analyzed by the t-test.

2.12. Cell Migration and Invasion Assay

Cell migration and invasion were assessed using 24-well transwell chambers (8 µm;
Millipore). In brief, a sample of 4 × 104 cells suspended in 200 µL serum-free medium
was seeded in the upper chamber, and the lower chamber contained 600 µL medium with
10% FBS. After 48 h, the chambers were fixed with 4% paraformaldehyde and stained
with 0.1% crystal violet dye for 30 min. The upper chamber cells were wiped off and then
photographed and counted under a microscope. For the invasion assays, Matrigel (BD,
biocoat, #358248) was used to coat the upper chamber, after which the cells were seeded;
the next step was the same as above.

2.13. Statistical Analysis

Bioinformatic statistical analyses were performed using R (v.3.6.1) software. Pearson
correlation analysis was employed for correlation analysis between TMB and the risk model.
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All of the in vitro experiments were independently performed in triplicate and analyzed by
the t-test. Data were analyzed using the IBM SPSS Statistics 22 and visualized in GraphPad
Prism 9. The values were presented as the mean ± standard deviation (SD). p < 0.05 was
considered statistically significant.

3. Results
3.1. Identification and Clustering of LMRGs

A brief workflow of this research is presented in Figure S1. We screened 1457 LM-
RGs for differential expression analysis and identified 88 differentially expressed LMRGs
(DE-LMRGs) with the “limma” R package based on 544 UCEC samples and 35 normal
samples from TCGA. The boxplot of the expression patterns of the 88 DE-LMRGs is shown
in Figure 1A. KEGG analysis and GO analysis showed that these significant genes mainly
participate in lipid metabolic processes (Figure S2A,B). Then, univariate cox hazards re-
gression and Kaplan–Meier (K–M) analyses were utilized to screen out prognostic LMRGs
based on TCGA, and we obtained six risk genes and three protective genes for survival
(Figure S2C,D). The consensus clustering approach was used to divide the UCEC samples
with the non-negative matrix factorization (NMF) algorithm. Based on LMRGs expression,
the optimal clustering stability was confirmed when K = 3 (Figures 1B and S2E,F). We also
performed principal component analysis (PCA), which showed the good grouping ability
of our clustering (Figure 1C). Therefore, all of the UCEC samples were divided into three
clusters, and the heatmap showed lower expression for the DE-LMRG genes in Cluster
A (Figure S2G). Moreover, K–M analysis indicated a significant difference in OS among
the three subgroups, with the patients in Cluster A having the best prognosis (Figure 1D,
p < 0.05). By further analyzing the clinical characteristics among the three clusters, we
found that patients in Cluster C had an older age and a higher grade and stage (Figure
S2H–J, p < 0.05).

3.2. Signature Construction Based on LMRGs and FAGs

Differentially expressed genes among the three clusters were obtained from con-
sensus clustering analysis and intersected with FAGs. Then, we obtained both lipid
metabolism-related and ferroptosis-associated genes (LMG-FAGs) (Figure 2A). We per-
formed overall-survival-based univariate regression analysis on the lipid-metabolism-
related and ferroptosis-associated genes (LMG-FAGs) obtained through consensus clus-
tering analysis. This approach revealed 211 LMG-FAGs associated with the prognosis of
endometrial cancer, and we classified them into 87 risk genes and 124 protective genes
according to the hazard ratio (HR) and p value (Table S4, p < 0.05). To avoid overfitting
and bias, the results of univariate regression analysis were subjected to LASSO regres-
sion analysis using the “glmnet” R package, and the accuracy of the model was tested by
cross-validation (Figure 2B,C). Hence, a six-gene prognostic risk model was established
by the following formula: risk score = [CDKN1A expression × (−0.02353)] + [CDKN2A
expression × (0.11554)] + [ESR1 expression × (−0.05874)] + [PGR expression × (−0.11493)]
+ [PSAT1 expression × (0.05505)] + [RSAD2 expression × (0.01431)]. We analyzed the
relationship between different risk scores and patient follow-up times, events, and expres-
sion changes of individual genes, and it was observed that with an increase in the risk
score, the survival rate of patients decreased significantly. CDKN1A, ESR1, and PGR were
found to be protective factors that showed downregulated expression with increased risk
scores; CDKN2A, PSAT1, and RSAD2 showed the opposite result (Figure 2D p < 0.05).
Furthermore, we detected expression levels and performed multivariate Cox regression and
K-M survival analyses on the six independent prognostic genes. The results indicated that
high expression of CDKN1A, ESR1, and PGR was related to better prognosis, whereas high
expression of CDKN2A, PSAT1, and RSAD2 was not (Figure S3A–C, p < 0.05). According to
the median cut-off value of the risk score, the high- and low-risk groups were established to
differentiate the UCEC patients in TCGA, and the high-risk patients had a worse prognosis
than the low-risk patients (Figure 2E, p < 0.05). Then, time-dependent ROC analysis was
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applied to evaluate the prediction capacity of the signature, with an area under the receiver
operating characteristic curve (AUC) of 0.67, 0.70, and 0.70 at 365, 1905, and 1825 days,
respectively (Figure 2F, p < 0.05).
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Figure 1. Identification and clustering of LMRGs: (A) expression of 88 DE-LMRGs between the UCEC
samples and normal samples. * p < 0.05, ** p < 0.01, and *** p < 0.001. (B) Consensus clustering map
of NMF clustering, and the optimal cluster number was three (k value = 3). (C) Principal component
analysis (PCA) showed that the three clusters in the consensus clustering approach were robustly
segregated. (D) Kaplan–Meier curve survival (K–M) analysis of patients in the three clusters, and
patients in Cluster A had a better prognosis. p < 0.001.

3.3. Prognosis and Validation of the LMRG- and FAG-Based Signature

To assess the accuracy of the model, we evaluated the performance of this signature
with regard to pathological features (age, grade, and stage). The results indicated that high
risk was significantly associated with older age and higher grade and stage (Figure 3A–C,
p < 0.05). Then, the pathological features were added for univariate and multivariate
cox regression, and the forest plot showed that age, grade, and stage were still indepen-
dent prognostic factors, which means that the signature had high accuracy (Figure 3D,
p < 0.05). In addition, we built a nomogram to predict the 1-year, 3-year, and 5-year survival
probability of UCEC patients based on all of the above prognostic elements (Figure 3E,
p < 0.05), and the calibration plot showed a C-index of 0.767 (0.741–0.793), indicating that
the nomogram had good predictive ability (Figure 3F, p < 0.05).
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tabolism-related and ferroptosis-associated genes (LMR-FAGs). (B,C) LASSO coefficient profiles
and cross-validation were used to identify LMR-FAG-related genes. (D) Distributions of risk scores,
survival status, and expression levels of six prognostic genes in UCEC. (E) The K-M survival analysis
demonstrated that patients in the low-risk group had a better prognosis. p < 0.001. (F) Time-dependent
ROC curve and AUC of the prognostic signature in UCEC patients from TCGA.

3.4. DEG and Functional Enrichment Analyses of the Signature

To investigate the relationship between the six genes in the risk model, we constructed
a protein–protein interaction (PPI) network (Figure S4A) and analyzed the correlations
(Figure S4B). The results showed that PSAT1 and RSAD2 were more independent and less
associated with other genes. Next, a volcano plot and heatmap showed the DEGs between
the two risk groups; 81 genes were upregulated and 195 genes were downregulated
(Figure 4A,B). The PPI network of the DEGs is depicted in Figure S4C. To reveal the
underlying biological characteristics associated with the risk scores, KEGG and GO analyses
were performed based on DEGs between the high- and low-risk groups. The results
indicated that pathways such as kinase and peptidase regulation, apparatus morphogenesis,
cell cycle regulation, viral infection, and antiviral innate immune response were highly
enriched (Figure 4C,D, p < 0.05). In addition, we performed GSVA to probe differences
in pathways between the two risk groups. As illustrated in the heatmap in Figure 4E,
pathways related to lipid metabolism and ferroptosis, such as “tyrosine metabolism”,
“fatty acid metabolism”, “alpha linolenic acid metabolism”, and “DNA replication”, were
significantly enriched (p < 0.05).
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and clinical characteristics. (E) Nomogram to predict 1-year, 3-year, and 5-year overall survival times.
(F) Calibration curve to assess the accuracy of the nomogram. The C-index was 0.767 (0.741–0.793).
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3.5. Relationship between the Tumor Mutational Burden (TMB) and the Risk Model

TMB, the somatic coding errors, is generally considered high when >10 or >16 mu-
tations/megabase DNA are present [28]. Recently, TMB is thought to be closely related
to the survival prognosis of tumor patient [29]. To examine in more depth how well the
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risk-prognosis model predicts tumor development, we investigated its relationship with
TMB. First, correlation analysis showed that the TMB level had a negative association
with the LMRG-FAG risk score (Figure 5A, p < 0.05), and the high-risk group showed
lower TMB levels (Figure 5B, p < 0.05). We also investigated the survival of patients with
different TMB statuses by K-M analysis, and the results demonstrated that the patients
in the low-TMB group had poor prognostic outcomes (Figure 5C, p < 0.05). In addition,
mutation information of the genes in the low- and high-TMB groups was explored using a
waterfall chart, and PTEN (58.2%), PIK3CA (48.7%), TTN (44.5%), ARID1A (43.5%), and
TP53 (36.4%) were the top five mutated genes (Figure 5D). We further studied and classified
the mutation information, variant type, and SNV class, and the results demonstrated that
missense mutations, single nucleotide polymorphism (SNP), and C > T accounted for the
largest proportion (Figure S5A–C). The number of altered bases in each sample and the
mutation types in different colors are shown in Figure S5D,E; mutation information for
the six risk genes [PGR (37%), ESR1 (33%), RSAD2 (27%), PSAT1 (18%), CDKN1A (14%),
and CDKN2A (5%)] is provided in Figure S5F. Recently, multiple pieces of research have
illustrated that TMB is closely associated with tumor immune cell infiltration and affects
the efficacy of immunotherapy [30,31]. Therefore, we evaluated the value of TBM in the
complexity of the tumor immune microenvironment. We discovered that most immune
cells had a positive correlation with the TMB level, especially T cells CD8+, T cells CD4+,
and B cells (Figure S5G). In addition, T cells CD8+, T cells CD4+ memory activated, T cells
CD4+ memory resting, and T cells regulatory had higher expression in the high-TMB group
compared to the low-TMB group (Figure S5F, p < 0.05), suggesting that TMB may have an
effect on the immune response.
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Figure 5. Relationship between the tumor mutational burden (TMB) and the risk model. (A) Rela-
tionship between TMB and risk score. TMB was negatively associated with risk score. (R = −0.13,
p < 0.05). (B) The result showed that patients in high-risk group had lower TMB levels. p < 0.05
(C) The K-M analysis presents the difference in overall survival between the low- and high-TMB
groups. In addition, patients with high TMB had a better prognosis, p < 0.05. (D) The waterfall plot
shows the mutation information of the top 20 genes in each UCEC sample.
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3.6. Immune Infiltration Associated with the LMRG-FAG-Based Signature

Recent studies have shown that lipid metabolism and ferroptosis are important com-
ponents of the tumor microenvironment and are strongly associated with tumor immune
activities [32–35]. We first used ESTIMATE to determine the relationship of tumor immune
infiltration between the two risk groups. The stromal, immune score, and ESTIMATE score
were significantly downregulated in the high-risk group (Figure 6A–C, Wilcoxon p < 0.05).
Then, the CIBERSORT algorithm was applied to detect the composition of the 22 immune
cells in UCEC patients (Figure S6A). A boxplot demonstrated that the difference in the
distribution of the 10 immune-infiltrating cells between the two risk groups was significant.
The naive B cells, memory B cells, resting CD4 memory T cells, regulatory T cells (Tregs),
and resting dendritic cells had low expression in the high-risk group compared to the low-
risk group. Meanwhile, the follicular helper T cells, monocytes, M1 macrophages, activated
dendritic cells, and M2 macrophages were significantly upregulated in the high-risk group
compared to the low-risk group (Figure 6D, p < 0.05). We also analyzed immune infiltration
using the EPIC, TIMER, xCELL, and quanTIseq databases, which fully confirmed the
six-gene prognostic risk signature to be closely related to immune activity (Figure S6B–E).
In addition, the TIMER database was utilized to assess the relationship between the six risk
genes and tumor-infiltrating immune cells. The results showed that only RSAD2 correlated
positively with B cells (cor = 0.1858, p = 0.0015); except for RSAD2, the other genes were
significantly associated with CD8+ T cells (Figure S7, p < 0.05).

3.7. Immunotherapy and Chemotherapy in Different Risk Groups

Recently, immune checkpoints have been identified as key targets of immunotherapy,
and immune checkpoint inhibitors (ICIs) are regarded as an effective therapeutic strategy
for patients with advanced disease [36,37]. Therefore, we identified potential relationships
between the expression of immune checkpoint molecules and our risk model. The results
showed that IDO1 and LAG3 expression was significantly increased in the high-risk group
compared with the low-risk group, while the expression of CTLA4, GZMA and PDCD1 was
obviously decreased in the high-risk group compared with the low-risk group (Figure 6E,
p < 0.05). Then, we conducted immunophenoscore (IPS) analysis to predict immunotherapy
response. As shown in Figure 6F, low-risk patients were more sensitive to anti-PD-1 therapy
(p < 0.05), suggesting that immunotherapy of blocking CTLA-4 and PDCD1 may be more
beneficial for patients in the low-risk group. Since chemotherapy is the main treatment
for advanced and recurrent UCEC, we evaluated the response of chemotherapeutics to
UCEC patients using the pRRophetic algorithm based on our signature and found that
the estimated IC50 of typical chemotherapy drugs (cisplatin, paclitaxel, doxorubicin, and
etoposide, etc.) were significantly higher in the low-risk group (Figure 6G, p < 0.05). For
the other 40 chemotherapy and small molecule drugs, such as lenalidomide, gefitinib,
AMG.706, and JNK inhibitor VIII, patients in the high-risk group were identified as being
more sensitive (Figure S8, p < 0.05). Thus, we indicated that patients with low risk scores
were more resistant to chemotherapy than those with high risk scores, but they were more
sensitive to anti-PD-1 therapy. In addition, patients in the high-risk group were better
suited for chemotherapy. These results may have important implications for individualized
immunotherapy in patients with advanced UCEC.

3.8. In Vitro Function of the Risk Gene PSAT1 in UCEC Cells

To further validate the ability of risk signatures to predict prognosis, we investigated
protein expression of the six risk genes between normal and UCEC tissues with the CPTAC
and HPA (Human Protein Atlas) databases (Figure S9A,B, p < 0.05), and the results corre-
sponded with previous analysis. Combined with prognostic analysis and literature searches,
we selected PSAT1 for further in vitro functional assays. We identified the mRNA and pro-
tein expression of PSAT1 in four UCEC cell lines (Ishikawa, HEC-1A, HEC-1B, and ECC1),
and Ishikawa and HEC-1B cells were selected for subsequent studies (Figure 7A,B). Next,
we knocked down PSAT1 with siRNA, and the efficiency was verified by qPCR (Figure 7C,
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p < 0.05) and Western blot analysis (Figure 7D). CCK-8 and colony formation assays showed
that knockdown of PSAT1 significantly suppressed the proliferation of Ishikawa and HEC-1B
cells (Figure 7E,F, p < 0.05). In addition, the migration and invasion of the two cell lines
were also apparently inhibited after PSAT1 knockdown, as determined by transwell assays
(Figure 7G). These results demonstrate that the risk gene PSAT1 significantly promotes pro-
gression of UCEC and may affect the prognosis of UCEC patients.
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Figure 6. Immune landscape associated with the LMRG- and FAG-based signature. (A–C) Differences
in stromal score, immune score, and ESTIMATE score between the high- and low-risk groups. (Wilcoxon,
p < 0.05). (D) The difference in 22 immune infiltrating cells in the TCGA-UCEC samples between the
high- and low-risk groups was analyzed by the Wilcoxon test. (E) The connection between immune
checkpoint molecules (CTLA4, GZMA, IDO1, LAG3, and PDCD1) and risk scores. (F) Prediction of
immunotherapy response to anti-PD-1 and anti-CTLA4 in patients in different risk groups. (G) Estimated
IC50 values of four typical immunotherapy drugs (cisplatin, paclitaxel, doxorubicin, and etoposide)
between the low- and high-risk groups. * p < 0.05, ** p < 0.01, and *** p < 0.001.
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Figure 7. The risk gene PSAT1 promotes UCEC cells’ proliferation, migration, and invasion.
(A,B) mRNA and protein levels of PSAT1 were measured by qPCR and Western blotting in four
UCEC cell lines. (C,D) The efficiency of the knockdown of PSAT1 in Ishikawa and HEC-1B cells were
measured by qPCR and Western blotting. (E,F) CCK-8 and colony formation assays showed that the
proliferation ability of UCEC cells was decreased after PSAT1 knockdown. (G) The transwell assay
showed that the migration and invasion capacities of UCEC cell lines were inhibited after PSAT1
knockdown. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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4. Discussion

UCEC is one of the most lethal gynecological malignancies. Although many studies
over the past decades have sought to improve treatment efficacy, patients with advanced
and recurrent disease still have poor prognosis [38]. With the rise and application of
immunotherapy, it is insufficient to estimate the prognosis of UCEC patients based on
traditional clinicopathological stage [39]. Therefore, our study included the tumor immune
microenvironment and immunotherapy in UCEC based on both lipid metabolism and
ferroptosis to select more effective prognostic targets and guide individualized treatment
of patients.

Previous studies have established prognostic models of lipid metabolism or ferropto-
sis in UCEC [11,15–17]. However, they only took a single influencing factor into account,
and the complex tumor microenvironment was not considered. In our study, we com-
prehensively considered the interrelationship between lipid metabolism and ferroptosis,
based on which a prognostic model of six genes was constructed. We deeply explored
the relationship between the model risk score and the tumor immune microenvironment.
We found that infiltration of B cells, T cells, and NK cells and expression of the immune
checkpoints (CTLA4, GZMA, and PDCD1), as well as sensitivity and chemotherapy resis-
tance to anti-PD-1 treatment in UCEC patients were closely related to the risk scores of the
prognostic model. Moreover, in vitro experiments demonstrated that one of the potential
targets, PSAT1, promoted the proliferation, migration, and invasion of UCEC cells. Our
experiments provide new ideas and a basis for individualized immunotherapy for UCEC
patients and provide a potential target for UCEC therapy.

In the present study, we obtained genes associated with both lipid metabolism and
ferroptosis by consensus clustering analysis. After LASSO Cox regression, we constructed
a prognostic signature containing six risk genes (CDKN1A, ESR1, PGR, CDKN2A, PSAT1,
and RSAD2) based on LMG-FAGs. K-M survival analysis, ROC curves, a nomogram, and
calibration identified that the signature had high predictive ability. Estrogen receptor 1
(ESR1) and a progesterone receptor (PGR) were reported to participate in lipid metabolism
by encoding estrogen or steroid receptors to promote tumor progression [40–42]. Cyclin-
dependent kinase inhibitors 1A and 2A (CDKN1A and CDKN2A) have been identified as
ferroptosis-related genes in recent studies and can be regarded as biomarkers that influence
the tumor microenvironment [43–45]. Radical s-adenosyl methionine domain containing
2 (RSAD2) is an interferon-stimulated gene that exerts antiviral effects by dysregulating
cellular lipid metabolism [46,47]. Phosphoserine aminotransferase 1 (PSAT1) has been
reported to affect the progression of various cancers by participating in lipid metabolism
processes [48–50]. In conclusion, the six-gene prognostic model showed a significant
correlation with lipid metabolism or ferroptosis. In our study, these six genes were used
for risk scoring, and each UCEC patient was categorized into two risk groups according to
the risk score. We then explored the pathological features of the risk signature, with the
high-risk group being related to older age and higher grade and stage. We also found that
knockdown of PSAT1 inhibited the proliferation, migration, and invasion of UCEC cells,
enhancing the reliability of our model.

Subsequently, we comprehensively analyzed the impact of the risk signature on UCEC.
A total of 276 genes were identified to be closely related to the risk score. GO, KEGG,
and GSVA analyses based on the signature demonstrated that pathways associated with
lipid metabolism and ferroptosis were significantly enriched, which also confirmed the
accuracy of our signature. TMB is reported to correlate highly with tumor progression; for
example, gastrointestinal tumor patients with low TMB have lower objective response rates
and shorter progression-free survival [51], and high TMB is a poor prognostic factor for
non-small cell lung cancer [52]. We found that TMB levels had a negative relationship with
the LMRG-FAG risk model, which means that patients with low risk and high a mutational
burden have a better prognosis in UCEC.

Because surgery and chemoradiotherapy have limited effects in patients with ad-
vanced and recurrent UCEC and traditional pathological staging has an insufficient ability
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to estimate prognosis, we focused on the relationship of the LMRG-FAG-based risk model
with immunotherapy. Stromal, immune, and ESTIMATE scores were significantly down-
regulated in the high-risk group, indicating that lipid metabolism and ferroptosis are
significantly associated with the immune status of UCEC. CIBERSORT algorithm analysis
showed that the distribution of 10 immune cells varied between the high- and low-risk
groups, with antitumor cells (B cells, T cell CD8, and monocytes, etc.) present at higher
abundance in the low-risk group. According to the results, we suggest that the risk score is
associated with immune infiltration and immune status in UCEC.

Adverse T cell regulatory pathways tend to be overactive when cancer occurs. CTLA-4
inhibits the immune response at the early stage of T cell induction, and PDCD1 prevents T
cell function in peripheral tissues in the later stages [53,54]. Recently, immune checkpoint
blockade, one of the major immunotherapy methods, has proven to be an effective strategy
for enhancing the effector activity and clinical impact of anti-tumor T cells [55]. Among
the ICIs, blocking CTLA-4 and PDCD1 are the two most eminent approaches. CTLA-4
and PDCD1 blockade could induce tumor immunity by improving effector T cell activity
or consuming Treg [56]. In 2011, Ipilimumab, a CTLA-4 inhibitor, was approved for
melanoma [57]. In 2017, the PDCD1 inhibitor pembrolizumab was approved for UCEC
patients with microsatellite instability, and half of the patients benefited from it [58]. Since
the predictive value of immune checkpoints has been demonstrated in a variety of human
malignancies, we then explored immune checkpoint expression between the two risk
groups to guide individualized immunotherapy for UCEC patients. The expression of
CTLA4, GZMA and PDCD1 was significantly upregulated in patients with low risk scores,
and IDO1 and LAG3 were increased in the high-risk group. Therefore, we indicated
that specially blocking CTLA-4 and PDCD1 immunotherapy would be more effective for
patients in the low-risk group. Meanwhile, we detected the difference in sensitivity to
PD-1 and CTLA-4 inhibitors, and the results indicated that low-risk patients were more
sensitive to anti-PD-1 therapy, meaning that immunotarget therapy was more effective in
low-risk patients. Accordingly, our risk signature has a certain guiding role in the anti-PD-1
immunotherapy of UCEC patients. Interestingly, high-risk patients were more sensitive
to traditional chemotherapeutic agents and small molecule inhibitors such as cisplatin,
paclitaxel, AMG.706, and ABT.888. Hence, patients in the high-risk group were more
likely to benefit from chemotherapy and our signature can be used to guide personalized
treatment of UCEC patients.

However, it is undeniable that our study also has some limitations. First, the study
data were obtained from only TCGA, and we did not verify the accuracy of our model with
more cohorts. Second, immunotherapy and chemosensitivity analyses were only derived
from the transcriptome, and we still need to obtain more prospective experimental data to
support the findings. Finally, as a potential therapeutic target, the molecular mechanism
underlying the risk-related gene PSTA1 needs to be further clarified.

5. Conclusions

Consequently, we constructed a risk prognostic model based on both lipid metabolism
and ferroptosis to deeply analyze the relationship between lipid metabolism, ferroptosis
and gene mutation, immune infiltration, immunotherapy, and chemotherapy in UCEC
patients and provided potential biomolecules and a preliminary basis for individualized
treatment of patients.
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