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Abstract: In recent years, there has been an increasing interest in using nanoparticles in the medical
sciences. Today, metal nanoparticles have many applications in medicine for tumor visualization,
drug delivery, and early diagnosis, with different modalities such as X-ray imaging, computed
tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), etc.,
and treatment with radiation. This paper reviews recent findings of recent metal nanotheranostics in
medical imaging and therapy. The study offers some critical insights into using different types of
metal nanoparticles in medicine for cancer detection and treatment purposes. The data of this review
study were gathered from multiple scientific citation websites such as Google Scholar, PubMed,
Scopus, and Web of Science up through the end of January 2023. In the literature, many metal
nanoparticles are used for medical applications. However, due to their high abundance, low price,
and high performance for visualization and treatment, nanoparticles such as gold, bismuth, tungsten,
tantalum, ytterbium, gadolinium, silver, iron, platinum, and lead have been investigated in this
review study. This paper has highlighted the importance of gold, gadolinium, and iron-based metal
nanoparticles in different forms for tumor visualization and treatment in medical applications due to
their ease of functionalization, low toxicity, and superior biocompatibility.
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1. Introduction

Nanoparticles in medicine have applications in developing novel therapeutic and
diagnostic modalities for cancer treatment and detection [1]. In recent years, there has
been growing interest in using nanoparticles in medicine, especially in medical imaging
as a contrast agent, in radiation therapy as carriers for drug and gene delivery, and as
a radio-sensitizer [2–4].

Radiation therapy plays an essential role in cancer treatment. A primary concern
of radiation therapy is to maximize tumor damage and minimize healthy tissue damage.
Recent developments in the field of nanoparticles have led to a renewed interest in using
metal nanoparticles in cancer treatment as radio-sensitizers [4]. It has been suggested [5]
that for extended periods of circulate time of NPs as a detoxification device through the
blood, we can use NPs coated with red blood cell (RBC) membranes.

Medical imaging is an increasingly important area in the medical sciences. In recent
years, there has been an increasing interest in developing contrast agents for different
imaging modalities such as computed tomography (CT), magnetic resonance imaging
(MRI), radiography, positron emission tomography (PET), single photon emission com-
puted tomography (SPECT), etc. One of the most significant current discussions in medical
imaging is metal nanoparticle usage as a contrast agent for image contrast enhancement [6].
Many attempts have been made [7–12] to use an NP near-infrared (NIR) fluorescent dye as
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a contrast agent for molecular imaging. It has been suggested [7] that using near-infrared
(NIR) fluorescent dye, IR-26, as a contrast agent preferentially accumulates in the mitochon-
dria of acute myeloid leukemia (AML) cells, and this seems to be an innovative approach
for AML targeting, detection, and therapy.

Many metal and metallic elements can form nanostructures that we can use in cancer
detection and treatment. Metal nanoparticles are a major area of interest in nanoparticle
usage in medicine due to their unique physical and chemical properties, such as magnetic,
optical, thermal, catalytic, and electrical properties compared with other NPs [4,6]. There
is a considerable amount of literature on using different metal nanoparticles such as gold,
bismuth, tungsten, tantalum, ytterbium, gadolinium, silver, iron, platinum, lead, etc.,
with different forms such as a solid, porous, antibody, folic-acid functionalized, core-
shell, and coated, and these were used in various imaging modalities such as magnetic
resonance imaging (MRI), computed tomography (CT), radiology, nuclear medicine, and
radiation therapy with a different mode for cancer detection and treatment [7–9]. Although
extensive research has been carried out on developing different metal NPs in the medical
sciences for tumor detection and treatment [13–15], the need for a single study exists that
compares updated research results. This paper will review the new research conducted on
using different metal NPs in medical imaging and radiation therapy for cancer detection
and treatment. Until recently, some research has been carried out on different metal
NPs in medical sciences for cancer detection and treatment, but no single study exists
which has reviewed new updates on using metal NPs for cancer detection and treatment.
This review study was performed on the recent literature sourced from scientific citation
websites such as Google Scholar, PubMed, Scopus, and Web of Science up through the
end of January 2023. All relevant works published on the mentioned scientific citation
websites were investigated. This review aims to describe new findings in the literature on
metal nanoparticles used in medical imaging and radiation therapy. The overall structure
of the study consists of two sections including a review of the research on the recent
nanotheranostics used in radiation therapy and medical imaging and also a summary of
new findings and perspectives.

2. Nanotheranostics

Several nanotheranostics are used in medical imaging and radiation therapy for tumor
detection and treatment. Their applications in medicine are presented individually.

2.1. Gold-Based Nanoparticles

Many studies have used gold nanoparticles (AuNPs) for therapeutic applications in
cancer treatments [16] (Figure 1). High atomic number, relatively strong photoelectric
absorption coefficient, good renal clearance, and biocompatibility are the features that
make AuNPs a good, promising choice for use in radiotherapy [17,18]. Studies have
often investigated the radiation sensitization and synergistic effects of AuNPs alone or
in combination with other materials or treatment modalities. One pioneering in-vivo
study was conducted by Herold et al. [19] in 2000 when it was first reported that gold
microspheres could produce radiation dose enhancement against tumors using kilovoltage
X-rays. Tudda et al. reported that 15 nm AuNPs could produce biologically effective
dose enhancement in rotational radiotherapy of breast cancer using kilovoltage X-rays [20].
Luan et al. [21] described an improvement in the radio-therapeutic efficiency in the treat-
ment of esophageal tumor-bearing mice following the delivery of AuNPs to tumors. Par-
ticle type, radiation parameters, and cell type are the main factors that affect the radio-
sensitization efficiency of AuNPs. The sensitizing or synergistic effects of AuNPs in radi-
ation therapy have been investigated using in vitro studies with X-rays, γ-rays, electron
beams, and high-energy charged protons/carbon ions. In a study, the results showed that
AuNPs could produce sensitization and synergistic effects in radiotherapy using different
types of radiation [22–25]. In a major advance in 2022, Mzwd et al. [26] used a green
technique for nanoparticle synthesis. They formed and used stable AuNPs in gum arabic
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(GA) solution via laser ablation technique as a CT contrast agent. They claim that the image
CT numbers increased with the concentration of GA-AuNPs. It has been suggested that
the GA-AuNPs can be used as a CT contrast agent. Moreover, in another study that set
out to determine the effect of glucose-modified dendrimer-entrapped gold nanoparticles
(Au DENPs) labeled with radionuclide 68Ga for positron emission tomography (PET)/ CT
dual-mode imaging, Li et al. [27] found that 68Ga labeled with 2-amino-2-deoxy-D-glucose
(DG) DG-Au DENPs can be used for PET/CT imaging and immunotherapy of different
tumor types. In this line [2], the researcher investigated the multi-modality imaging and
photothermal effect of gold-doped upconverting nanoparticles (UCNPs). Zhang et al. [28]
pointed out that due to photothermal stability, low cytotoxicity, and high biocompatibility,
Au-UCNPs-DSPE-PEG2k may be utilized as MRI and CT contrast agents for both in vivo
and in vitro, and may also be used for photothermal treatment.

Furthermore, the size, shape, surface functionalization, concentration, and intracellular
distribution of AuNPs can influence their effect on radiation [29–32]. In 2020, in our
department, in a published paper [33], authors synthesized applied alginate-coated iron
oxide-gold core-shell nanoparticles (Fe3O4@Au/Alg NPs) for synergistic photo-thermo-
radiotherapy. They found that the presence of gold nanoparticles in the synthesized
nanocomposite significantly improves the photothermal efficiency and dose-enhancement
of X-rays to a great extent. They further proposed that ionizing radiation exposure was
cell cycle phase-dependent for cellular uptake of Fe3O4@Au/Alg NPs. Additionally, their
results demonstrated that the radiation-induced delay of cell division and association of
cells in the radio-sensitive cell cycle phase (like G2/M) could enhance the radio-sensitization
effect of Fe3O4@Au/Alg NPs in tumor cells. In [34], the authors investigated NIR-II
photo/chemodynamic therapy properties of gold nanobipyramids and copper sulfide in
a core/shell architecture (AuNBP@CuS) for cancer treatment and achieved positive results.
In another study in our department, AS1411 aptamer-targeted ultrasmall gold nanoclusters
(Apt–GNCs) were synthesized, and they showed the ability of Apt–GNCs for radiation
enhancement [35]. Apt–GNCs significantly enhanced radiotherapy efficacy, as mean tumor
volume decreased by about 39%, and a nine-day increase in mice survival was observed.
Both GNCs and Apt–GNCs were biocompatible [35]. Kitayama et al. [36] also reported
that when combined with low-dose X-ray radiation therapy, the novel stealth radiation
sensitizer based on Au-embedded, molecularly imprinted polymer nanogels (Au MIP-NGs)
could inhibit in-vivo tumor growth. Recently, Baijal et al. [37] evaluated the therapeutic
and imaging effect of PEGylated gold NPs (Au-PEG-NPs) and silver NPs (Ag-PEG-NPs)
as radio-sensitizers and CT contrast agents in the oral cancer KB cell line. They claimed
that Au-PEG-NPs exhibit better radio-sensitizer and contrast agent performance than Ag-
PEG-NPs. It has been suggested that the Au-PEG-NPs could be used as a radiosensitizer
and CT contrast agent candidate for oral cancer treatment and detection, which shows
it is a theranostics agent. For instance, the application of gold-based nanoparticles as
theranostics is shown in Figure 1 [38]. Surveys such as that conducted by Hu et al. [39] have
shown that carbon-based, dot-capped gold nanoparticles (AuNPs/CDs) are promising
photosensitizers for photodynamic therapy applications. The most striking result to emerge
from the literature reviews in gold-based NPs is that the gold-based NPs, due to their
special features, are good clinical candidates for use in cancer detection and treatment.
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ard radiation treatment have been established [43]. The research results indicated that, in 
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from Ref. [38]. 2020”. “Copyright and Licensing” are available via the following link: https://www.
frontiersin.org/articles/10.3389/fchem.2020.00376/full.

2.2. Gadolinium-Based Nanoparticles

Gadolinium (Gd, rare earth (lanthanide) metal, Z = 64)-based nanoparticles have been
used as multifunctional theranostic (diagnostic and therapeutic) agents in MRI-guided
radiotherapy. Hence, Gd chelates have been applied for a more precise, accurate, and
enhanced dose delivery in radiotherapy [40,41]. A study in 1996 [42] was conducted on the
radio-sensitizing effect of Gd (III) texaphyrin (Gd-tex2+). Results of this study showed that
Gd-tex2+ was established to be an efficient radiation sensitizer in in-vitro and in-vivo exper-
iments carried out with HT29 cells and a murine mammary carcinoma model, respectively.
Motexafin gadolinium (MGd), a metallotexaphyrin, is a compound of gadolinium and an
expanded porphyrin that can enhance the cytotoxic effects of radiation through several
mechanisms relying on the additional generation of reactive oxygen species (ROS) that
catalyze the oxidation of intracellular-reducing metabolites and interference with repair
mechanisms of radiation-induced damage, which lead to increased cell death. Motexafin
gadolinium showed great promise for multifunctional theranostic applications, especially
for glioma treatment, and so far, two-phase clinical studies combined with standard radia-
tion treatment have been established [43]. The research results indicated that, in addition to
exploiting GdNPs as a positive MR imaging T1 contrast agent, they had been identified as
valued theranostic sensitizers for radiation therapy [44,45]. Being a toxic lanthanide heavy
metal, free GdNPs are not used clinically; instead, it is used as an organic chelating agent
compound. The GdNP “Activation and Guidance of Irradiation by X-ray,” or AGuIX, is a
polysiloxane nanoparticle with chelated gadolinium that exhibits no toxicity in preclinical
and early-stage clinical studies in humans at medically used concentrations and is elim-
inated rapidly via the kidneys [46–48]. The radiation dose enhancement and synergistic
effects of GdNPs have also been proven in combination with other ionizing radiation types,
such as γ-rays, X-rays, and charged particles [49–51]. At kilovoltage X- and γ-ray energies,
interactions with high-Z GdNPs produce photoelectrons and numerous Auger electrons,
which short-ranged electrons may improve the killing effects of radiation in a highly local-
ized region, on the order of a few cell diameters or less [52,53]. With the increase in energy
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in megavoltage energies (MV), the physical mechanisms of radiation sensitization become
less important and give way to biological mechanisms such as immune responses, oxidative
stress, DNA damage, and repair responses [54,55]. The investigation into the combina-
tion of cell therapy and nanotechnology found that gadolinium-neutron capture therapy
(Gd-NCT) can be used for glioblastoma multiforme (GBM) treatment [56]. More recent
evidence [57] highlights that the Au@DTDTPA(Gd) NPs, in combination with conventional
external X-ray irradiation, may be used as a radio-sensitizer for GBM treatment.

Today, due to the T1 and T2 shortening relaxation time effect, gadolinium plays a cru-
cial role in MR imaging. In a study that aimed to synthesize and characterize FeGdPt
NPs, Chou et al. [58] found that FeGdPt NPs have feasible applications in dual-modal MRI
(T1/T2) and CT imaging. More recent evidence [59] shows that coated porous silicon NPs
(pSiNPs) with gadolinium ions (Gd3+) can be used as an MRI contrast agent. They point
out that pSiNPs-Gd showed high drug encapsulation efficacy and T1-weighted MR image
contrast agent performance. Bennettet al. [41] investigated the uptake of GdNPs in patients
with pancreatic cancer for MR-guided radiation therapy. It has been suggested [60] that
glucosamine (GlcN) conjugated with polyacrylic acid (PAA)-coated ultrasmall gadolin-
ium oxide NPs (UGONs), GlcN-PAA-UGONs, have higher contrast enhancement in T1-
weighted MR images, and GlcN-PAA-UGONs seem to be an excellent T1-weighted MRI
contrast agent. Eriksson et al. [61] used a survey to improve T1-weighted image contrast at
the lower dose of Gd ions in cerium oxide NPs as a T1-weighted MRI contrast agent and
achieved positive results. It has been demonstrated that a high T1 relaxivity of Gd oxide
(Gd2O3) conjugated with mesoporous silica NPs (Gd2O3@MSNPs) in comparison with Gd
diethylene triamine pentaacetate (Gd-DTPA) results in in-vivo use of Gd2O3@MSNPs as
a T1-weighted MR image contrast agent [62]. In an investigation into the clinical use of
ultrasmall GdNPs (Gd@PEG NPs), Wang et al. [63] found that monodispersible ultrasmall
GdNPs can be used for diagnosis of kidney dysfunction through the in-vivo T1-weighted
MR imaging. These findings further support the idea of using gadolinium-based NPs
for cancer detection and imaging, especially as an MRI contrast agent for functional and
molecular imaging with T1 and T2 mapping.

2.3. Iron-Based Nanoparticles

Iron-based NPs that include inorganic paramagnetic iron oxide (or magnetite) nanopar-
ticles or superparamagnetic iron oxide nanoparticles (SPIONs) have been investigated as
theranostic magnetic nanoparticles and are ideal agents for theranostic applications, espe-
cially cancer treatment due to their excellent properties, such as facile synthesis, biocompat-
ibility, and biodegradability [1]. Iron NPs are useful as excellent MRI agents, photothermal
therapy (PTT), photodynamic therapy (PDT), magnetic hyperthermia, radiation therapy,
and chemo/biotherapeutics presented in varied investigations [64]. Iron NPs could be used
as radio-sensitizers/enhancers. Although radio-sensitization is usually proposed for high
Z-metals, and the atomic number of iron (Fe, Z = 26) is relatively low, IONs are primarily
used in combination with low-linear energy transfer (LET) keV and MV X-rays. Iron oxide
nanoparticles increased ROS production in cancer cells when combined with radiation
therapy, compared to the treatment with radiation therapy alone [65]. The efficiency of the
radio-sensitization potential of silica-coated iron oxide magnetic nanoparticles (SIONPs)
when exposed to an X-ray beam was studied in MCF-7 cells. MCF-7 cells tend to show in-
creased radio-sensitization enhancement; meanwhile, with 0.5 Gy dose, dose enhancement
factor (DEF) values of cells treated with 5 and 10 µg/mL of SIONPs were 1.21 and 1.32,
respectively. Results demonstrated that SIONPs potentially improve the radio-sensitivity
of breast cancer [66]. Guerra et al. [67] studied the radio-sensitization effects produced
by gold and dextran-coated superparamagnetic iron oxide nanoparticles (SPION-DX) in
M059J and U87 human glioblastoma cell lines irradiated by 6 MV photons beam. For
U87 cells, SPION-DX nanoparticles with a core diameter of 21.1 nm showed a maximum
sensitization enhancement ratio (SER10%) = 1.61 in the group exposed to 50 µg/mL of
nanoparticles. For the radio-sensitive M059J cells, sensitization assisted by both types of



Diagnostics 2023, 13, 833 6 of 16

nanoparticles was much less efficient. Furthermore, they found that sensitization mecha-
nisms occurring through GNPs mostly follow the promotion of lethal complex damage, but
SPION-DX repairable damage dominates. Other studies also reported the enhancement of
radio-sensitization and synergistic effects on tumor cells in vitro and in vivo using X-rays
accompanying with SPIONs and IONs [68–70]. Recently, in several studies, iron-based
nanoparticle-mediated radio-sensitization was observed in combination with low-energy
X-ray and monoenergetic γ-ray radiation [71–73]. Most of them reported that IONs en-
hanced the efficacy of X-ray energies above Fe K-edge more significantly than conventional
broadband high-energy X-rays. Although the FDA has approved several ION formulations,
specific unwanted toxicity issues reported in many studies that could be overcome by
functionalization and surface modification with various coverage and ligands would be
helpful to improve their circulation time, clearance, and evasion by reticuloendothelial
system, as well as improving tissue targeting, biocompatibility, and stability [74–78]. It
has now been demonstrated that [79] the doxorubicin (DOX)-loaded liposomal iron oxide
NPs (IONP) (Lipo-IONP/DOX) might serve as a safe and effective agent for combined
chemo/photothermal cancer therapy. Currently, iron oxide NPs are the ideal agents for
cancer theranostics.

A large and growing body of literature has investigated the impact of iron nanoparti-
cles in medical imaging, especially in MRI. Fe3O4/Ag3VO4/Au three-component coated
with Caerophyllum macropodum extract modified with oleic acid has been identified
as a contrast agent for MRI and CT imaging [80]. Recent evidence suggests that super-
ferromagnetic iron oxide nanoparticle chains (SFMIOs) can improve MR image resolution
and signal-to-noise ratio (SNR) [81]. In their analysis of iron nanoparticles (Fe NPs) for
medical imaging, Dash et al. [82] identified that Fe NPs have high stability against oxida-
tion and exhibit a much stronger shortening of the T2 relaxation time in MR imaging. In
a study that set out to determine the usage of hypoxia-triggered, self-assembling, ultra-
small iron oxide (UIO) NPs for tumor hypoxia map detection, Zhou et al. [83] found that
UIONPs amplify T2-weighted signals of ROI in the MRI images and could be considered
as a potential nanoprobe candidate for hypoxia imaging of tumors. Detailed examination
of paramagnetic ferric iron (III) ion-chelated poly (lactic-co-glycolic) acid NPs proper-
ties for T1-weighted MR imaging by Marasini et al. [84] showed that this contrast agent
has three times the relevant magnetic field relaxivity compared to the commercial agent
gadopentetate dimeglumine, Magnevist®. In a major study, researchers [85] identified
characteristics such as a remarkable biosafety profile, prolonged blood circulation time
upon proper surface modification, and renal clearance capacity of ultrasmall superpara-
magnetic iron oxide (USPIO) NPs as a T1/T2 weighted MRI contrast agent. It has now
been suggested that [86] the polyethylene glycol-coated ultrasmall superparamagnetic iron
oxide nanoparticle-coupled sialyl Lewis X (USPIO-PEG-sLex) NPs can reduce the T2

* value
of nasopharyngeal carcinoma (NPC) tumors. They claim that USPIO-PEG-sLex can be
used as a nanotheranostic platform. Lee et al. conducted several discussions and analyses
of NPs’ biodistribution and pharmacokinetics with a non-radioactive method [87]. They
suggested that iron oxide NPs coated with chitosan and polyethylene glycol can be used
for assessing the pharmacokinetics properties of NPs.

In recent years, there has been an increasing amount of literature on using magnetic
particle imaging (MPI) for tumor detection [88]. MPI is a novel noninvasive molecular
imaging technology that images the bio-distribution of SPIONs [88]. MPI is a favorable
tool for cancer diagnosis, as it offers the advantages of zero background signal, zero
signal reduction with increasing tissue depth, quantitative linearity, and high sensitivity.
Additionally, there is no need for ionizing radiation. Surveys such as that conducted by
Chandrasekharan et al. [89] have shown that, in addition to imaging, SPIONs can also be
used for tumor ablation with hyperthermia as theranostic NPs. It has conclusively been
shown [90] that MPI can be used for cell tracking and detection with high sensitivity and
specificity. The previous study [91] has reported that clinical Resovist®, superparamagnetic
iron oxide NPs, can be used for MPI imaging clinically. In [92,93], the authors investigated the
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clinical performance of Resovist® for liver imaging with MRI. It has been suggested [94,95] that
NanoTherm®, an iron oxide NPs agent, can be heated by an externally applied alternating
magnetic field for the clinical treatment of solid tumors. In this study, iron-based NPs were
found to be a perfect candidate for cancer detection and treatment due to iron’s physical
and chemical properties.

2.4. Tungsten-Based Nanoparticles

Tungsten (W, Z = 74) can produce photoelectrons, Compton electrons, scattered
photons, high-energies characteristic X-rays, positron and negative electron pairs, and
Auger electrons under high-energy irradiation that result in direct and indirect interac-
tions (free radicals) with tumor cells [25,96–98]. Qin et al. [99] revealed that tungsten
nanoparticles could be used for photothermal therapy (PTT) and RT combination treatment.
Chen et al. [100] designed a novel theranostics nanoplatform (Au NPs/UCNPs/WO3@C)
comprising tungsten trioxide (WO3) that loaded gold nanoparticles (Au NPs) and up-
conversion nanoparticles (UCNPs). The nanosystem exhibited superior oxygen-generation
effects and doxorubicin loading capacity, thus serving as an efficient radio-sensitizer for
radio-chemo anticancer therapy. Niknam et al. discussed tungsten disulfide (WS2)-based
nanomaterial as a PTT agent. In combination with X-ray irradiation, the nanocomposite
could catalyze the high expression of H2O2 to produce cell membrane disruption, mito-
chondrial dysfunction, reactive oxygen species (ROS) production, and oxidative stress. The
results showed that local RT/PTT could efficiently inhibit tumor metastasis, ablate local
tumors, and prevent the recurrence of tumors. At the same time, the nanocomposite could
also induce high temperatures under near-infrared irradiation to enhance RT results [97].
A large and growing body of literature [101–104] has investigated tungsten nanoparticles’
radiation protection and shielding effect in medical imaging. Surveys such as that con-
ducted by Wu et al. [105] have shown that ultrasmall metal cores and metal-oxide shell
nanoparticles, such as CoFe-WOx (CoWO4-Fe2WO6-WO3), can be used as theragnostic
nanoprobes for visible/infrared/MRI/CT imaging and photothermal/photodynamic and
magnetothermal/magneto-dynamic therapies. The first study of two-dimensional (2D)
PEGylated WO2.9 (a substoichiometric form of WO3) nanosheets for multimodal imaging
was reported by Zhang et al. [106] in 2022. In another major study, Chen et al. [100] found
that Au NPs and up-conversion NPs (UCNPs) loaded with tungsten trioxide (WO3) pro-
duce novel theragnostic NPs, Au NPs/UCNPs/WO3@C, which improved PA imaging
performance. The research of Li et al. [107] showed that it is possible to use thermo-
responsive polyethylene glycol-coated tungsten-doped vanadium dioxide (W-VO2@PEG)
NPs as nanoprobes for depth PA imaging.

2.5. Platinum-Based Nanoparticles

Platinum nanoparticles (PtNPs) are relatively new agents that have been extensively
used as part of anticancer drug formulation (cisplatin, carboplatin, and oxaliplatin, etc.)
in chemotherapy and chemoradiotherapy [108]. Considering the effective antioxidant
property and anti-tyrosinase activity of PtNPs, developing these nanoparticles as anticancer
agents can be one of the most valuable approaches for clinical use [109,110]. In order to
improve therapeutic efficacy, functionalization of the surface of PtNPs could help to increase
biodistribution, accumulation, cell-specific targeting, and controlled release, and reduce
side effects to human beings. Though numerous studies highlight the chemotherapeutic
effect of platinum-based anticancer drugs, there are relatively few published studies about
the radio-sensitizing and synergistic effects of PtNPs for radiation therapy. Hullo et al. [111]
showed that PtNPs could induce the radio-enhancement effect in breast cancer cell lines
after internalization and accumulate in lysosomes and multivesicular bodies. Likewise,
the lysosome-localized PtNPs could absorb radiation energy and focus more on the cancer
site, damaging DNA and killing tumor cells. Zhang et al. [112] found that the radiation
doses could be physically enhanced when combining the platinum nanoparticles coated
with bovine serum albumin (BSA), Pt@BSA NPs, for use in radiotherapy. Also, studies
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showed that the presence of platinum nanoparticles when cell cultures were irradiated
could result in strongly enhanced breaks in DNA, especially DSBs, mediated by water
radicals which may originate from the inner-shell excitation of platinum atoms [50,113,114].
In other studies, Gutiérrez et al. [115] discussed the enhanced effect of radiation on cervical–
uterine cancer cells (HeLa) when the cancer cells were treated with PEGylated PtNPs
functionalized with a fluorescent marker in combination with γ-rays. Results showed that
as the radiation dose increased, the number of survived cells decreased in the presence of the
nanoparticles. Yang et al. [116] reported that Pt nanoenzyme-functionalized nanoplatform
BP/Pt-Ce6@PEG NPs improved the cellular uptake and decomposed endogenous H2O2
into O2 in situ to relieve tumor hypoxia, affording enhanced reactive oxygen species (ROS)
production and causing the intratumoral oxygen level to surmount tumor hypoxia for
efficient tumor treatment in an in vivo and in vitro study.

2.6. Bismuth-Based Nanoparticles

Meng et al. [117] developed bismuth and gadolinium-codoped carbon quantum dots
(Bi, Gd-CQDs) for fluorescence imaging, CT imaging, and MRI imaging. They demon-
strated that, due to the high X-ray attenuation coefficient, short T1 relaxation time, and
robust and steady fluorescence characteristics of Bi, Gd-CQDs, we could use Bi, Gd-CQDs
as a good nanoprobe for CT, MRI, and fluorescence imaging.

It was reported in the literature [118] that triptorelin peptide-targeted multifunctional
bismuth nanoparticles (Bi2S3@BSA-Triptorelin NPs) might be used as a CT contrast agent.

In an investigation into introducing photoacoustic imaging (PAI) contrast agents for
deep tissue imaging, Zhao et al. [119] used DNA-templated ultrasmall bismuth sulfide
(Bi2S3) NPs for myocardial infarction imaging. For NPs synthesis, they employed a simple
strategy for ultrasmall NPs via self-assembly of single-stranded DNA (ssDNA)/metal ion
complexes. Zhao et al. [119] suggested that ultrasmall DNA-Bi2S3 NPs can be used as a PAI
contrast agent for myocardial infarction imaging, and the ssDNA template could be used
for ultrasmall PAI contrast agent preparation.

It has now been suggested that polymer-coated bismuth oxychloride (BiOcl) nanosheets
can be used as CT contrast agents for gastrointestinal (GI) imaging [120].

In their groundbreaking paper, Zaho et al. [121] developed Bi@mSio2@Mno2/DOX
as a powerful theragnostic agent for CT/MR imaging and photothermal therapy (PPT)/
chemodynamic therapy (CDT)/chemotherapy cancer treatment. More recent evidence [122]
shows the effect of reducing T1 and T2 relaxation times and increasing CT image contrast of
Bi2S3@BSA-Fe3O4 nanoparticle as a dual contrast agent for MRI and CT imaging modalities.

2.7. Tantalum-Based Nanoparticles

Lakshmi et al. [123] investigated the impact of tantalum oxide NPs (TaOx NPs) and
the Au-decorated tantalum oxide (TaOx-Au NPs) as imaging contrast agents on cancer
diagnostics. As Lakshmi et al. [19] noted, TaOx-Au NPs, due to higher X-ray attenuation
in a low-energy X-ray, is far more attractive than TaOx NPs and, therefore, can be used
for cancer diagnosis with a CT imaging modality. A recent study [124] involved PEG-
Ta2O5@Cus multifunctional NPs for diagnosing hepatocellular carcinoma (HCC) with
CT/PA imaging. The application of poly-coated tantalum NPs (Ta@PVP NPs) in medical
imaging was first demonstrated by Ji et al. [125]. In their seminal study, Ta@PVP NPs
were used as radiotherapy/photothermal therapy (PTT) and CT/PA imaging agents in
breast carcinoma.

2.8. Ytterbium-Based Nanoparticles

It has now been proposed that [126] glutathione functionalized ytterbium/iron ox-
ide NPs as a dual-modality contrast agent for MRI/CT imaging. In a major advance,
Dong et al. [127], for the first time, developed an ultrasmall ytterbium NPs (YbNPs) con-
trast agent for CT/spectral photon-counting computed tomography (SPECT) imaging. They
pointed out that, in the clinical X-ray energy range, the YbNPs attenuation is significantly
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higher than the AuNPs. Many attempts have been made [128] to introduce multi-modality
MRI/PA/NIR-II fluorescence contrast agents. They have focused on using calcium fluoride
co-doped with rare-earth ions such as ytterbium, gadolinium, and neodymium (CaF2: Yb,
Gd, Nd) NPs. It has conclusively been shown that [129] Yb3+ concentration in LaNbO4
nanoparticles affects the luminescent properties of NPs for medical imaging applications,
and the intensity of emissions is directly related to Yb3+ concentration. Recently, an in-vivo
study has shown that BaYbF5-SiO2 NPs can be used as contrast agents for imaging the
osteochondral interface with micro-CT imaging with high-resolution images [130]. Ta-
ble 1 presents an overview of some new nanotheranostics and their applications in cancer
detection and treatment.

Table 1. Some new nanotheranostics and their applications in medicine.

Authors Nanoparticles
Application

Conclusion
Imaging Therapy

Tudda et al. [20] Au NPs
√ AuNPs increase the effective dose in the

radiotherapy of breast cancer

Safari et al. [33] Fe3O4@Au/Alg NPs
√ improves the photothermal efficiency and

dose-enhancement of X-rays

Kitayama et al. [36] Au MIP-NGs
√ inhibits in-vivo tumor growth with low-dose

radiation therapy

Young et al. [42] Gd-tex2+ √ efficient radiation sensitizer in in vitro and
in vivo

Zhang et al. [112] Pt@BSA NPs
√

radiation doses enhancement

Yang et al. [116] BP/Pt-Ce6@PEG NPs
√ radio-sensitization for the hypoxia region of the

tumor

Guerra et al. [67] SPION-DX
√

radio-sensitization for 6 MV photon beam

Chen et al. [85] Au NPs/UCNPs/WO3@C
√ √

theranostics nanoplatform

Mzwd et al. [26] GA-Au NPs
√ √

laser ablation technique and CT contrast agent

Zhou et al. [17] Au-UC NPs
√ √ multi-modality imaging and photothermal

effect

Zhang et al. [28] Au-UCNPs-DSPE-PEG2k
√ √ MRI and CT contrast agents in vivo and

in vitro may also be used for photothermal
treatment

Li et al. [27] Au DENPs labeled with
68Ga-DG

√
can be used for PET/CT imaging contrast agent

Baijal et al. [37] Au-PEG-NPs
Ag-PEG-NPs

√ √ Au/Ag-PEG-NPs can be used as
a radio-sensitizer and CT contrast agent in oral

cancer KB cell lines

Meng et al. [117] Bi, Gd-CQDs
√ Bi, Gd-CQDs is a good nanoprobe for CT, MRI,

and fluorescence imaging

Mohammadi et al. [118] Bi2S3@BSA-Triptorelin NPs
√ Bi2S3@BSA-Triptorelin NPs might be used as

a CT contrast agent

Zhao et al. [119] ultrasmall DNA-Bi2S3 NPs
√ They suggested that ultrasmall DNA-Bi2S3 NPs

can be used as a PAI contrast agent for
myocardial infarction imaging.

Zelepukin et al. [120] polymer-coated BiOcl
nanosheets

√ They suggested that polymer-coated BiOcl
nanosheets can be used as CT contrast agents

for GI imaging.

Zaho et al. [121] Bi@mSio2@Mno2/DOX
√ √

They suggested that Bi@mSio2@Mno2/DOX is
a powerful theragnostic agent for CT/MRI
medical imaging and PPT/chemodynamic

therapy (CDT)/chemotherapy.

Nosrati et al. [122] Bi2S3@BSA-Fe3O4 NPs
√ They suggested that Bi2S3@BSA-Fe3O4 NPs can

be used as a dual contrast agent for MRI and
CT imaging.

Note: “
√

” is shows the use and application of each NPs in Imaging, Therapy, or both of them.
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3. Conclusions and Future Perspective

This review provides a broad overview of the usage of metal nanoparticles in radio-
therapy and medical imaging. As mentioned in this review, early detection and treatment
of cancer is a significant public health issue. In medicine, nanoparticles have become im-
portant in cancer imaging and treatment for tumor visualization, drug delivery, and direct
antitumor potency. In recent years, there has been an increasing interest in using metal
nanoparticles in medicine for diagnosis and therapy due to their inherent characteristics
such as unique physicochemical properties, high drug payload, size, ability to functionalize
easily with biomolecules, electrostatic charge, low toxicity, image contrast enhancement,
optical properties, photothermal behavior, high surface area, surface chemistry, and radio-
sensitizer properties. Thus, metal NPs are crucial in the medical sciences and play an
essential role in cancer detection and treatment. In the current study, the new update
of gold-based, gadolinium-based, iron-based, tungsten-based, platinum-based, bismuth-
based, tantalum-based, and ytterbium-based NPs was investigated in cancer treatment
and detection. Table 1 shows recent primary metal nanoparticles and their application in
cancer diagnosis and treatment. Collectively, these studies outline the critical role of metal
nanoparticles for cancer treatment and detection with different imaging modalities. Most
current studies in metal NPs’ usage for cancer detection and treatment have focused on
in vivo and in vitro studies, mainly for determining the physical and chemical character-
istics of the synthesized metal NPs. This work attempts to show the recent findings of
using metal nanoparticles in medical imaging and therapy. The evidence presented in this
study suggests that, based on the type and location of the tumor, a specific nanoparticle
can be used for cancer treatment and detection. Taken together, the evidence from this
review highlights the role of different parameters, such as NPs’ coating material, size, and
synthesized method, for introducing a new and effective contrast agent in cancer imaging
or a radio-sensitizer in cancer treatment.

It seems possible that the frequent usage of these metal NPs is due to their high
atomic number, easier synthesis, and accessibility. It can therefore be assumed that the high
atomic number of metal NPs is responsible for the higher radiation absorption and electron
Auger production, which is very important for effective cancer treatment with metal NPs.
Thus, they are now the first option for designing and developing metal nanoparticles for
medical applications. Although metal NPs have demonstrated high performance and
advantages for cancer treatment and detection, they have a particular disadvantage in
terms of high aggregation due to high weight, clearance problems, skin color change, and
high price for gold-based NPs. While many metal nanoparticles have been discussed in this
review, the findings must be interpreted carefully. More research is required to compare
and assess these metal nanoparticles’ pharmacokinetics and toxicity properties prior to
clinical applications.

Herein, among all metal nanoparticles, gold-based, gadolinium-based, and iron-based
nanoparticles are by far the most studied for medical applications such as medical imaging
and therapy. It seems possible that these results are due to their ease of functionalization,
low toxicity, and superior biocompatibility. Also, iron-based nanoparticles, such as SPIONs,
can be used for MPI. MPI is a favorable tool for molecular imaging and detecting SPIONs
distribution in tissues.

Unfortunately, discovering and assessing new NPs as candidates for clinical usage in
cancer treatment and detection is time-consuming and complicated. In recent years, there
has been growing interest in using in-silico studies [131–134] as a robust process and tool
for developing and optimizing proposed NPs in the medical sciences.

This review article could be helpful from an educational point of view for all re-
searchers, in particular medical researchers, who are interested in cancer diagnosis and
treatment. The limitation of this article is that it may not cover all recent findings in
the world. As seen from the literature review, the toxicity level of metal NPs has been
investigated in each study with different tests. These data, the toxicity of NPs, must be
interpreted with caution because these studies were conducted in vivo and in vitro and
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are not clinical studies. Further research should be done to investigate the clinical toxicity
of metal NPs in humans. Also, in the author’s view, further research might investigate
the safety, biocompatibility, and long-term toxicities of metal NPs in animal models and
humans prior to the clinical usage of metal NPs.
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