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Received: 31 January 2023

Revised: 17 February 2023

Accepted: 21 February 2023

Published: 23 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Systematic Review

MRI Radiomics and Predictive Models in Assessing Ischemic
Stroke Outcome—A Systematic Review
Hanna Maria Dragos, 1,2,3, Adina Stan 1,2,3,* , Roxana Pintican 4 , Diana Feier 4, Andrei Lebovici 4 ,
Paul-S, tefan Panaitescu 5, Constantin Dina 6, Stefan Strilciuc 1,2 and Dafin F. Muresanu 1,2,3

1 Department of Neurosciences, Iuliu Hat,ieganu University of Medicine and Pharmacy, No. 8 Victor Babes, Street,
400012 Cluj-Napoca, Romania

2 RoNeuro Institute for Neurological Research and Diagnostic, No. 37 Mircea Eliade Street,
400364 Cluj-Napoca, Romania

3 Neurology Department, Emergency County Hospital, No. 43 Victor Babes Street,
400347 Cluj-Napoca, Romania
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Abstract: Stroke is a leading cause of disability and mortality, resulting in substantial socio-economic
burden for healthcare systems. With advances in artificial intelligence, visual image information can
be processed into numerous quantitative features in an objective, repeatable and high-throughput
fashion, in a process known as radiomics analysis (RA). Recently, investigators have attempted to
apply RA to stroke neuroimaging in the hope of promoting personalized precision medicine. This
review aimed to evaluate the role of RA as an adjuvant tool in the prognosis of disability after stroke.
We conducted a systematic review following the PRISMA guidelines, searching PubMed and Embase
using the keywords: ‘magnetic resonance imaging (MRI)’, ‘radiomics’, and ‘stroke’. The PROBAST
tool was used to assess the risk of bias. Radiomics quality score (RQS) was also applied to evaluate
the methodological quality of radiomics studies. Of the 150 abstracts returned by electronic literature
research, 6 studies fulfilled the inclusion criteria. Five studies evaluated predictive value for different
predictive models (PMs). In all studies, the combined PMs consisting of clinical and radiomics
features have achieved the best predictive performance compared to PMs based only on clinical or
radiomics features, the results varying from an area under the ROC curve (AUC) of 0.80 (95% CI,
0.75–0.86) to an AUC of 0.92 (95% CI, 0.87–0.97). The median RQS of the included studies was 15,
reflecting a moderate methodological quality. Assessing the risk of bias using PROBAST, potential
high risk of bias in participants selection was identified. Our findings suggest that combined models
integrating both clinical and advanced imaging variables seem to better predict the patients’ disability
outcome group (favorable outcome: modified Rankin scale (mRS) ≤ 2 and unfavorable outcome:
mRS > 2) at three and six months after stroke. Although radiomics studies’ findings are significant in
research field, these results should be validated in multiple clinical settings in order to help clinicians
to provide individual patients with optimal tailor-made treatment.

Keywords: radiomics; ischemic stroke; predictive model

1. Introduction

Stroke is a leading cause of mortality and disability, resulting in substantial socio-
economic costs for post-stroke care [1,2]. Although the mortality rates have declined over
the past two decades, the absolute number of incident stroke, disability-adjusted life-years
lost due to stroke, and stroke-related deaths is increasing [2].
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Predictive models (PMs), which integrate patient characteristics and care process to
estimate the probability of developing a particular event or future outcome have been
proven valuable in the primary prevention of cerebrovascular diseases [3]. PMs such as
Framingham Score [4], QRISK [5], Reynolds [6] and Euro-Score [7] have been used in
cardiovascular and cerebrovascular diseases to help health service planning and to sup-
port clinical decision making, diagnostic and therapeutic management in risk groups. A
systematic review [3] of 109 studies on clinical PMs for functional outcome in ischemic
stroke concluded that, in the thirty-five years of literature, the following clinical factors are
consistently identified as the most suitable predictor variables of functional outcome and
mortality: age, gender, stroke severity, stroke subtypes and comorbidities such as diabetes
and atrial fibrillation. Ntaios et al. [8] demonstrated that recently introduced prognostic
scores such as ASTRAL [9], DRAGON [10] and SEDAN [11] predict outcome of AIS pa-
tients with higher accuracy compared to clinical predictions made by physicians, providing
evidence that PMs may positively impact patient outcome. All three scores [8] incorporate
age, admission National Institute of Health Stroke Scale (NIHSS) and blood glucose level
as predicting variables, whereas DRAGON [10] and SEDAN [11] contain as predictive
feature hyperdense middle cerebral artery (MCA) sign or early infarct signs on computer
tomography (CT). During the past decade, advances in computational technologies, espe-
cially in machine learning, have placed medical imaging in an increasingly central role in
patient-specific management [12]. This progress makes it possible to convert subjective
visual interpretation into an objective assessment that is driven by image data [12].

Radiomics analysis (RA) has emerged in this context, being a method that extracts
undiscovered imaging features by converting routinely acquired images into higher di-
mensional data [13–16]. This process is motivated by the concept that digitally encrypted
images contain information related to the pathophysiology of certain diseases, and this
information can be exploited via quantitative image analysis [13]. Currently, in the ischemic
stroke field, the role of RA was explored in three domains: diagnosis of stroke lesion,
prediction of early outcome and long-term prognosis assessment [12]. The diagnostic role
of radiomics in stroke lesions was investigated using CT or magnetic resonance imaging
(MRI). Oliviera et al. [17] performed texture analysis (TA) on non-contrast CT images of
acute ischemic stroke (AIS) patients to distinguish healthy tissue from regions affected
by AIS and found that TA parameters were significantly different between patients and
controls, with the most discriminative feature being angular second moment. By using
MRI, Sikio et al. [18] assessed 30 patients with chronic right hemisphere stroke and found
that the ischemic region had lower homogeneity compared with non-affected side and
relatively high values of complexity and randomness. Ortiz-Ramon et al. [19] used mul-
timodal MRI data of different brain regions from 100 patients to investigate if RA could
distinguish between patients who had prior ischemic stroke and the stroke-free health
population. They showed that TA and wavelet transformation could identify the pres-
ence of previous stroke lesions with favorable discrimination (area under the ROC curve
(AUC) > 0.7) independently on what MRI sequence has been used or what brain region
has been affected [19]. Regarding early outcomes after AIS, Kassner et al. [20] investigated
if RA could predict hemorrhagic transformation in AIS patients treated with intravenous
thrombolysis and suggested that radiomics features could be a better predictor compared
to visual enhancement score in post-contrast T1-weighted MRI (AUC > 0.75 compared to
AUC < 0.6). Qiu et al. [21] conducted RA to predict early recanalization after proximal
occlusion in large vessels in 67 AIS patients treated with intravenous thrombolysis and sug-
gested that the combination of RA features from non-contrast CT and CT angiography was
more predictive of early recanalization with an AUC of 0.85 compared with conventional
thrombus imaging features such as length, volume or permeability. Regarding post-stroke
cognitive impairment, Betrouni et al. [22] showed that texture features of hippocampus
and entorhinal cortex at 72 h after AIS onset can predict the occurrence of cognitive im-
pairment. Their results were further confirmed in a rat model of middle cerebral artery
occlusion, with significant correlation being demonstrated between texture features and
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hippocampal neural density [22]. The increasing number of studies investigating RA and
machine learning algorithms applications in ischemic stroke with variable protocols and
design allows for data pooling.

This review aims to systematically evaluate the role of RA in acute ischemic stroke
neuroimaging and the potential applications in clinical practice. The primary objective
is to compare the results of AIS studies using RA for clinical outcome prediction. The
secondary objective is to assess the methodological quality of studies using radiomics
quality score (RQS).

2. Materials and Methods

The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analysis) [23]
statement was used for this systematic review (Supplementary Materials Table S1). The
protocol for this review is available in the OSF registry, https://osf.io/9dx6j/ accessed on
31 January 2023. Before a formal search was conducted, we used the keywords to perform
preliminary search stage in several preprint and peer-reviewed databases. The selection of
databases depends on the availability of data and the degree of overlap between databases.
Publications in English assessing MRI radiomics features in AIS patients published from
the earliest date available until our last search date of 31 December 2022 were searched on
two electronic databases (PubMed and Embase). The search terms consisted of MRI, ra-
diomics and stroke. The detailed search string is displayed in the Supplementary Materials
(Table S2). Two researchers assessed the eligibility of the articles through title and abstract
screening using the inclusion and exclusion criteria (Table 1). Any disagreements were
resolved by consensus. The full text of articles in which RA was applied on MRI images of
AIS patients for predictive purposes were obtained for further evaluation.

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Studies that investigated MRI radiomics
features in patients with AIS
Studies that assessed the clinical outcome
based on RA features in AIS patients

Unavailable data on RA and predictive
model performance
CT-, CTA- or US-based RA studies
Non-original investigations (reviews, editorials,
letters or opinions)

CT = computer tomograph, CTA = CT angiography, US = ultrasound.

Although CT seems to be the most commonly used technique for RA modeling [12],
several studies [24–26] have recently suggested that the majorities of radiomics features
are highly affected by image acquisition and reconstruction parameters and thus their
reproducibility could be affected. Moreover, a phantom study [27] showed that diverse CT
scanners made by different manufactures could cause variability in RA values. Thus, we
selected the studies which performed RA on MRI images.

Lohman et al. [16] proposed a list of recommendations that should be considered in
study investigating the value of radiomics in research or clinical practice, from preferred
methods for quality evaluation to radiomics workflow steps that should be reported. Thus,
we created a specific standardized data extraction form consisting of the following cate-
gories: image acquisition, image pre-processing, segmentation, feature extraction, feature
selection, model generation and validation, model testing, results, and clinical translation.
All of these categories are addressed within the radiomics quality score (RQS) [15,16], which
is a tool developed to assess the methodological quality of studies using radiomics [15,28].
Thus, we chose to use RQS to analyze the main radiomics steps among studies and to
present the extensive RA process for each study only in Supplementary Materials–Table S3.

The detailed RQS score is described in the Supplementary Materials–Table S4. Two
readers with previous experience in radiomics independently assigned an RQS score to
each article included in this systematic review. The reviewers extracted the data using a
predefined RQS form used in other systematic reviews on RA [28–30] according to RQS

https://osf.io/9dx6j/
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six domains [15]: protocol quality and reproducibility, feature reduction and validation,
clinical validation and utility, the performance index, high level of evidence, and open
science with open availability of source code and data. Any disagreement was resolved
by consensus. The total RQS score was calculated for each article and for each component
(score range, −8 to 36) and expressed as a median and interquartile range. For the six
domains in the RQS score, basic adherence was assigned.

The main goal of radiomics is to establish a practical and accurate model for pre-
dicting clinical outcomes [12]. A prediction model is defined as any combination of 2 or
more predictors (demographic, clinical, imaging or biological variables) for estimating
for an individual the probability of developing a particular outcome [31]. Therefore, we
extracted the studies’ data regarding the predictive models employed using the following
categories: model objective, clinical features, conventional imaging features, biological
features, radiomics features, validation methods, main results, and limits.

PROBAST [31,32] was designed for use in systematic review or prediction model
studies and consists of four domains (participants, predictors, outcome and analysis)
containing twenty signaling questions to facilitate risk of bias assessment. A graphical
summary presenting the percentage of studies rated by level of concern (low risk of
bias, high risk of bias, unclear risk of bias) was displayed. The data were reported in a
qualitative narrative synthesis based on the identified categories. The results’ risk of bias
and applicability were compared with existing literature. Unfortunately, the studies were
methodologically heterogeneous, and meta-analysis was not possible.

3. Results

In total, 150 articles were obtained, out of which 36 were duplicates. Of the remaining
114, 87 were rejected during title and abstract screening. Twenty-one articles were eligible
for full-text evaluation. Six articles fulfilled the pre-established eligibility criteria. The study
selection process is displayed in the PRISMA flow diagram [23] (Figure 1), whereas Table 2
contains details on study design, characteristics of study population, clinical and imaging
variables integrated in PMs and the performance of PMs for each study.
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Table 2. Characteristics of studies included in systematic review.

Study, Year Sample,
Age, Sex AIS Type Tx Onset-to-MRI

Time Outcome Criteria Clinical Factors MRI Markers MRI Seq RA Features Predictive Models AUC, 95% CI

Quan et al. [33], 2021 110, 62,
70.9% male

first AIS in MCA
territory, onset

≤72 h

ivT, MT:
12 p 26.5 ± 15.7

90 days unfavorable
outcome
mRS > 2

Age, gender,
admission

NIHSS

DWI-ASPECT
score, ODs FLAIR ADC 6, TA, wavelet

Clinical 0.79, 0.68–0.89

Clinical + MRI 0.78, 0.68–0.88

ADC radiomics 0.77, 0.62–0.83

FLAIR radiomics 0.73. 0.62–0.83

ADC + FLAIR
radiomics 0.81, 0.73–0.89

RA + Clinical + MRI 0.92, 0.87–0.97

Wang et al. [34], 2021 399, 67,
63.9% male NR NR

within 24 h
after

AIS onset

90 days outcome
mRS > 2

Age, 24-h NIHSS Hemorrhage DWI 11, TA

Clinical model 0.77, 0.71–0.84

Radiomics model 0.70, 0.64–0.77

Clinical + radiomics 0.80, 0.75–0.86

Zhou et al. [35], 2022 311, 58,
72.7% male

Pen artery: 43.1%,
cMCA: 28.6%, cACA:
5.5%, cPCA = 8.4%,
≥2 territories: 14.5%

NR
<24 h:

6.1%24–72 h:
93.9%

6-month good
outcome (mRS ≤ 2),

poor outcome
(mRS > 2)

Age, gender,
stroke history,
DM, b-mRS,

b-NIHSS

- DWI, ADC 7, first-order
statistics, TA

Clinical model 0.82, 0.77–0.87

Radiomics model 0.76, 0.70–0.82

Clinical + radiomics 0.86, 0.82–0.91

Zhang et al. [36], 2022 103, 65,
64% male

Unilateral anterior
circulation NR NR 90 days outcome

mRS > 2 Atrial fibrillation - ADC 7, TA, wavelet,
LGT

ADC 0.60, 049–0.71

tADC 0.83, 075–0.91

tADC + clinical 0.86, 079–0.93

Wang et al. [37], 2022 1003, 67,
67.9% m

Ant-circ: 68.5%, Post-circ:
28.5%, Both: 3% NR 72 h of AIS

onset
90 d outcome

1y AIS recurrence NR - DWI 100, TA,
wavelet

Radiomics model 0.77, 0.75–0.80

Clinical + radiomics 0.84, 0.82–0.87

Wang et al. [38], 2020 116, 64,
72% male NR NR NR

90 days outcome
mRS > 2, stroke

severity
- - FLAIR, ADC 15, first-order

statistics, TA

RA features were not predictive of mRS.
ADC-entropy and T2-FLAIR 0.75 quantile

predicted AIS severity (AUC = 0.7, p = 0.01).

Tx = treatment, MRI Seq = MRI sequences for feature selection, MCA = middle cerebral artery, ivT = intravenous thrombolysis, MT = mechanical thrombectomy, OD = orthogonal
diameters, TA = texture analysis, FLAIR = fluid-attenuated-inversion recovery, ADC = apparent diffusion coefficient, TA = texture analysis, tADC = texture analysis from ADC, Pen
artery = penetrating artery, cor-MCA = cortical branches of middle cerebral artery, cor-ACA = cortical branches of anterior cerebral artery, cor-PCA = cortical branches of posterior
cerebral artery, DM = diabetes mellitus, b-mRS = baseline mRS, b-NIHSS = baseline NIHSS, LGT = Laplacian of Gaussian transformation, NR = not reported.
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All studies [33–38] investigated the predictive value of radiomics features in as-
sessing AIS clinical outcome. Clinical outcome was evaluated at ninety days in five
studies [33,34,36–38], respectively, at six months in one study [35] using the modified
Rankin scale (mRS) and the patients were dichotomized into good outcome (mRS = 0, 1,
or 2) and poor outcome (mRS = 3, 4, or 5) groups. Additionally, one study [37] assessed
the role of radiomics-based models for predicting one-year ischemic stroke recurrence
confirmed on diffusion-weighted imaging (DWI).

Five studies [33–37] integrated separately clinical and radiomics features and then
combined these variables within PMs, tested its performance and validated into another
datasets. Additionally, two studies [33,34] used conventional MRI features such as infarct
volume, orthogonal diameters of ischemic lesion, DWI-Alberta Stroke Program Early CT
Score (ASPECTS) or Fazekas score together with clinical and RA parameters. Among the
clinical factors known to be independent predictors for AIS outcome, the most used in the
PMs were age, gender, admission NIHSS, 24-h NIHSS, prior documented stroke, atrial
fibrillation, hypertension or diabetes [33–36]. These studies also conducted preliminary
univariate and multivariate analysis to select the clinical features that were significantly
associated with unfavorable outcome. Additionally, an interclass-correlation coefficient
with a cut-off of 0.75 was used to evaluate the consistency between the researchers for esti-
mating infarct volume and admission NIHSS [34] and to assess the reliability of extracted
RA features [33–37]. The most used MRI sequences for feature extraction were apparent
diffusion coefficient (ADC) [33,35,36,38] and DWI [34,35,37]. In all studies, the region of
interest was the ischemic lesion which underwent manually segmentation performed by at
least two experienced neuroradiologists [33–36,38]. Only one study [37] applied automatic
segmentation. The number of radiomics features extracted varied from 15 [38] to 1310 fea-
tures [35], but after applying feature reduction methods, the number decreased at 6 [33] to
100 [37], respectively. Most of the studies [33–38] used first-order statistics and second-order
statistics (texture analysis), but three studies [33,36,37] applied high-order statistics, such
as wavelet or Laplacian of Gaussian transformation, respectively. Three studies [34,35,37]
were from single center and built validation cohorts from the same institute, whereas only
one study [33] applied the PM to datasets from two different institutes. The description of
radiomics workflow for each study is depicted in Supplementary Materials–Table S3.

Five studies [33–37] evaluated predictive performance for different PMs. Three stud-
ies [33–35] initially investigated models based only on clinical factors and the most perfor-
mant PM [35] consisted of clinical variables such as age, gender, stroke history, diabetes,
baseline mRS and NIHSS, achieving an AUC of 0.82 (95% CI, 0.77–0.87). Additionally, one
study [33] built a PM based on clinical and conventional MRI features such as age, gender,
admission NIHSS, DWI-ASPECT score and orthogonal diameters of infarct lesion and
obtained an AUC of 0.78 (95% CI, 0.68–0.88). One study [33] compared radiomics-based
PMs depending on the MRI sequence used for feature extraction and showed that ADC
radiomics-based PM seems to achieve a better predictive performance compared to FLAIR
radiomics-based PM (AUC = 0.77, 95% CI 0.62–0.83 versus AUC = 0.73. 0.62–0.83). More-
over, when ADC and FLAIR radiomics features were added in the same PM, the predictive
value was higher (0.81, 95% CI 0.73–0.89) [33]. In all studies [33–37], the combined PMs
consisting of clinical and imaging features have achieved the best predictive performance
compared to PMs based only on clinical or only on radiomics features, with the results vary-
ing from an AUC of 0.80 (95% CI, 0.75–0.86) [34] to an AUC of 0.92 (95% CI, 0.87–0.97) [33].
The best PM [33] was validated in external datasets from two different institutes, obtaining
an AUC of 0.864 (95% CI, 0.773–0.954) in the validation cohort.

Two studies [34,35] developed a radiomics- and clinical-based nomogram, which is
an easy-to-use scoring model with the ability to assess the risk of unfavorable outcome
in individual patients [39]. Wang et al. [34] included in their nomogram clinical variables
such as age, 24-h NIHSS or the presence of hemorrhagic transformation and 11 radiomics
features, reaching an AUC of 0.80 (95% CI 0.75–0.86) in the training cohort and an AUC of
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0.73 (95% CI 0.64–0.82) in the validation set. On the other hand, Zhou et al. [35] created a
nomogram with higher performance (AUC = 0.868, 95% CI 0.825–0.910 in the training set
and AUC = 0.890, 95% CI 0.844–0.936 in the validation set), including the following features:
age, gender, prior stroke, baseline NIHSS, baseline mRS, diabetes and 7 radiomics features.
The previous study of Wang et al. [38] did not find a predictive value of texture features
in assessing the stroke outcome but demonstrated that ADC-entropy and T2-FLAIR 0.75
quantile have predicted AIS severity with an AUC = 0.7 (p = 0.01).

Regarding the methodological quality of the six radiomics studies, the median RQS
score was 15 (interquartile range, 4), which represented 36.11% of the ideal score of 36 [15].
The adherence rate of the RQS of all included studies is depicted in Figure 2. The RQS
assessment for each study is described in Supplementary Materials–Table S5. The lowest
score was 6 and the highest score was 16. The RQS of selected studies was lowest in
the following domains: high level of evidence, open science, and model performance
index (Figure 2), meaning that the most of studies did not validate the results in further
prospective cohorts, did not perform a cost-effectiveness analysis of the model, did not
make the code or radiomics data publicly available and did not use calibration and cut-off
analysis in order to promote model reproducibility. Meanwhile, studies [33–35,37] with
higher RQS earned additional points by using multiple segmentations or external validation
based on datasets from distinct institutes.

Diagnostics 2023, 13, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 2. Adherence rate of the RQS of the included studies according to RQS key domains. 

 

 
Figure 3. Methodological quality of the studies included according to PROBAST tool for risk of bias 
and applicability concerns. 

4. Discussion 
Prognostic scores may not fit to all cohorts due to patients’ differences regarding ra-

cial or ethnic identity, background or comorbidities, hospital type or healthcare system, 
and acute stroke management [40]. Poststroke functional outcome is affected by a variety 

Figure 2. Adherence rate of the RQS of the included studies according to RQS key domains.

Regarding the risk of bias assessment, the PROBAST [32] tool was used. The overall
risk of bias based on the four domains of PROBAST depending on three levels of concern
(low, high or unclear risk of bias) is depicted in Figure 3. The PROBAST assessment for
each study is described in Supplementary Materials–Table S6. Both overall risk of bias
and applicability of concerns were low. Two studies presented high risk of bias regarding
participant selection, excluding a large number of patients from the initial cohorts due to
comorbid diseases that may affect their long-term stroke outcome. Unclear risk of bias due
to unavailable information regarding the predictors and outcome analysis was established
in the case of one study.
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and applicability concerns.

4. Discussion

Prognostic scores may not fit to all cohorts due to patients’ differences regarding
racial or ethnic identity, background or comorbidities, hospital type or healthcare system,
and acute stroke management [40]. Poststroke functional outcome is affected by a variety
of factors, such as age, gender, comorbid diseases, stroke severity, stroke subtypes, and
treatments before and after discharge [41–43]. Age and stroke severity are considered
significant factors [40], which is consistent across the majority of studies assessing predictive
scores or PMs, even those based on automatic algorithms [33–35].

The external validity of initial stroke prognostic scores is limited [40,44]. A recent
study [44] on 10,777 patients investigating eight stroke prognostic clinical scales confirmed
differences in the prognostic accuracy when they are applied to external datasets, suggesting
that even the best performing scale had a prognostic accuracy that may not be sufficient as
a basis for clinical decision-making.

In the era of large amounts of data and artificial intelligence (AI), automated systems
may be helpful in predicting outcomes in patients with stroke and providing individual
patients with optimal tailor-made treatment [40]. The current applications of AI in AIS field
seem to be efficient in numerous parts of the diagnostic and management pathways, in-
cluding detection, triage, and outcome prediction [45]. Computer-aided detection schemes
based on texture features from areas known to show early AIS signs such as insula ribbon
and lentiform nucleus were suggested to be a promising algorithm for lacunar AIS diagno-
sis [46]. As lacunar AIS is relatively difficult to diagnose on CT within the first hours after
onset [47], early detection is crucial for establishing the best treatment, and there is a need
for a more efficient method to improve CT detection rate. Automated color maps (e.g., Col-
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orViz) have proved to be rapid and accurate post-processing tools that permit maintenance
of the temporal resolution of CT angiography, summing in a single image the three different
cerebral vascular phases using a time variant color map [48,49]. As the definition of the
collateral circulation status is essential in selecting patients for mechanical thrombectomy,
the possibility of using an immediate scoring scale for CT angiography could make the diag-
nostic assessment faster and easier. A recent systematic review [50] showed that AI-based
comprehensive platforms (e.g., Brainomix, iSchemaView, Viz.ai) could automatically detect
the presence of large vessel occlusion (LVO), being a catalyst for timely LVO detection and
an aid to acute management decision-making. Moreover, automated clot composition anal-
ysis systems using machine learning seem to provide information on the cause of cerebral
artery occlusion and may further guide acute revascularization and secondary preven-
tion. For example, a recent study [51] assessed the accuracy of a such algorithm based on
blooming effect on pre-treatment gradient echo images (GRE) from 67 patients with middle
cerebral artery stroke and identified atrial fibrillation with high accuracy (AUC > 0.87).
Blooming artifacts caused by paramagnetic materials in GRE images have been associated
with cardioembolic stroke [52,53], cardioembolic clots having significant higher proportion
of red blood cells compared with noncardiac clots and, oxyhemoglobin in erythrocytes
goes through sequential stages of degradation into deoxyhemoglobin and hemosiderin,
which are paramagnetic materials [54,55]. Conventional MRI parameters extracted from
DWI and fluid-attenuated-inversion recovery (FLAIR) sequences had been proven to be
significant predictor of stroke outcome [56–59]. Recent evidence suggest that DWI lesion
may not be entirely composed of irreversibly damaged core. A systematic review [60]
on tissue outcome of DWI hyperintense stroke lesions suggested that hyperintense DWI
lesions are rather heterogenous regions comprising various biochemical and metabolic
environments, which may be variably amenable to salvage rather than as homogenous
regions of ischemic core tissue. Guadagno et al. [61] investigated oxygen metabolism in
DWI lesions and revealed spatial variability in the cerebral metabolic rate of oxygen with
individual DWI lesions. Additionally, significant variability of oxygen extraction fraction
was demonstrated within single DWI lesions, ranging from areas with decreased flow
relative to oxygen demand (‘misery perfusion’) to areas with increased flow relative to
demand (‘absolute luxury perfusion’) [60].

In this context, RA captures subtle variation within medical images and could be
used to analyze the heterogeneity of lesions for a better diagnostic or predictive purposes.
Regarding the heterogeneity of AIS lesions, radiomics seems to be superior to conventional
imaging visual analysis [62]. Texture features allow quantification of the heterogeneity
within a lesion by considering both pixel intensity and statistical interrelationship in space
(distance or orientation) [12,63–65]. Due to their objective and quantitative values, recently,
radiomics features were integrated in stroke outcome PMs and compared to clinical based
PMs or prognostic scores.

The findings of our systematic review confirmed the superiority of a combined model,
suggesting that clinical and imaging factors may have an intercrossing and synergistic
effect on each other, resulting in a more satisfactory outcome PM. After combining clinical
and radiomics features in their PMs, five [33,35–37,39] of the six included studies demon-
strated better predictive values compared to models based only on clinical or imaging
variables. Therefore, two studies [34,35] performed nomograms, integrating the clinical
and radiomics features that have achieved the best results in PMs. Interestingly, the most
efficient nomogram [35] resulted after combing more clinical factors such as age, gender,
stroke history, diabetes, baseline mRS and NIHSS and less radiomics variables (7 texture
features in Zhou et al. study [35] versus 11 texture features in Wang et al. study [34]).
This could be explained by the fact that Zhou et al. [35] used multiple feature reduction
methods, beginning with 1310 extracted features of different types and applying variable
statistics tools (from Spearmen’s correlation to minimum redundancy maximum relevance
and least absolute shrinkage and selection operator) to reduce the redundancy of features
and to select the best predictive ones. Moreover, among the radiomics features selected,
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exponential gray level non-uniformity and wavelet feature cluster prominence were the
best predictors [35]. Both features quantify the similarity of gray-level intensity values
in the image and describe the heterogeneity of the infarcts. Thus, higher values indicate
higher signal heterogeneity of the infarcted lesion, the possibility of lesion progression and
worse outcomes [66]. These findings are incongruent with data from Boss et al. study [67]
which suggested that visually assessed DWI lesion homogeneity could be associated with
significantly higher mRS at three months. Thus, quantitative image analysis via radiomics
may offer a better description of lesions’ subtle abnormalities or heterogeneity, adding
valuable information to conventional imaging markers.

Wang et al. [37] investigated a clinical and radiomics-based model to predict one-
year stroke recurrence and obtained an AUC of 0.84 (95% CI, 0.82–0.87) and the mean
interval time between the first stroke and stroke recurrence was 167.11 ± 100.08 days. The
stroke subtypes were significantly different between recurrence and non-recurrence groups
(p = 0.003) [37]. Of the 544 large artery atherosclerosis patients, 10.3% of patients repeated
the stroke within the first year, and these patients were older than the non-occurrence
stroke group (p = 0.016). These findings are inconsistent with previous studies [68] that
showed a higher risk of recurrent stroke in large artery atherosclerosis despite aggressive
medical treatment. In contrast, 11.3% of atrial fibrillation patients had a stroke recurrence
within a year, and these patients were younger than those who did not repeat stroke
(p = 0.036) [37]. The lowest recurrence rate was in the group of patients with small vessel
disease, which is consistent with previous data [69].

Incongruent with the other five studies [33–37], the Wang et al. [38] study failed
to achieve predictive values for texture features derived from T2-FLAIR and ADC im-
ages. This could be explained by the fact that the other studies [33–37] built extensive
PMs based on multiple clinical factors, conventional imaging markers and numerous ra-
diomics features, whereas Wang et al. [38] investigated in this study few radiomics features.
However, Wang et al. [38] found that ADC-entropy and T2-FLAIR 0.75 quantile were
associated with baseline NIHSS (AUC = 0.7, p = 0.01). Entropy measures the randomness
in the gray level intensities of an image and, visually, an image with higher entropy will
appear heterogeneous [70].

Assessing the risk of bias using the PROBAST [32] tool, potential high risk of bias
in participants selectin in two studies was identified. Wang et al. [37] excluded a large
number of patients (577) from the initial sample due to cerebral hemorrhage and previous
neurological or psychiatric disorders. Quan et al. [33] also excluded 154 patients due
to bilateral cerebral infarction, multiple territories strokes and neurological dysfunction
left by previous AIS or other neurological diseases. All of these factors are associated
with unfavorable prognosis in AIS patients [71,72], thus, participants selection could
influence the findings of the studies. Moreover, only patients with MCA stroke were
included in Quan et al. [33] study, thus, their findings cannot be generalized to strokes in
other territories. Moreover, the findings of Quan et al. [33] and Wang et al. [37] should
be interpreted with caution because the datasets from these studies were imbalanced
(number of cases with favorable outcome was much higher compared to number of cases
with unfavorable outcome), and oversampling methods were applied such as Synthetic
Minority Oversampling Technique (SMOTE) [73] to increase the number of cases in the
unfavorable outcome group from both training and validation cohorts. Regarding the
participant selection process, it is important to notice that in the population from three
studies [33,34,38] prevailed the male participants with at least 60% proportion. Previous
research suggested that women are more likely to develop a poor long-term outcome after
AIS, having a two-to-three-fold risk of poor outcome compared to men, as women develop
AIS at an older age when they have multiple comorbid diseases [74,75].

The RQS is a recently introduced score whose aim is to assess the methodological
quality of radiomics-based studies [15] and does not consider differences in study objectives.
It could help identifying high-quality results among the large number of publications in
this field, as well as issues limiting their value and applicability [28]. The median RQS of
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the studies included in our systematic review is 15, reflecting a moderate methodological
quality. This finding is consistent with previous systematic reviews performing quality
assessment with RQS tool in other fields of neuroradiology [28–30]. However, the RQS
score was relatively recently introduced and has been applied in a limited number of
occasions [15,76–78]. In our review, all studies collected 0 points on the following items:
imaging at multiple time points, performing a prospective study to apply the model and
cost-effectiveness analysis. Therefore, temporal variability was never tested, also due to the
retrospective design of studies.

Our study has some limitations that should be acknowledged. The number of in-
cluded studies was low, probably due to strict inclusion criteria and pre-established study
objectives to assess the role of radiomics in ischemic stroke outcome prediction. Study het-
erogeneity was moderate and meta-analysis was not possible, but this is in line with other
systematic reviews investigating RA in the field of neuroradiology [28–30,79,80]. However,
to our knowledge, this is the first systematic review evaluating the role of radiomics in
stroke outcome assessment and applying the quality radiomics score in stroke studies.

AI technologies will herald fundamental changes in healthcare delivery [81], providing
patients with optimal tailor-made treatment. Radiomics may prove to be one of the most
impactful AI applications by bridging the gap between medical imaging and personalized
medicine [15]. Radiomics-based tools have the potential to change clinical practice in AIS
management by exploring digitally encrypted imaging information related to cerebrovascu-
lar pathophysiology. Radiomics integrated in AI algorithms could improve stroke diagnosis
in acute phase (e.g., diagnosis of acute lacunar stroke on CT, prediction of hemorrhagic
transformation) [46] or in chronic phase (e.g., MRI radiomics features may identify prior
or undocumented stroke lesions) [19], guiding the secondary prevention strategies. Ma-
chine learning algorithms based on radiomics features also seem to be promising tools for
assessing collateral circulation status [49] or clot composition [51], providing important
data that could affect the decision for mechanical recanalization techniques. Developing
stroke outcome predictive scores based on clinical and quantitative imaging information
and improving them in clinical settings, long-term post-stroke disability could be more
accurately assessed, helping physicians to create personalized rehabilitation strategies.
However, to create tools with clinical utility, prospective trials that validate radiomics
signatures on external datasets are required [81]. There is also a need for standardization of
RA in line with recent recommendations [16]. Moreover, identification of radiomics features
that remain robust, especially against differences in image acquisition and reconstruction
from different scanners, needs further research.

5. Conclusions

Our findings suggest that combined models integrating both clinical and advanced
imaging variables seem to better predict the patients’ disability outcome group (favorable
outcome: mRS ≤ 2 and unfavorable outcome: mRS > 2) at three and six months after stroke
onset. Radiomics may be successfully used in AIS assessment, treatment selection and
long-term prognosis, providing patients with optimal tailor-made management. In our
review, moderate methodological quality of AIS radiomics studies was identified. External
validity, prospective studies, cost-effectiveness analysis and publicly available RA protocols
are needed to increase methodological quality in stroke radiomics studies. Although their
predictive values are significant in the research field, radiomics-based PMs should be
validated in multiple clinical settings to become relevant prognosis tools in daily clinical
practice and to promote personalized precision medicine.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics13050857/s1, Table S1: PRISMA checklist; Table S2:
Search strategies; Table S3: Radiomics workflow main steps of included studies; Table S4: RQS
domains and items; Table S5: RQS scores for all included studies; Table S6: PROBAST scores for all
included studies.
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