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Abstract: Synthesized multimedia is an open concern that has received much too little attention
in the scientific community. In recent years, generative models have been utilized in maneuvering
deepfakes in medical imaging modalities. We investigate the synthesized generation and detection
of dermoscopic skin lesion images by leveraging the conceptual aspects of Conditional Generative
Adversarial Networks and state-of-the-art Vision Transformers (ViT). The Derm-CGAN is architec-
tured for the realistic generation of six different dermoscopic skin lesions. Analysis of the similarity
between real and synthesized fakes revealed a high correlation. Further, several ViT variations were
investigated to distinguish between actual and fake lesions. The best-performing model achieved an
accuracy of 97.18% which has over 7% marginal gain over the second best-performing network. The
trade-off of the proposed model compared to other networks, as well as a benchmark face dataset,
was critically analyzed in terms of computational complexity. This technology is capable of harming
laymen through medical misdiagnosis or insurance scams. Further research in this domain would be
able to assist physicians and the general public in countering and resisting deepfake threats.

Keywords: artificial synthesis; medical DeepFakes; dermoscopic skin lesions; generative adversarial
networks; attention vision transformers

1. Introduction

As the name implies, deepfakes employ artificial intelligence and deep learning to
manipulate or generate inexistent visual or audio content. The breakthroughs in deepfake
generation offer both benefits and drawbacks. The 2019 video footage of former US
President Barack Obama, where he was faked into improper usage of language, was
released as public awareness of the would-be-weapon of the near future by filmmaker
Jordan Peele [1]. The outreach of the terminology deepfakes hit its maximum when video
footage of Facebook CEO Mark Zuckerberg announcing the closure of Facebook to the
public went viral, which was a deep fake. Though the concept of forging and manipulating
visual content is not new, the advent of highly realistic indistinguishable fake content
is quite challenging since they call for efficient models for their detection. The face is a
person’s most distinguishing characteristic. Face modification poses a growing security
issue due to the rapid advancement of face synthesis technology. Frequently, people’s faces
can be replaced with those of others who seem real.

We tend to trust what we see. The common public is well aware of generating fake
images through easily accessible software such as Photoshop. However, we are yet to be
informed about the possibilities of generating fake videos and their convincing nature due
to their highly realistic output. Deepfake content is disseminating more quickly than ever
in the twenty-first century due to the growth of multiple social networking sites, making it
a global threat. It explains how deepfake technology could be one of the digital weapons
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facing future generations, producing extremely unacceptable ethical, moral, and legal
concerns [2]. Through digital impersonation, it would be considered easy to cyberattack
a person, a public figure, or a cause. Moreover, convenient and discrete public access to
digital content can only elevate the effects. On the other hand, deepfake technology has
a brighter side to the positive application in the entertainment industry. There may soon
come a time when an eligible actor’s physical looks and vocals may be deep faked and
inserted into video recordings of films acted out by another talented individual. Deepfakes
are cutting-edge technology that eventually produces smart applications that can enable
someone to be a part of the trend. The traditional image forgery detection approaches have
yet to prove efficient in detecting deepfake content.

The recent inclination of deepfake research can be split into two main categories: (1)
Deepfake generation, which focuses on synthesizing and improving existing state-of-the-art
techniques with respect to computational complexities and training time, and (2) Deepfake
detection, which concentrates on developing reliable and universal classifiers that can be
deployed in the wild.

The promise of current deepfake generation and detection research lies solely in facial
deepfake recognition. There are various datasets containing millions of images for face
recognition tasks, which are utilized for face deepfake synthesis. The Visual Geometry
Group Face dataset (VGGFace) and the CelebFaces Attributes Dataset (Celeb-A) are huge
datasets comprising over 200,000 images. The deciphering gap, however, largely potentiates
medical deepfake synthesis and detection that should call for much attention.

Extensive research is being encouraged in medical diagnostics, and disease detection
using machine learning, deep learning, and ensemble techniques [3–5]. Pre-trained net-
works such as MobileNet and EfficientNets have been preferred over handcrafted features
for healthcare diagnosis due to their capacity to adapt to new data by transferring the
learned representations from one domain to another [6,7]. Given that medical fakes pose a
future hazard, the identification of medical deepfakes prior to a medical diagnosis would
only be extremely intuitive. In the case of manipulated facial data, the artificial visual
irregularities in the skin tone were initially recognizable to the human eye [8]. On the
contrary, new and improved modified GANs are still being released in rapid succession.

1.1. Generation of Synthesized Images

Depending on the degree of alteration, synthesized images may be divided into three
categories: face-swapping, face-reenactment or attribute manipulation, and inexistent
whole face synthesis [9]. Face-swap is a technique where the subject’s face from the source
image is automatically swapped out with that of the subject from the target face. Face-
reenactment is the manipulation of facial expressions, such as adding the attributes of a
source person, which includes eyes, emotions, and facial features, onto an output image.
Face generation aims to create lifelike representations of a human face that might or might
not exist in reality. The ability of human eyes to distinguish between fake and genuine
content has become increasingly challenging due to the high quality of these synthetic
images. Table 1 briefs the state-of-the-art in each of the generation categories.

The basis of synthesized multimedia is the mathematical formulations of Generative
Adversarial Networks (GANs) [10]. Deepfakes are generated using several variants of
GANs by generating new samples that imitate an existing data set. In the vanilla GAN
model, a low-dimension random noise is transformed into photorealistic images using
the adversarial training behavior of a generative model and the classification nature of a
discriminative model. Briefly, while the generator trains its network to generate realistic
fake content from a set of training images, the discriminator distinguishes an incoming
image as real or fake.

LG = min[
1
n

n

∑
i=1

(log(1− D(G(zi))))] (1)



Diagnostics 2023, 13, 825 3 of 22

LD = max[
1
n

n

∑
i=1

(logD(xi) + log(1− D(G(zi))))] (2)

where z is the random noise vector, xi is the training samples from the real dataset, and zi
are the generated fake datapoints. Technically, z gets molded into highly realistic images
zi by the model in a min-max pull of the cost functions of generator LG and discriminator
LD (Equations (1) and (2)). Here, The generator attempts to reduce the likelihood that the
discriminator will accurately categorize images, and the discriminator tries to maximize
the probability of its efficient classification where real images are classified as real and fake
images are classified as fake [11].

Table 1. Overview of Image Generation Models.

Reference Mode Model Data Synthesized Quality

Korshunova et al. [12] Face Swap GAN VGGFace 256 × 256
Natsume et al. [13] Face Swap GAN CelebA 128 × 128
Li et al. [14] Face Reeanctment GAN VGG Face CelebA 256 × 256
Kim et al. [15] Face Reenactment cGAN customized 1024 × 1024
Liu et al. [16] Face Synthesis CoGAN CelebA 64 × 64
Karras et al. [17] Face Synthesis PGGAN CelebA 1024 × 1024
Karras et al. [18] Face Synthesis StyleGAN ImageNet 1024 × 1024
Brock et al. [19] Face Synthesis BigGAN ImageNet 512 × 512
Frid-Adar et al. [20] CT images DCGAN Own data 64 × 64
Thambawita et al. [21] ECG WaveGAN Own data 10 s ECG
Mirsky et al. [22] CT Lung Nodules CTGAN LIDC-IDRI 3 × 64 × 64

An enhanced deepfake generation method employing GAN was suggested in [12],
which added a perceptual loss to the VGGface synthesis. They created texture-less, smooth
images. Natsume et al. [13] employed two different GANs to encode the latent dynamics of
facial and hair attributes. However, the approach was sensitive to occlusions and lighting
effects. In order to maintain the desired properties such as stance, expression, and occlusion,
Li et al. [14] produced facial images by employing two real face datasets. Nevertheless, the
imperfections created during synthesis were projected because of the stripping effect and
inadequate resolution.

Instead of only changing the target individual’s facial expression, in [15], GANs were
conditioned using a conditional GAN (cGAN) to mimic human expressions, including
blinking and smiling. In [23], GANs were then effectively employed for face synthesis by
integrating a perceptual loss with conditional GANs. The resolutions, however, remained
poor compared to real-face photographs. Instead of training only one GAN, Liu et al. [16]
suggested Coupled GAN (CoGAN), where each of the two GANs was in charge of synthe-
sizing images in a specific domain. Low picture resolution is a challenge for the majority
of these deep learning-based image synthesis approaches. Karras et al. [17] proposed the
Progressive Growing GANs (PG-GAN) to demonstrate high-quality face synthesis with
enhanced image quality by progressively adding layers to the networks during the training
process. Checker effects and blob-like effects were quite common in the aforementioned
methods of synthesis, leaving visible traces of manipulation. In [18], PGGANs were im-
proved to propose Style GAN by learning to transform a latent noise (Z) to an intermediate
latent vector (W), rather than mapping latent code z to an image resolution, as in the
vanilla GAN architecture. This controlled different visual characteristics to be transferred
to another domain. The BigGAN architecture [19] used residual networks and an increased
batch size to improve resolution.

Recently, GANs have been used to create deep medical fakes and machine learning-
based diagnosis tools to trick medical professionals by erasing or adding symptoms and
signs of medical illnesses. However, this method was largely used to provide more
medical data for study and research innovations. A Deep Convolutional GAN (DC-
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GAN) was suggested by Frid-Adar et al. to synthesize high-definition CT (Computed
Tomography) images [20]. The artificial creation of brain tumors, cancerous cell structures,
and challenging-to-reproduce histopathological data is suggested [24–26]. The gener-
ation of complicated Electrocardiograms (ECG) using a WaveGAN was suggested by
Thambawita et al. [21].

Recently, the technology has been made available to anybody interested in creating
new data for a positive study. Indeed, synthetic data has piqued the interest as a potential
road ahead for increased reproducibility in research. However, this technology’s detection
has yet to be extensively investigated, and it may become a weapon in the medical arena in
the future. The Jekyll framework was the first to demonstrate a style transfer mechanism
for medical deepfake attacks in X-rays and retinal fundus modalities [27]. A conditional
generative adversarial network (cGAN) called CT-GAN was developed by Mirsky et al. to
add or remove malignant nodules from lung CT data that over 90% of the clinicians failed
to spot [22]. The motivations and reasons for such attacks could be many, for instance,
fabricating research, a misdiagnosis on falsified medical data leading to permanent physical
or mental effects on patients due to wrong medications, and even insurance frauds claiming
huge payouts.

1.2. Detection of Synthesized Images

Existing approaches target either the spatial inconsistencies left during the generation
or are based on pure content classification. The spatial artifacts include background artifacts
and GAN fingerprints. Deep neural models can capture intrinsic characteristics and, thus,
are used in data-driven techniques to classify and identify modifications. On studying
several existing deep neural network models for the detection of deepfake attacks, we
observed that most researches are presented by generating their own dataset.

The scientific community had forecasted the threats involved with the advent of GANs
and had come up with open-sourced datasets such as the Deepfake Detection Challenge
(DFDC) [28], Diverse Fake Face Dataset (DFFD) [29], FaceForensics++ [30] and many
more. Research on detection mechanisms is mostly focused on exploring the pre-trained
models so as to leverage already learned feature maps onto a new domain. This seems
to work well with self-synthesized datasets rather than benchmarked ones. In [31], an
ensemble of EfficientNets was fine-tuned on DFDC to achieve results comparable to the
challenge-winning team. However, the winning solution could only achieve an accuracy
of ∼65%. A light weighted CNN was proposed in [32] with as much as only two and
three convolution layers. On the DFDC data, their model outperformed the state-of-the-art
VGG-19, Inception-ResNet-v2, and Xception Networks. Suganthi et al. [33] proposed a
statistical approach where fisher faces were extracted from texture components using the
local binary pattern algorithm. A Deep Belief Network (DBN) could classify the DFFD
dataset with 88.9% sensitivity and 93.76% specificity.

Since medical deepfakes are fairly recent, few detection techniques have been used
to lessen their impact. On CT-GAN-produced data, Solaiyappan et al. tested numerous
machine learning and pre-trained Convolution Neural Networks (CNNs) [34]. Limited data
and model simplicity both had a negative impact on the success of detection. The detection
rate of the models was quite low when the experiments were conducted as a multi-class
categorization of tampered versus untampered injected and removed nodules. The various
pre-trained networks attained a maximum of 80% classification accuracy when considering
the DenseNet121 variant. In [35], we learned a more sophisticated 3-dimensional neural
architecture on localized nodules from CT-GAN generated data and could attain a marginal
accuracy gain of over 10%. The temporal feature extraction across multiple slices performed
by a 3DCNN had more significance than the spatial content learning of individual slices.
This led us to think that utilizing Vision Transformers to leverage the attention processes
weighing the relevance of each element of the input data separately could replace the
feature learning procedures through convolutions [36].
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1.3. Motivation

We opted to research the dermoscopic avenue of medical deepfakes, as this modality
is the easiest technique for capturing skin cancer diagnosis data due to easier targeted
attacks. Figure 1 illustrates how an attacker can easily manipulate healthcare and other
biomedical imagery. Dermoscopic devices are standard handheld, non-invasive machines
capable of capturing high-resolution skin images. Most often, skin-prone diseases are
initially diagnosed by a physician from these images. Using a generative framework, a
black hat expert could easily maneuver different skin cancers from mere human skin image
samples. The generative model could either generate new fake lesions or transform existing
non-dangerous tumors into late-stage malignant lesions. The current healthcare system
is designed to provide insurance schemes based on a doctor’s diagnosis and biomedical
imaging modalities as proof. Consequently, both the physician and the inspection agent at
the insurance end are likely to believe the attacker’s fallacy of tampering and manipulating
the medical images during the inquiry and diagnostic stages.

Figure 1. Behaviour of an attacker for Dermoscopic fakes to be used for the discrepancy.

With this in the lead, we propose a modified conditional GAN named Derm-CGAN to
generate high-definition dermoscopic images of skin lesions. Analyzing the synthesized
data with real cancerous data reveals high resemblance and realism. We compute the
Representation Similarity Matrix (RSM) to project the resemblance. Further, the state-of-the-
art Vision Transformers (ViT) are explored in the feature learning and categorization of real
and fake dermoscopic data. The best-performing ViT configuration was further analyzed by
testing on synthesized face images from the DFFD dataset as well as on selected pre-trained
networks to consolidate the findings.

The novelty of the research work is contributed as:

• Designed a dermatology-conditioned generative adversarial network named Derm-
CGAN for the artificial synthesis of dermoscopic images.

• A similarity analysis technique is illustrated that compares the realism of deepfakes to
genuine data.

• Proposed an architecture for dermoscopic deepfake image detection based on a modi-
fied vision attention transformer.

• Critical analysis has been performed on the detection mechanism in Diverse Fake Face
Dataset (DFFD) and state-of-the-art pre-trained networks.
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2. Materials and Methods

The general architecture of the proposed framework is illustrated in Figure 2. We
observed a need for publicly available synthesized data in medical deepfake detection.
For this reason, the Derm-CGAN was developed as a modified version of the current
Conditional GAN-based image translation frameworks by training the network contin-
uously until it reached a stable momentum generating highly realistic fake content [37].
The negative data corpus is a collection of synthesized skin lesions by Derm-CGAN. A
Multi-headed Vision Attention Transformer (ViT) was then trained on the real dermoscopic
conditions (positive dataset) as well as the counterfeited lesions (negative dataset). The
network extracts latent representations from patches of dermoscopic images to determine
if the incoming input is genuine or fraudulent.

Figure 2. Overall structure of the proposed framework.

Derm-CGAN defines fake skin cancer data generation as an image-to-image translation
challenge. Dermoscopy devices capture dermoscopic images that enhance the visualization
of the deeper layers of the skin. Recreating high-definition dermoscopic data seems arduous
due to the complex structures and tissue detailing of human skin, including human hair
follicles and color variations. Our model learns explicitly to discover a function mapping
containing a pre-specified skin condition and the underlying skin attributes, such as the
size and color of skin disorders.

2.1. Positive Dataset

We utilized the well-known ISIC2019 dataset of eight separate skin lesion categories for
the real bonafide data. The International Skin Imaging Collaboration (ISIC) datasets are the
largest known repository of skin lesions collected from clinics around the world. ISIC2019
originally comprises 25,331 images assembled from the HAM10000 [38], BCN20000 [39],
and MSK [40] datasets, each of which is a standard collection of dermoscopic skin lesion
images gathered from reputed cancer centers around the world. The repository includes
benign as well as malignant skin cancer images. Benign classes are the subdued forms of
cancer that may turn hazardous if left untreated, whereas malignant cancers are potentially
dangerous and may even lead to life-threatening situations.

We chose 600 images each from six different skin lesion categories as the bonafide
dataset. The benign classes selected were Actinic keratosis (AKIEC), Benign keratosis (BKL),
Melanocytic nevus (NEVI), and Vascular lesions (VASC). Two malignant categories, Basal
cell carcinoma (BCC) and Melanoma (MEL) classes of lesions, were chosen to maintain
divergence in the positive data corpus. The classes with the least representation (fewer
than 600 in total), notably Dermato Fibroma (DF) and Squamous Cell Carcinoma (SCC),
were omitted from consideration as they would cause inconsistencies during the training
of the Derm-CGAN.

2.2. Negative Dataset

The deepfake dermoscopic dataset was prepared using the novel Derm-CGAN archi-
tecture we engineered as an extension of conditional GANs (cGAN). Conditional GANs
generate images using a random latent vector and corresponding labels as inputs. Labels
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are supplied during training, so the latent vector can be associated with a specific label,
establishing predictable image generation [41]. We used six classes selected as the positive
data from the ISIC2019 for training and generating fake skin lesions. Samples from the
positive and negative datasets are shown in Figure 3.

Figure 3. Instances from the Real and Deepfake dermoscopic datasets.

Figure 4 illustrates the overall mechanism of the Derm-CGAN architecture and the
design of the generator and the discriminator. Learning happens concurrently with the
back-propagation of the generator and discriminator loss functions, even though each
module of the framework remains independent of the others.

Figure 4. Derm-CGAN Framework.

2.2.1. The Conditioned Generator

The architecture of the standalone generator model is designed as in Figure 5 that takes
a latent noise vector of dimension 256 and a random label in the range [0, 5] representing
the different skin lesion types. As a starting point, we reshape the latent input vector into
an 8 × 8 image. For this, the latent vector is mapped to 128 ∗ 8 ∗ 8 = 8129 dense nodes,
which are further reshaped into 8 × 8 images with 128 feature maps. The embedding of
the category label inputs results in a vector of size 64 that will eventually be reshaped into
an 8 × 8 image representation to fit the dimensions for concatenation with the reshaped
latent noise vector. The combined vector size of 8 × 8 × 129 is slowly upscaled to a
128 × 128 × 3 image for output. Up to the output layer, this part of the cGAN is identical
to an unconditional GAN. We integrate the input label and the latent input while defining
the model inputs. Unlike the discriminator, this model is not explicitly trained, and thus, it
is not compiled initially.
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Figure 5. Architecture of the Conditioned Generator.

2.2.2. The Discriminator

The standalone discriminator model is designed as in Figure 6 to investigate the
likelihood that the input image is real. Technically, it is a binary classifier deciding values
between 1 and 0 using a sigmoid activation. Unlike regular GANs, here we are also
providing several classes as input. The input images along with their skin lesion class labels
are supplied as input to the discriminator. Similar to the generator, the discriminator also
establishes embeddings for the class labels, which are then upscaled to the input image
dimension of 128 × 128 with linear activations. Further, these are concatenated as an
additional channel with the original input image. The classifier is designed to downsample
the input embeddings of the combined representations four times, followed by a flattening
layer and a dropout of 40% for regularization. Here again, we integrate the input label
and image while defining the model inputs as performed in the generator. The sigmoid
activation functions ensure sparse categorical values, representing real and fake data. The
ground truth labels of the incoming images would always be set as real (y = 1), regardless
of whether they were batches of real or synthesized images. Eventually the generator tries
to improve the possibility that the discriminator would misinterpret its inputs for genuine
while the discriminator would want to accurately distinguish false as fake and real as real.
However, the model is compiled before connecting it with the generator architecture.

Figure 6. Architecture of the Discriminator Classifier.

2.2.3. Derm-CGAN

The Dermatology-Conditioned Generative Adversarial Networks (Derm-CGAN) are
assembled by taking noise and class labels, further synthesizing dermoscopic fakes, and
outputting a classification for a batch of real and fake data. However, cGAN learns by
juggling the training procedures of the generator and the discriminator separately. To
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update the generator, we combine the two networks and set the discriminator untrainable.
At the same time, we keep the generator constant during the training of the discriminator.
As a matter of fact, we will train the GAN on a half batch of real images and another half
batch of fake images. We assign label 1 to real images and label 0 to false images.

Initially, we started the training of Derm-CGAN with the conditioned generator by
pumping in noise vectors and skin class label inputs to produce 128 × 128 × 3 fake samples
with the class label 0. We loop through a number of epochs to train our discriminator by
first selecting a random batch of n real images from the real dataset. Further, a set of n
images is produced from the still-learning generator. Both sets are fed to the discriminator
to initiate training. Finally, the loss parameters are distinctly set and back-propagated for
both the real and fake images (Equations (3) and (4)). Alongside this, a combined GAN
loss comprehends the convergence rate of the framework.

L(G) = min
[ 1

n ∑n
i=1(log(1− D(G(zi|c))))

]
(3)

L(D) = max
[ 1

n ∑n
i=1(logD(xi|1) + log(1− D(G(zi|c))))

]
(4)

Normally, the discriminator model is tuned for a single batch that consists of half
real samples and half fake samples. However, we independently train the discriminator
on either real or fake batches. The generator desires that the discriminator identify the
samples it generates as legitimate samples. Since the generator is attempting to deceive
the discriminator into believing the generated image is real at this point, we set the label
as 1 (true/real). Hence, reversed labels are framed for the fake samples. The success of
the discriminator lies in identifying the fake sample and classifying them to class 0 (fake).
Instead, the output would be 1 (true) if the generator was successful in deceiving the
discriminator. The generator error is hence updated using the discriminator loss.

2.2.4. Representation Similarity Analysis

The conditioned generator assisted in creating images of uncommon skin disorders in
minorities. This could diversify the datasets with respect to the subsequent skin condition
fraud detection. We performed the Representation Similarity Analysis (RSA) on our
generated data with real dermoscopic images. The computational approach of RSA is a
technique of finding correlations between pairs of data to uncover their representation in a
higher dimensional space [42].

We randomly selected 30 samples from each of the classes (real and fake) for the
analysis. Each image was reshaped to a resolution of 200 × 200 and flattened. The
rationale behind this is to project each image to a data point of dimension 40,000 for easier
comparison. We find the Pearson correlation coefficients between all pairs of data points in
the shared representational space. Equations (5) and (6) show the computations involved.

ρRD (x, y) =
Cxy√

CxxCyy
(5)

Cxy =
1
D

D

∑
i=1

(xi − x̄)(yi − ȳ) (6)

where the correlation coefficient is computed from the covariance between pairs of data
points. These lie in the range of [−1, 1], with values closer to 1 (darker regions) implying a
positive correlation. Here, it would mean higher similarity between pairs of data.

2.3. DeepFake Detection Architecture

We utilized the Vision Transformer (ViT) used in computer vision that operates in-
spired by the attention transformers used in Natural Language Processing (NLP) [43,44].
The transformer learns internally by assessing the relationship between input token pairs.
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It is a deep learning model that utilizes attention processes to weigh the relevance of each
element of the input data separately.

Figure 7 illustrates the working of ViT on deepfakes. Our model adheres as precisely as
possible to the original Vision Transformers architecture. Patching, positional embeddings,
and transformer encoders are the key components of a ViT.

Figure 7. Framework of the Detection model based on Vision Transformers.

In NLP transformers, a 1-dimensional series of token embeddings are processed
to achieve tasks. Images are essentially 1 dimensional when converted to a series of
flattened patches. Image patching is performed by separating the image into fixed-size
parts, flattening them, and then linearly projecting them into a 2D data space (Equation (7)).

XεRH×W ⇒ XpεRN×p2
(7)

Transformers utilize a clever positional encoding approach in which each position
or index is mapped to a vector. As a result, the positional encoding layer produces a
matrix in which each row represents one encoded object in the sequence aggregated with
its positional information. To maintain positional information, position embeddings are
added to patch embeddings. To the series of embedded patches, we append a learnable
embedding for the class label (real/fake), whose state at the Transformer encoder’s output
would serve as the representation y’ to be extrapolated using a classifier head.

Further, the transformer encoder receives the generated series of embedding vectors
as input. Transformer encoders employ the self-attention layer allowing information to
be embedded globally over the total picture. The model also learns from training data to
encode the relative placement of image patches in order to recreate the image’s structure.
Multiple instances of the self-attention layers, known as multi-head self-attention layers,
linearly concatenate all attention outputs to the appropriate dimensions. This helps in
the training of local and global dependencies in an image. The internal structure of
the transformer encoder is illustrated in Figure 7. We used a pair of dense Multi-Layer
Perceptrons (MLP) as the final classifier with the softmax activation.

Deepfake detection in itself is an exceedingly challenging task. Hence, we designed a ViT
with a larger patch size from the original 128 × 128 resolution image data. Dosovitskiy et al.
establish through various experiments on how the number of training parameters hugely
reduces with smaller patch sizes while also maintaining the model performance on the
task of deepfake detection [44]. However, we experimented with altering the input size
and patch sizes without changing the overall structure of the architecture, analyzing the
number of parameters all the time.



Diagnostics 2023, 13, 825 11 of 22

2.4. Evaluation

We report the Representation Similarity Matrix (RSM) using Pearson’s coefficient as a
quantitative measure of the generation of the dermatological deepfake. Primarily, deepfake
detection is a binary classification problem. We assessed the confusion matrix depicting the
different blocks to which a predicted label could be applied. True positives and negatives
are the numbers of real and fake classes that are rightly predicted, while false positives and
negatives are those that are incorrectly predicted. With the components of the confusion
matrix, the detection performance of the transformer classifier network has been analyzed
in terms of accuracy, precision, recall, the Receiving Operating Characteristics (ROC), and
Area under ROC curve (AUC) metrics. We chose the ROC curve over the PR curve due
to the balanced selection of the dataset, albeit both are presented. The network was also
computationally assessed in terms of the trainable parameters.

3. Results and Discussion

We discuss the two paradigms of deepfakes in a medical setting: generation and
detection. Realistic dermoscopic skin lesions were synthesized using the proposed Derm-
CGAN, and the detection of the same was approximated using the state-of-the-art Vision
Transformers (ViT). We have consolidated the study with a comprehensive examination
of the detection mechanism by evaluating the highest-performing variants of ViTs on the
Diverse Fake Face Dataset (DFFD) and existing popular pre-trained deep architectures.

3.1. Dermoscopic Fake Generation

We initiated the training of Derm-CGAN by first generating points in the latent space
for the generator. Further, the generator and discriminator were trained consecutively one
after the other. For the discriminator, n fake samples were synthesized using the generator
by feeding the latent vector of size 256 and labels for n samples. These, along with a random
set of real images, were fed to the discriminator. The generator is then trained based on the
discriminator loss. Likewise, the entire framework was run for 1200 epochs at a batch size
of 32.

The total number of model parameters in our proposed model explains the complexity
of this architecture. Table 2 projects the number of trainable and non-trainable parameters
of the generator, discriminator, and the combined cGAN. The runtime and computational
complexity of the designs are determined by the number of trainable parameters. Despite
being built separately, the generator and discriminator designs go through intermittent
training one after the other. It is noticeable that the total parameters of the GAN module
correspond to the generator parameters and a pair of discriminator parameters (one each for
real and fake sets). One set of discriminator weights is established as trainable throughout
the passing of real data. At the same time, the weights corresponding to the fake data pass
are made to be untrainable. The settings are reversed when the fake data pass is in effect.

Table 2. Number of trainable and non-trainable parameters in Derm-CGAN.

Total Parameters (Millions) Trainable Non-Trainable

Generator 1.90 M 1.90 M 0
Discriminator 1.29 M 1.29 M 0
GAN Module 4.48 M 3.18 M 1.29 M

Figures 8 and 9 exhibit the progressive learning activity of the generator captured
every 200 epochs. The conditional generator could seamlessly produce data points (fake
dermatological conditions) based on the label corresponding to the skin lesion disease. It
must be due to the human hair structures in the original image that the final synthesized
images had a few missing pixel points (black dots). To remove the pixelated black noise, we
performed localized interpolation based on thresholds on the outputs from the generator.
The thresholds were set to near black point pixel values [0, 0.1] in the normalized ranges.
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Figure 8. Generation of conditional skin lesions associated in each category at the initial 600 epochs.

Figure 9. Generation of conditional skin lesions in each category at the final epochs.
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The accuracy curve of the discriminator over the real and fake classes helps explain the
performance of Derm-CGAN (Figure 10). Though the learning process is quite disturbing,
both detection accuracies have not gone below chance values after the initial 100 epochs.
Furthermore, discriminating between real and fake has reached a tipping point in the
final stages of learning. The accentuating curves demonstrate how the discriminator was
able to clearly distinguish between the two classes. Both accuracies at the last epoch were
estimated to be 98.43% and 96.79%.

Figure 10. Accuracy curves of the discriminator on real and fake batches.

Technically, the generator and discriminator should be competing against each other,
and hence, when one improves, the other suffers bigger losses. The losses are negatively
correlated. This happens until one or the other learns to minimize received losses more
effectively. Figure 11 projects the GAN losses of producing realistic dermoscopic images.
g_loss stands for the generator loss, whereas d_loss_real and d_loss_fake represent learning
losses on real and fake batches separately.

Figure 11. Generator and discriminator losses of Derm-CGAN.
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The synthesized signal in the early epochs is very different from the real one, which
results in good loss values for the d_loss_fake. The initial stages of realizing real images
also pose the same difficulty. Due to the difficulty of the generator’s mission, it is initially
challenging for it to identify a suitable gradient to follow during training. As a result,
during the early training epochs, the generator loss exhibits rather unpredictable behavior.
At about the 200th epoch, the generator begins to improve. This leads to the deterioration
of the discriminator task performance as it becomes more difficult to classify. We also
observed that after the 300th epoch, the discriminator losses are gradually and continuously
decreasing, which is a further indication that the training strategy is effective. At the 1200th
epoch, g_loss decreased to 0.82, d_loss_real to 0.54, and d_loss_fake to 0.52. GANs tend
to fall to some minimal optima and reach a mode collapse. However, our framework
eventually reached an optimal tradeoff of generator and discriminator losses.

Representation Similarity Analysis was performed on real and synthesized skin lesion
images by observing the Representation Similarity Matrix (RSM). Figure 12 illustrates the
RSM of 30 random samples of each of the real and fake datasets. The initial 30 samples
represent genuine data, whereas the last 30 belong to the fake class. The darker regions
of RSM show how similar the images are in a higher dimensional space. The diagonal
dark line represents a perfect correlation of data with itself. However, pairwise correlation
presents a highly positive correlation (values close to 1) among most of the data points in
the two class regions.

Figure 12. Representation Similarity Matrix of Real and Generated Skin lesions.

3.2. Dermoscopic Fake Detection

As observed from the RSM in Figure 12, deepfake detection would be an exceedingly
challenging task. We conducted multiple experiments by varying the image reshape sizes
and patch sizes that are to be input to the transformer encoder. The trainable number of
parameters and other detection evaluation metrics were also assessed during the process.
We have named the variants of ViT in the form of image size by patch size; for instance,
ViT128/32 would mean the ViT settings with an input image size of 128× 128 and patching
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size of 32 × 32. Table 3 projects the total number of trainable parameters for different
settings of image and patch sizes. This would explain the complexity of utilizing a network
model without forfeiting the performance of the same.

Table 3. Conditional settings of Vision Transformer.

Model Variant Image size Patch Size Parameters (Millions) Patches Elements/Patch

ViT128/32 128 × 128 32 × 32 4.6 M 16 3072
ViT128/16 128 × 128 16 × 16 10.7 M 64 768
ViT128/8 128 × 128 8 × 8 35.1 M 256 192
ViT64/32 64 × 64 32 × 32 2.9 M 4 3072
ViT64/16 64 × 64 16 × 16 4.4 M 16 768
ViT64/8 64 × 64 8 × 8 10.7 M 64 192
ViT32/16 32 × 32 16 × 16 2.8 M 4 768
ViT32/8 32 × 32 8 × 8 4.4 M 16 192
ViT32/4 32 × 32 4 × 4 10.7 M 64 48

The patches per image depend solely on the input image size and the patch sizes.
The elements per patch contribute to the weight parameters in the feature maps, which is
the reason for the reduced number of parameters with respect to the elements per patch.
It is also noticeable that the number of parameters decreases as we set conditions that
eventually add to the model’s complexity.

We omitted the ViT64/32 and the ViT32/16 variants, as patching would produce only
4 large patches. The rest of the model settings were assessed in terms of the aforementioned
metrics. We trained the ViT frameworks for 100 epochs with a batch size of 10. The entire
dataset was split for training and testing in the ratio 75:25. Of the 75% training data, 30%
was randomly selected for validation in each epoch, thereby ensuring cross-validations
during the training phase. Further, we applied Normalization, Random Horizontal Flip,
Random Rotation of 20%, and Random Zoom of 20% augmentations to regularize our
training on varied data. Each image was then patched depending on the ViT variant chosen.
Figure 13 shows the patching of a random skin lesion on ViT128/32

Figure 13. Patching Image size of 128 × 128 to 32 × 32 patches.

The models were learned by minimizing the categorical cross-entropy cost function
using the Adam optimizer in the default setting. Table 4 presents the performances of the
ViT variants by fixating the hyper-parameters constant throughout.
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Table 4. Performance of the ViT variants.

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) AUC (%)

ViT128/32 97.18 96.65 97.70 97.19 99.54
ViT 128/16 88.92 89.65 88.91 88.87 96.13
ViT 128/8 86.22 87.37 86.21 86.12 93.40
ViT 64/16 89.85 89.87 89.86 89.85 96.56
ViT 64/8 88.86 89.96 88.86 88.79 96.27

ViT 32/16 85.02 85.03 85.02 85.02 92.18
ViT 32/8 83.21 83.59 83.21 83.16 92.14

Since the datasets are entirely balanced, the accuracy, precision, and recall fall in a
similar range of values in each experiment. The ViT128/32 variant outperformed all other
model tweaks at a margin of about 7%. However, ViT64/16 is similar to (but the best of)
most other variants in the experiments. Hence, we assess the loss curves, ROC, and PR
curves of these two experiments.

Accuracies and losses during the network training were traced to deduce the behavior
of the models during experiments (Figure 14). The training curves display the model’s
ability to fit the training data. The tracked behavior of the validation data gives us an insight
into how considerable the learning is on previously unknown data [45]. We observed that
the training curves of all experiments were learned with near perfection. ViT128/32 has
learned 97.34% of seen data and 96.78% of validation data, whereas ViT64/16 could capture
about 95.21% of train data and could only approximate 86.38% of unseen fake and real
images. In the loss curves of Figure 14, it was observed that the validation loss curves of
ViT128/32 are consistent with the training curve, ruling out any chances of over-fitting. On
the contrary, the loss curves of ViT64/16 imply clear overfitting of train data inferred at
about the 40th epoch, after which the network could not improve further. This could be the
reason for lesser test scores in the rest of the experiments.

Figure 14. Accuracy and Loss curves of the two top performing model settings-ViT128/32 and ViT64/16.

The real-valued and normalized confusion matrices of the two ViT variants show the
proportion of each category classified (Figures 15 and 16). The best-performing model could
capture better attention representations, hence the higher percentages of True Positives
and True Negatives. ViT64/16 has captured attentive features from the real image class,
depicting a higher number of False Negatives (real being classified as fake) compared to
False Positives (fake being classified as real).
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Figure 15. Confusion matrix (normal and normalized) of the ViT128/32 setting.

Figure 16. Confusion matrix (normal and normalized) of the ViT64/16 setting.

The ROC and PR curves for the predictions at various categorization thresholds are
illustrated in Figures 17 and 18. The trade-off between the true positive rate and false
positive rate was summarised by ROC curves, whereas the accommodation of the true
positive rate and the predicted positives was summarized by the PR curve. The larger
number of True Negatives by ViT64/16 causes the ROC and PR curves to fall at the
x-axis. Moreover, the AUC sheds light on the competence of a predictive model. An AUC
of 99.54% was computed for ViT128/32, and for other variants, it covered over 96.00%
through 98.00%.

Figure 17. ROC curves of ViT128/32 and ViT64/16.
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Figure 18. PR curves of ViT128/32 and ViT64/16.

3.3. Discussion

The proposed model could conclude Vision Transformers to be effective on GAN-
generated dermoscopic skin lesion deepfakes. There have been no other works conducted
in this arena for comparison. However, we have compared the study with medical deepfake
detection of data produced using Conditional GANs in Mirsky et al. [22], and the original
Vision Transformer adaptations [44]. Further, we performed an ablation study by evaluating
the best configuration of ViT128/32 on the Diverse Fake Face Dataset (DFFD). Table 5
summarizes the comparative study.

Table 5. Comparative study on similar Datasets and Detection Model Performances.

Method Dataset Accuracy (%) Sensitivity (%) Specificity (%)

DenseNet [34] CT-GAN 80.40 71.30 71.75
3DCNN [35] CT-GAN 91.57 91.42 97.20
ViT-L/16 [44] CIFAR100 93.90 ± 0.05 Not Specified Not Specified
ViT-L/16 [44] CIFAR10 99.42 ± 0.03 Not Specified Not Specified

Proposed Derm-CGAN 97.18 97.70 96.76

The detection accuracies of pre-trained networks in [34] and convolution neural net-
works in [35] on CT-GAN generated fake nodules could capture the underlying spatial
artifacts inserted during the generation process through convolution operations. Further-
more, we observed that vision transformers have the potential to capture the best features
from smaller datasets by enforcing attention wherever required. Dosovitskiy et al. [44],
in their ablation study, inferred ViTs to perform well on smaller datasets. However, the
number of parameters in their different variants exceeds over 86 M. The ViT/L represents
a transformer with 24 layers and 16 multi-attention heads. The state-of-the-art ViT has
performed well on the smaller dataset CIFAR10 comprising 6000 images, compared to
CIFAR100, comprising 60,000 images. However, our proposed model stands close to the
CIFAR10 experiment, with much lesser parameters (4.6 M) and only four multi-attention
heads, leading to faster execution.

Critical Analysis

All models were trained and tested in Python 3.8.10 on NVIDIA Tesla V100-PCIE
Graphics Processing Units (GPU) configured on a high-performance computing cluster
with 1 Teraflop. The experiment is critically analyzed in two aspects: performance on other
benchmark datasets and complexity compared to pre-trained convolution neural networks.

The model has been critically analyzed by utilizing the best-performing model ViT128/32
for fake face detection on the Diverse Fake Face Dataset (DFFD). DFFD comprises artificially
synthesized and manipulated images using openly available generative methods. The
data generated by PGGANs and StyleGANs were chosen as the negative data, and the
Celeb-A dataset was chosen as the positive data for the ablation study. PGGAN dataset
comprises 9975 train images and 8970 test images, whereas the stylegan dataset comprises
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10,000 images in total, which were split in the ratio 60:40. However, Celeb-A contains
202,600 high-resolution images of which 10,000 were selected to maintain balance in the
dataset. Table 6 projects the performance of ViT128/32 on the selected datasets. The
performance degradation in StyleGAN-generated images would be due to the highly
realistic nature of the synthesized data. Nevertheless, the optimized settings of the proposed
ViT128/32 could perform comparably to each other. The training time for the two fake face
experiments took ∼17 s/epoch, whereas the proposed model trained in ∼13 s/epoch. Test
runtimes were very quick as they were processed in batches of 8 and took ∼5–8 ms.

Table 6. Performance Analysis of ViT128/32 on DFFD benchmark data.

Dataset Accuracy (%) Precision (%) Recall (%) F1 Score (%) AUC (%)

DFFD (PGGAN) vs. Celeb-A 96.76 96.81 96.33 96.73 99.48
DFFD (StyleGAN) vs. Celeb-A 89.81 91.95 85.16 89.79 96.13
Derm-CGAN vs. ISIC2019 97.18 96.65 97.70 97.19 99.54

The space complexity of the proposed ViT model was estimated by computing the
number of trainable parameters with respect to popular pre-trained networks. As estimated
from Table 3, the ViT128/32 has required 4.6 M parameters compared to the other variants.
We trained and tested the best pre-trained models from the literature on this task, all the time
keeping track of the training time and the trainable number of parameters. Table 7 shows
the estimated complexities and performances of the pre-trained models. The pre-trained
models exhibit faster runtimes compared to ViTs as they are composed using convolution
layers. However, ViTs, with their few numbers of layers, lesser trainable parameters,
and no convolution layers, exhibit comparatively better performance. Interestingly, the
depth of the pre-trained convolutional neural networks was directly proportional to the
categorization performance. Furthermore, it is observed that the ViT could capture the
hidden dynamics of the GAN traces injected during the synthesis process.

Table 7. Complexity Comparison of Derm-CGAN generated data on pre-trained and proposed
architectures.

Model Parameters (Millions) Number of Layers Runtime (s) Accuracy (%) Precision (%) Recall (%)

VGG16 17.9 M 20 400 55.30 30.59 55.30
ResNet50 24.8 M 54 900 71.20 72.73 71.22
DenseNet 11.2 M 125 1000 85.09 86.63 83.74
EfficientNetB0 8.7 M 241 600 84.74 87.18 83.12
ViT128/32 4.6 M 30 1300 97.18 96.65 97.70

Technically, it is easier to insert fakes into the dermoscopic imaging modality as they
are non-invasively captured. This would be the reason for the forthcoming potential
of generating dermoscopic deepfakes. Our work is limited to the dermoscopic avenue
of healthcare. There is a huge scope for deepfake generation in the various 2D and 3D
imaging modalities such as X-rays, MRIs, or f-MRIs. This arena of medical deepfakes
is relatively new, with very few published studies to compare with. Anybody could
use faking technology to benefit from insurance fraud or cause harm through medical
misdiagnosis. Nevertheless, such a detection technology would assist non-specialists in
detecting fraudulent attacks against them. Deploying the technique via a smartphone
application would be advantageous for the general public.

4. Conclusions

Medical deepfakes are an open research domain that has acquired far too little em-
phasis and requires more attention in the research community. We experimented with
synthesizing fake dermoscopic skin cancerous lesions using a label-conditioned GAN
framework named Derm-CGAN. The realism of the generated dermoscopic deepfakes was
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analyzed using a Similarity Matrix. The same was then detected utilizing several variants
of the state-of-the-art ViTs obtaining an optimized parameter setting for future research
purposes. The proposed model has also been critically studied in terms of complexities
and runtimes by comparing it with pre-trained detection models, benchmark datasets as
well as the original results of ViTs. The development of detecting algorithms is still in its
early phases, and a large pool of technical aspects could be explored. In the future, more
signal-processing techniques could be employed in this domain. Future advancements in
detection may also use more complex designs that could capture the inherent and hidden
but explainable dynamics of data. Locating the region of interest where the fake has oc-
curred is another avenue for more inquiry. Keeping aside the technicality of generation
and detection of highly realistic fakes in the healthcare sector, we emphasize the societal
impacts of such technology outbursts into the wild.
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