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Abstract: Diabetic retinopathy (DR) and diabetic macular edema (DME) are forms of eye illness 
caused by diabetes that affects the blood vessels in the eyes, with the ground occupied by lesions of 
varied extent determining the disease burden. This is among the most common cause of visual 
impairment in the working population. Various factors have been discovered to play an important 
role in a person’s growth of this condition. Among the essential elements at the top of the list are 
anxiety and long-term diabetes. If not detected early, this illness might result in permanent eye-
sight loss. The damage can be reduced or avoided if it is recognized ahead of time. Unfortunately, 
due to the time and arduous nature of the diagnosing process, it is harder to identify the preva-
lence of this condition. Skilled doctors manually review digital color images to look for damage 
produced by vascular anomalies, the most common complication of diabetic retinopathy. Even 
though this procedure is reasonably accurate, it is quite pricey. The delays highlight the necessity 
for diagnosis to be automated, which will have a considerable positive significant impact on the 
health sector. The use of AI in diagnosing the disease has yielded promising and dependable 
findings in recent years, which is the impetus for this publication. This article used ensemble con-
volutional neural network (ECNN) to diagnose DR and DME automatically, with accurate results 
of 99 percent. This result was achieved using preprocessing, blood vessel segmentation, feature 
extraction, and classification. For contrast enhancement, the Harris hawks optimization (HHO) 
technique is presented. Finally, the experiments were conducted for two kinds of datasets: IDRiR 
and Messidor for accuracy, precision, recall, F-score, computational time, and error rate.  

Keywords: diabetic retinopathy; ensemble convolutional neural network; diabetic macular edema; 
Harris hawks optimization and artificial intelligence 
 

1. Introduction 
Computer-assisted health care, health care technology consulting, and health mon-

itoring equipment are just a few of the current buzz words. Thanks to the connection and 
computing architecture that has drawn attention to the electronic era we live in, ordinary 
people now have the luxury of receiving diagnosis and treatment from the comforts of 
home with a single tap [1–3]. While routine illnesses and minor illnesses can usually be 
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treated without visiting a doctor, some more severe illnesses still necessitate a great deal 
of effort from the medical establishment. Technology can help, but not replace human 
intervention. With the advancement in AI technology, technologies can now autono-
mously analyze a patient’s condition and identify a condition in a matter of seconds us-
ing the patient’s significant history and associated data [4–6]. By 2025, the amount of DR 
individuals suffering is predicted to rise from 382 million to 592 million. According to a 
study conducted in the Pakistani province of Khyber Pakhtunkhwa (KPK), 30 percent of 
diabetic individuals suffer from DR, with 5.6 percent going blind [7–9]. If mild NPDR is 
not treated in the beginning phases, it might progress to PDR. In another study, 130 
people with DR symptoms were found in Sindh, Pakistan [10,11]. According to the 
findings, DR patients made up 23.85% of the overall examined patients, with PDR pa-
tients accounting for 25.8% [12,13]. Patients with DR are symptomatic in the beginning 
phases; however, as the disease progresses, it causes blobs, vision problems, distortions, 
and gradual visual acuity loss. Diabetic retinopathy is one of the issues previously men-
tioned in the article. Diabetic retinopathy is caused by diabetes destroying the blood 
flow on the retina’s inner, resulting in blood and other body fluids leaking into the tis-
sues surrounding it. Soft, damaged tissue (also known as cotton wool patches) [14], hard 
exudates, microaneurysms, and hemorrhages form as little more than a result of the 
leaking [15]. It is the most common cause of visual loss in the working-age population 
[16]. Diabetic retinopathy (DR) is caused due to diabetes mellitus, which can damage the 
retina and even lead to the loss of vision. The DR has several stages of severity such as 
mild, moderate, and severe [17]. The severe stage of DR is termed as proliferative dia-
betic retinopathy (PDR), in which the formation of new vessels in the retina is observed 
[18]. However, the early detection of DR and proper diagnosis will reverse or reduce the 
growth of the effects caused by the disease. Diabetic macular edema (DME) is a condi-
tion in which the lesions caused by DR are observed in the middle portion of the retina 
called the macula. The DME is considered as a serious condition as the damage caused 
by it is irreversible. The identification of features such as micro-aneurysms, hard exu-
dates, hemorrhages, etc., can be used to carry out the detection of these diseases. These 
micro-aneurysms refer to the red spots in the retina’s blood vessels with sharp margins 
formed in the early stages of the disease. The exudates are caused due to abnormality in 
the blood vessels, which are formed as yellowish-white spots in the outer layer of the 
retina. Hemorrhages also occur such as micro-aneurysms but have irregular margins 
caused due to the leakage of capillaries. The blockage of arteries also contributes to cot-
ton wool spots, which occur as a white region in the retinal nerve. Several methods have 
been developed for the detection of DR and DME to provide diagnosis, but these tradi-
tional methods were inefficient in accurately detecting diseases. Deep learning tech-
niques have been deployed for disease detection in which the retinal image (fundus im-
age) is used as the input in which the features are extracted for detection. These ap-
proaches have been found to be more effective in identifying features than the tradition-
al methods; however, these approaches also suffer from inaccuracy due to the presence 
of noises and artifacts in the input images. 

Figure 1 describes the retina images for disease DR and DME. As a result, it is hard but 
critical to recognize DR to prevent the worst effects of later stages. Fundus imaging is uti-
lized to diagnose DR, as mentioned in the preceding section. Manual analysis can only be 
performed by highly qualified subject matter experts and is thus cost and time intensive. As 
a result, it is critical to apply machine vision technologies to assess the retina image features 
and aid physicians and radiologists. Hands-on development and end-to-end learning are 
two types of computer vision-based methodologies. Traditional algorithms such as HoG, 
SIFT, LBP, Gaussian filters, and others are used to extract the features; however, they failed 
to preserve the scale, rotation, and brightness fluctuations [19]. 
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Figure 1. Retina images. (a) No DR and DME, (b) mild DR and DME, (c) moderate DR and DME, 
(d) severe DR and DME, and (e) non-PDR. 

Several existing approaches have integrated the preprocessing of input images and 
the deep learning-based detection of diseases in which the accuracy in the detection of 
diseases was observed to be improved. The common processes involved in these ap-
proaches are the preprocessing of input images, enhancement in contrast, and the ex-
traction of features for the detection of diseases. The machine learning models such as 
support vector machine (SVM) and K-nearest neighbor (KNN) classifiers were found to 
be appropriate for detecting DR and DME. The severity of the disease was determined 
by the number of features identified by the model; however, the imbalance in the distri-
bution of datasets resulted in the inefficient determination of severity. In particular, an 
effective mechanism in the detection of DR and DME, along with the determination of 
severity, is still in demand. The major aim of this research work was to provide the ef-
fective detection of DR and DME and to determine the disease’s severity to define the 
disease’s damage level on the patient. The accuracy of detection was achieved by per-
forming the proper processing of the input retinal image. End-to-end learning under-
stands the underlying rich traits dynamically, allowing for greater identification. Inside 
the retina imaging databases, many hand-on engineering and end-to-end learning-based 
algorithms have been used to identify the DR. Still, none of them can identify the mild 
stage. Accurate diagnosis of the weak stage is critical for controlling this devastating 
disease. Utilizing end-to-end deep ensembles models, this study attempted to discover 
all stages of DR (including the moderate stage). The findings revealed that the proposed 
strategy beats the current methods. 

The major objective of this research is to provide precise classification between the 
DR and DME and to compute the severity of the diseases accurately. This objective can 
be achieved by fulfilling the sub-objectives, which are listed as follows, 
• To minimize the noise level in the input image by performing effective prepro-

cessing of the image; 
• To maximize the precise identification of features from the preprocessed image by 

enhancing the contrast level; 
• To maximize the accuracy of detection by incorporating the segmentation of lesions 

in the blood vessels; 
• Effectively classify the images into three classes based on the extraction of significant 

features; 
• To determine the severity of the disease based on the variation in the intensity of the 

features for diagnosis. 
The major contributions of this paper are as follows: 

• In our work, we performed preprocessing that included three processes such as 
noise removal using iterative expectation maximization, artifact removal using non-
linear filtering, and contrast enhancement using Harris hawks optimization; the 
preprocessed image was used to enhance the quality of the images, which led to 
high segmentation and detection accuracy. Preprocessing was performed to reduce 
noise and artifacts and improve the contrast, which increased the efficiency of fea-
ture extraction and reduced the false detection rate. 
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• Segmentation was performed before feature extraction and classification, which in-
creased the detection accuracy. For segmentation, we proposed improved OPTICS 
clustering, which considers particular regions of interest and takes less time for 
segmentation, thus reducing latency and increasing the disease detection accuracy. 

• Improved OPTICS clustering overcomes misalignment problems due to considering 
the particular region of interest, thus increasing the segmentation and detection ac-
curacy. 

• The extraction of features was carried out in the segmented images obtained from 
the previous process. Features such as micro-aneurysms, hemorrhages, and hard 
exudates, collectively termed as structural features, are considered the essential 
features; along with this, the shape features, orientation features, and color features 
are also considered for the classification of DR and DME. The ensemble CNN ar-
chitecture was implemented for this purpose, which outperformed the ensemble 
CNN class prediction. From this, the classification of images was carried out in 
several classes, namely, normal, DR, and DME. Furthermore, the severity of the 
disease was computed by using conditional entropy in which the number of lesions 
is considered for the threshold generation. Based on the threshold, the severity level 
of the disease was classified into three classes: mid, moderate, and severe. 

• The proposed research work is evaluated in terms of performance metrics such as 
accuracy, precision, recall, F-score, computation time, and error rate. 
The rest of the paper is organized as follows: Section 2 illustrates the state-of-the-art 

in diabetic retinopathy and diabetic macular edema detection using specific approaches. 
Section 3 discusses the major problems that exist in this field. Section 4 describes the 
system model with the proposed algorithms and techniques in detail. Section 5 describes 
the experimental results of the proposed as well as previous methods. Section 6 con-
cludes the paper by providing future enhancements. 

2. Related Work 
In the literature, the diagnosis of DR has received much interest. In [20], researchers 

offered a robust system that automatically recognized and classified retinal lesions 
(blood vessels, microaneurysms, and exudates) from retinal imaging. Blood vessels, mi-
croaneurysms, and exudates were first discovered using image processing methods. 
Following this, the retina properties of the vascular system, microaneurysm count, exu-
date area, contrast, and homogenization were evaluated from the images obtained. 
These characteristics were then fed into a fuzzy classifier that uses the information to 
classify healthy, mild NPDR, moderate NPDR, severe NPDR, and PDR stages. A sample 
of 40 color fundus images was obtained from the DIARETDB0, DIARETDB1, and 
STARE datasets using a fuzzy classifier, correctly classifying the images with an effi-
ciency of up to 95.63 percent. 

A reliable automated approach for detecting and classifying the various stages of 
DR has been suggested The optic disc and retina neurons are separated, and characteris-
tics are retrieved using the gray level co-occurrence matrix (GLCM) approach. To iden-
tify various stages of DR, a fuzzy classifier and a convolutional neural network were 
used to classify them. DIARETDB0, STARE, and DIARETDB1 were the datasets used 
[21]. 

The unique clustering-based automatic region growth methodology was introduced 
in this study. Several types of features—waveform (W), co-occurrence matrix (COM), 
histogram (H), and run-length matrix (RLM)—were retrieved for the texture features, 
and several ML algorithms were used to achieve a classification performance of 77.67 
percent, 80 percent, 89.87 percent, and 96.33 percent, respectively. The information fu-
sion approach was utilized to create a fused hybrid-feature database to improve the ac-
curacy of the classification. Two hundred and forty-five elements of the hybrids’ feature 
data (H, W, COM, and RLM) were extracted from each image, and 13 optimum charac-
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teristics were chosen using four methodologies: Fischer, mutual information feature se-
lection, information gain, and the possibility of the dependent variable average correla-
tion [22]. The number of DR patients outnumbered the number of practitioners by a 
large margin. As a result, manual clinical diagnosis or screening takes a long time. To 
avoid this problem, follow-up scanning is performed regularly, and automated DR 
identification and intensity classification are required. Several strategies for detecting 
retinopathy and classifying its severity and likelihood are presented here [23]. 

Exudates are the diagnostic indications of diabetic retinopathy, a retina condition 
caused by long-term diabetes that can lead to eyesight problems if not detected early. 
The procedure of recognizing and categorizing exudates from a retinal image has been 
made easier thanks to a medical screening program. The exudates are first segregated 
using the FCM technique and then transformed into discrete mother wavelets. The clas-
sifier is fed the texture textural properties retrieved by the grey-level co-occurrence ma-
trix. The suggested program’s efficiency was evaluated by comparing it to the data from 
the publicly available dataset IDRID. MATLAB was used to formulate and construct a 
GUI [24]. 

This research has the proposed texture feature extraction characteristics of the 
GLDM method (contrast, angular second moments, density, median, and inverse dif-
ference moment) feature and feed-forward neural net classifier as a machine learn-
ing-based approach for DR detection and evaluation. According to the results of the tri-
als and performance assessment, the suggested methodology had a detection perfor-
mance of 95% [25]. 

Diabetes is responsible for 50 deaths per 1000 live births amongst individuals over 
the age of 70. The identification of diabetes at a preliminary phase and the implementa-
tion of a suitable therapy may minimize the visual loss among the sufferers. Once 
symptoms of DR have been identified, the severity of the disease must be defined to 
recommend the appropriate treatment. Mild nonproliferative diabetic retinopathy 
(NPDR), moderate NPDR, severe NPDR, proliferative diabetic retinopathy (PDR), and 
no DR are the five phases of diabetic retinopathy severity. The techniques and issues 
associated with DR identification are summarized in this publication [26]. In [27], the 
authors proposed diabetic retinopathy classification using retinal images through an 
ensemble learning algorithm. The proposed work includes the following processes: ret-
inal image collection, preprocessing, feature extraction, and feature selection and classi-
fication. In preprocessing, the noisy images, duplicate images, and black borders are 
removed from the images. Tone mapping is used to increase the contrast and luminance 
in the images. Two sets of features are extracted from images such as the histo-
gram-based feature and GLCM feature extraction. Then, the features are concatenated to 
select the relevant features. Here, the GA algorithm is used for feature selection. Finally, 
classification was undertaken by the XGBoost algorithm using the selected features. 
Here, genetic algorithm (GA) was used for feature selection; it takes a lot of time to select 
the features, thus increasing feature selection and classification latency. 

Early detection of diabetic retinopathy using retinal images for diabetes is present-
ed in [28]. The proposed method includes four processes: preprocessing, segmentation, 
feature extraction, and classification. The preprocessing includes noise removal and 
contrast enhancement using histogram equalization (HE). The segmentation is per-
formed by Gaussian derivative and Coye filter, which segments the EX, MA, and HM. 
The features are extracted from the segmented image and extract features such as EX, 
MA, and HM values. Finally, SVM is used to classify the images using the extracted 
features. Here, SVM was used for classification, which takes a lot of time for training 
when considering larger datasets, thus leading to classification latency. 

A histogram equalization method for the early detection of diabetic retinopathy 
was presented in [29]. The proposed algorithm included three methods: histogram clip-
ping, RIHE-RVE, and RIHE-RRVE, which addressed the issues of the illumination of the 
retinal images. To avoid enhancement, the histogram clipping algorithm was proposed. 
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The simulation result showed that the proposed method achieved a high performance 
compared to the other state-of-the-art methods. Here, the histogram equalization meth-
od was proposed, however, it is an unselective process that may increase the back-
ground noise contrast while decreasing the functional input image. 

The authors in [30] proposed CANet to detect diabetic retinopathy and macular edema 
for diabetes. The proposed work used ResNet50 to produce a feature map with various res-
olutions including a cross-disease attention network, disease-specific attention module, and 
disease-dependent attention module. The disease-specific attention module was used to 
learn the features of the two diseases. In this stage, the inter special relationship was evalu-
ated to detect the diseases. A disease dependent attention module was used to evaluate the 
internal relationship between the DR and DME diseases. Here, raw images were considered 
for training and testing, thus increasing the high false positive rate due to the presence of 
noise and low contrast, also reducing the detection accuracy. 

The authors in [31] proposed a deep learning algorithm to detect diabetic retinopa-
thy disease in diabetic patients. The proposed method included two processes: diagnos-
ing DR severity and the feature extraction of DR. The proposed system hierarchical mul-
titask learning architecture aims to detect both the DR severity and DR feature extrac-
tion. Finally, the fully connected layer provides the output, and it considers the hybrid 
loss, cross-entropy loss, and kappa loss for reducing the errors in the levels of DR sever-
ity. The simulation results showed that the proposed model achieved a higher perfor-
mance using traditional deep learning methods. Here, the traditional deep learning 
method was used to detect the DR severity levels and feature extraction of DR; however, 
it generated multiple convolutional layers, thus increasing the complexity and latency. 

In [32], the authors proposed a modified contrast enhancement approach from the 
effective identification of features in detecting diabetic retinopathy and diabetic macular 
edema. The limitations of conventional contrast limited the adaptive histogram equali-
zation (CLAHE) technique such as the fixed clip limit and region of context, resulting in 
the inefficient identification of minute features, but can be overcome by implementing 
modified particle swarm optimization (MPSO) to determine the optimal clip limit and 
region of context, thereby resulting in the precise identification of features that further 
help in the accurate detection of diseases. The global best solution of all the operating 
particles was computed by comparing the output provided by all the particles in the it-
eration, which resulted in enhanced image contrast. The optimization of the clip limit 
and region of context was performed by the MPSO algorithm for the purpose of en-
hancing the contrast of the input image, but the proposed algorithm possessed slow 
convergence and is stuck in the optimal local solution. 

In [33], the authors proposed an approach for the detection of diabetic macular 
edema in an automatic manner. The macular edema was identified, and the severity of 
the disease was determined by implementing mathematical morphology. The retinal 
image was used as the input from the detection process that was carried out. Initially, 
the preprocessing of the input image was performed from the removal of noise and en-
hancement of the contrast. Furthermore, the localization of the macula was executed by 
removing the optic disc and locating the center of the fovea. Then, the exudates in the 
region of the macula were identified in order to determine the severity of the disease. 
The removal of artifacts such as reflection due to lighting was removed as a 
post-processing step to achieve an accurate determination of severity. The detection of 
the macula in the input retinal image was carried out by using mathematical morpholo-
gy, but this approach resulted in less accuracy in the detection of the macula region. 

In [34], the authors proposed a probability-based construction of the future retinal 
image in detecting diabetic retinopathy. The difficulty in identifying the future instances 
of lesions in the retinal image was addressed. Initially, the segmentation of lesions and 
vessels was carried out to identify the severity of the disease from the input retinal im-
age. Then, the probability of future lesion location was computed by the construction of 
a probability map. Furthermore, the generated probability map, along with the structure 
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of vessels, was considered for the systemization of future lesions in the retina. This 
method was found to be effective in predicting future lesions based on the progression 
of the severity of diseases. The future severity of diabetic retinopathy was determined by 
using the probability map and the features of the current vessels, but the lack of noise 
removal in the input image reduced the efficiency of this approach. 

3. Problem Statement 
An input fundus image is used to perform the identification of diabetic retinopathy 

and diabetic macular edema; however, the accuracy of the system is decreased by the 
increased false detection rate of the existing techniques. In addition, the following issues 
are encountered in the best detection of DR and DME, which are listed as: 
• Difficulty in feature differentiation: The detection of DR and DME is based on var-

ious features such as hard exudates, hemorrhages, and micro-aneurysms, but the 
differentiation of these minute features from each other is a hard task, which de-
grades the computation of the accurate severity of diseases. 

• Class Overlapping: Current techniques also consider illness severity; however, the 
sparse training data for each severity leads to class imbalance issues that degrade the 
classification accuracy. 

• Inadequate preprocessing: Using the current methods for effective contrast en-
hancement with traditional preprocessing leads to difficulties distinguishing fea-
tures from the background. 
In [35], the authors proposed diabetic retinopathy detection using a deep convolu-

tion neural network (DCNN) for nonproliferative diabetic retinopathy. The proposed 
work includes three phases: preprocessing, candidate lesion detection, and candidate 
extraction. In preprocessing, the image contrast is enhanced using curve transformation. 
Then, the images are smoothened by a bandpass filter. In the lesion, the detection pro-
cess includes four stages: optical disc removal, candidate lesion detection, vessel extrac-
tion, and preprocessing. In candidate extraction, the micro-aneurysms are detected to 
measure the coefficient between every pixel using Gaussian kernels. For this, a PCA al-
gorithm was proposed to reduce the dimensionality. Finally, classification was under-
taken by DCNN. In this way, the proposed work achieved high accuracy of nonprolifer-
ated diabetic retinopathy. The major issues determined in this paper are as follows: 
• Here, preprocessing was performed to enhance the quality of the retinal images; 

however, the retina image still has noise due to the implementation of traditional 
contrast enhancement techniques, thus reducing the image quality, which leads to a 
high false detection and reduced detection accuracy. 

• DCNN is used for feature extraction and the detection of nonproliferated diabetic 
retinopathy. Still, DCNN focuses on the whole image for the extraction of features 
without any particular region of interest, thus increasing the high latency for feature 
detection. 

• The PCA algorithm was used to reduce the dimensionality, but the number of prin-
cipal components must be selected otherwise it may cause information loss, thus 
reducing the detection accuracy. 
The authors in [36] proposed a data augmentation method to improve the detection 

rate of proliferative diabetic retinopathy. The NVs were inserted onto pixels located on 
vessels. Vessel segmentation was performed by Otsu thresholding and the U-Net deep 
learning algorithm, and then optic disc segmentation was performed. The count of NVs 
was determined by selecting random values using a threshold. The next process is 
semi-random blood vessel generation, which is based on the tree structure. This process 
considers the shape and orientation of the NVs. For the vessel color assignment color, a 
matrix was proposed that calculates the weighted average of the RGB values of the im-
ages. Finally, DR grading and data augmentation was proposed to improve the NVs. 
Some of the significant problems in this research are as follows: 
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• Here, the Otsu thresholding method was used for vessel segmentation, which per-
formed well; however, it did not provide an optimal result for noisy images. First, 
the noise is removed from the images, and then the thresholding is applied; other-
wise, this method will fail, thus reducing the performance of vessel segmentation. 

• The detection of diabetic retinopathy was carried out by performing the segmenta-
tion of neovessels in the retina. However, performing detection based on a single 
feature results in a high false detection rate. 

• Here, the U-Net algorithm was also used for vessel segmentation, which takes a lot 
of time to learn the vessels from the retinal images at the middle layers, thus leading 
to high latency. 
The authors in [37] proposed the analysis of retinal images to detect eye diseases for 

diabetes using the deep learning method. The proposed method considered two pro-
cesses: detection and localization, and the segmentation of localized regions. For locali-
zation, the author proposed the FRCNN method, which extracts the features from the 
images that evaluate the affected portions. For the segmentation process, the author 
proposed the FKM clustering algorithm. The ground truth was generated for detecting 
the affected regions during training. Finally, the DME is classified into two classes such 
as DME and background. The serious issues in this paper are as follows: 
• Here, raw images were considered for the localization and segmentation process, 

thus reducing segmentation and detection accuracy due to low contrast and the 
presence of noise in the retinal images. 

• Faster RCNN was implemented for the extraction of features but the lack of pix-
el-to-pixel alignment in the region of interest caused misalignment, resulting in the 
degradation of the detection accuracy. 

• The proposed approach was used for diabetic-based disease detection in the eye, but 
the detection of various diseases from the limited number of trained images resulted 
in class imbalances. 
The authors in [38] presented an efficient framework for the detection of macular 

edema disease for diabetes. The proposed work used the combination of a deep convo-
lution neural network (DCNN) and a meta-heuristic algorithm for feature extraction and 
feature selection, respectively. At the stage of feature extraction, the proposed work re-
duced the feature extraction complexity by reducing the prior knowledge. The SMOTE 
algorithm was used to perform class imbalance. The generic algorithm and binary parti-
cle swarm optimization algorithm were used to select the relevant features. The draw-
backs in this paper are as follows: 
• Here, the features were extracted from the noisy images, thus reducing the quality of 

the images and leading to poor feature extraction, thus increasing the macular 
edema’s false detection rate. 

• The integration of the genetic algorithm and binary particle swarm optimization 
was used to determine the subset size. However, implementing these two algo-
rithms increases the complexity and time consumption, thereby increasing the la-
tency. 

• DCNN was used for feature extraction and the detection of nonproliferated diabetic 
retinopathy, however, DCNN focuses on the whole image for the extraction of fea-
tures without any particular region of interest, thus increasing the high latency for 
feature detection. 

4. Proposed Model 
In this research work, we concentrated on accurately detecting the DR and DME 

from the input fundus images. The severity of the disease is also determined based on the 
features extracted from the images. Figure 2 shows the architectural view of the proposed 
work. The description of the dataset is provided below: 
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Figure 2. System model. 

The properties of the blood vessels in the retinal image enable the ophthalmologist 
to assess retinal disease. The presence of lesions on the fundus image is the first sign of 
diabetic retinopathy. The preprocessing technique is mainly used to remove unwanted 
noise and enhance some image features.  

The fundamental idea underlying OPTICS is to find the points associated by densi-
ty to extract the cluster structure of a dataset. The approach generates a density-based 
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representation of the data by constructing a reachability graph, an ordered collection of 
points. Each location in the list has a reachability distance associated with it, which 
measures how simple it is to get to that site from other points in the collection. Points 
with comparable accessibility distances are most likely in the same category. 

Before sharing our preprocessed image with CNN, we converted the image to an 
array and mapped that array’s values in the range of 0 to 1 as the epoch was set at 235 to 
reach a deep network. The initial learning rate was kept at 1 × 10³, which is the default 
value for the Adam’s optimizer, and the die stack size was 32. We trained our model 
with more pictures, obtained only a few hundred of images for training, and generated 
more images from the existing dataset by passing parameters such as the rotating range, 
width changing range, height changing range, scissors range, zoom range, and pan on 
image data generator. 

The classification of diabetic retinopathy is classified into two types: nonprolifera-
tive and proliferative. The term “proliferative” refers to whether the retina has neovas-
cularization (abnormal blood vessel growth). Nonproliferative diabetic retinopathy re-
fers to early illness without neovascularization (NPDR). 

Dataset Collection: For accurate prediction of diabetic retinopathy and diabetic 
macular edema, we applied two kinds of retina fundus images: IDRiD and MESSIDOR. 
The description of these two datasets is as follows: 
• IDRiD: Based on the presence of DR and DME disease, 516 images were loaded in 

the dataset. In addition, images were acquired through the field of view and stored 
in JPG format, and the size of each image was 800 KB. This dataset contained 81 
color fundus images with the sign of DR. With this dataset, hard exudates (EX), mi-
croaneurysms (MA), soft exudates (SE), and hemorrhage (HE) based images are 
stored. 

• MESSIDOR: This dataset was used, whose scope is to develop the DR and DME 
detection of images. In total, 1200 eye fundus images were used with the multiple 
pixel rates of 1440 × 960, 2240 × 1488, and 2304 × 1536. 
The following steps implement a prediction of DR and DME. 

4.1. Preprocessing 
This is an initial step for DR and DME detection. To enhance the information for the 

disease diagnosis system, it is necessary to use some of the preprocessing steps as fol-
lows: 

(a) Noise Filtering: Fundus images are cropped by salt and pepper noises, which 
are removed from the input images using the iterative expectation maximization (IEM) 
approach. In this approach, uncertainty is overwhelmed by using IEM variables. Noise 
is removed in the zig-zag trajectory and edge, and the corner position of the image is 
denoised using IEM variables. A dynamic threshold was computed and adjusted ac-
cordingly for noise removal since the acquisition of each image was different with their 
resolution. 

The proposed inverse dual tree initial ranging (IDTIR) procedure uses the iterative 
expectation maximization (IEM) algorithm. The IEM algorithm is an iterative method 
that effectively estimates the parameters of the statistical model. In the IEM algorithm, 
two major steps are executed to estimate the parameters accurately. These steps can be 
explained as follows: 
• E-step—This step determines the current estimate of parameters by creating a func-

tion for the expectation of log-likelihood. The expectation step is the base of the 
proposed IEM algorithm. 

• M-step—This step is the final step that computes the parameters in such a way that 
the expected log-likelihood function can be maximized (i.e., the likelihood function 
determined in the E-step is maximized to calculate the parameters. 
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The above two steps were iteratively executed to determine the final parameters. Let 
ω𝔙𝔙,𝔏𝔏 be the parameter vector, and it can be represented as ω𝔙𝔙,𝔏𝔏 = �h𝔙𝔙,𝔏𝔏, T𝔙𝔙,𝔏𝔏� ∈ μ for the 
𝔏𝔏th active channel path of the given ranging code. The set of parameters is represented as 
μ. The latest estimated parameter set is denoted as μ�  and can be formulated as follows, 

ω�𝔙𝔙,𝔏𝔏 = �h�𝔙𝔙,𝔏𝔏, T�𝔙𝔙,𝔏𝔏� ∈ μ�  (1) 

E-Step Computation 
In this step, the expected value is calculated as 

G�ω𝔙𝔙,𝔏𝔏|μ�� ≜ ln𝔓𝔓�Y�ω𝔙𝔙,𝔏𝔏, μ��α − ��Y − K�𝔙𝔙,𝔏𝔏� − h𝔙𝔙,𝔏𝔏Γ(T𝔙𝔙,𝔏𝔏)∁𝔙𝔙�
2 (2) 

Here, 

K�𝔙𝔙, ≜�� h�ℵ,𝔰𝔰Γ(
𝔑𝔑𝔅𝔅

𝔰𝔰=1

T�ℵ,𝔰𝔰)∁ℵ − h�𝔙𝔙,𝔏𝔏

N

ℵ=1

Γ(T�𝔙𝔙,𝔏𝔏)∁𝔙𝔙 (3) 

M-Step Computation 
In this step, the expected value is maximized as follows: 

ω�𝔙𝔙,𝔏𝔏 = arg max�G�ω𝔙𝔙,𝔏𝔏|μ��� (4) 

After parameter estimation, the estimated parameters are updated in the parameter 
vector. These two steps are executed until the terminating condition is met. The channel 
coefficient is derived from the parameter vector by letting the derivative equal zero with 
the fixed timing offset. 

(b) Artifact Removal: Blurriness, poor edges, and illumination are called artifacts, 
which are removed using the nonlinear diffusion filtering algorithm, which eliminates 
all kinds of artifacts and ensures the image quality in terms of illumination correction 
and edge preservation. 

(c) Contrast Enhancement: Low contrast is one of the important issues of image 
classification. In this work, we considered contrast enhancement as an optimization 
problem with the intention of optimizing the pixel values based on the contrast level of 
the input image. To enhance the contrast level of the input image, we proposed the Har-
ris hawks optimization algorithm, which improves the performance of the image 
brightness. 

H2O is a recently developed meta-heuristic algorithm that performs better in solv-
ing optimization problems. The H2O algorithm mimics the cooperative strategy and 
chasing style of the Harris hawks in nature. Since it has an intelligent searching strategy 
and fast convergence rate, it works better than the conventional genetic algorithm, parti-
cle swarm optimization algorithm, etc. Due to the benefits of the H2O algorithm, it was 
adapted for contrast enhancement using the pixel intensity rate in the proposed system. 
The proposed H2ORSS algorithm detects the optimum threshold value for replacing the 
pixel intensity values with normal ones. The proposed H2ORSS algorithm involves three 
major processes: initialization, fitness value estimation, and update of hawks. 

Initially, the image matrix is initialized as hawks with the population size of PS. For 
each hawk (𝕏𝕏i) in the population, the fitness function is estimated. The fitness function is 
determined in terms of the pixel intensity, neighbor intensity, and resolution. The fitness 
function of the ith hawk is expressed as follows, Once the fitness is computed for all 
hawks, then three sequential phases are executed to select the optimal solution. 

Phase 1: Exploration Phase 
This phase relies on waiting, searching, and detecting prey. In every step, each Har-

ris hawk is considered as the alternative solution. Based on the fittest solution, the posi-
tion for each Harris hawk is updated as follows: 
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𝕏𝕏(iter + 1) = �
𝕏𝕏rand(iter) − 𝓇𝓇1|𝕏𝕏rand(iter) − 2𝓇𝓇2𝕏𝕏(iter)|   if ℴ ≥ 0.5
𝕏𝕏p(iter) − 𝕏𝕏a(iter) −𝓇𝓇3�lb + 𝓇𝓇4(ub − lb)�   if ℴ < 0.5 (5) 

The location of the hawks in the next iteration is denoted as 𝕏𝕏(iter + 1) and 𝓇𝓇1, 𝓇𝓇2, 
𝓇𝓇3, 𝓇𝓇4 are the present location vectors of the hawks. Furthermore, ℴ is the random 
number selected in the range of 0 and 1, and ub, lb are the upper bound and lower 
bound, respectively. The average location of hawks (𝕏𝕏a(iter) can be estimated from the 
following expression: 

𝕏𝕏a(iter) =
1

PS
�𝕏𝕏i(iter)
PS

i=1

 (6) 

Phase 2: Transformation from Exploration to Exploitation 
Next, the algorithm transforms the state from exploration to exploitation. In this 

transformation, the energy of the prey is dissipated due to evading behavior. The energy 
level of the prey is (Ep), which is expressed as follows: 

Ep = 2Eo(1 −
iter
Tm

) (7) 

Here, E0 is the initial state energy of the prey and tm is the maximum iteration. By 
varying the tendency of E0, the state of the prey can be judged. 

Phase 3: Exploitation 
After judging the state of the prey, the Harris hawks attack the selected prey. In 

practice, the prey changes the evading behavior, frequently changing the attacking be-
havior. Four strategies are constructed in the H2ORSS algorithm for attacking prey 
based on evading behavior. Here, soft besiege and hard besiege are the basic strategies 
to attack the prey, which is decided as follows: If �Ep� ≥ 0.5, then a soft besiege occurs, 
and if �Ep� < 0.5, then a hard besiege occurs. 

Soft Besiege 
This attacking strategy is selected when Ep ≥ 0.5 and 𝓇𝓇 ≥ 0.5 by Harris hawks. 

This soft besiege attacking strategy is modeled as follows: 

𝕏𝕏(iter + 1) = ∆𝕏𝕏(iter) − Ep|𝔉𝔉𝕏𝕏p(iter − 𝕏𝕏(iter))| (8) 

Here, 𝔉𝔉 is the jump intensity of the prey during the evading process, and it is giv-
en as 𝔉𝔉 = 2(1 −𝓇𝓇5) and ∆𝕏𝕏(iter) represents the difference in the location vector of 
prey in each iteration. This difference is estimated by using the following expression: 

∆𝕏𝕏(iter) = 𝕏𝕏p(iter) − 𝕏𝕏(iter) (9) 

Hard Besiege 
If �Ep� < 0.5 and 𝓇𝓇 ≥ 0.5, the hard besiege strategy is selected to attack the prey. 

In general, these probability values show that the prey’s energy is dissipated and has 
low evading energy. In this case, the position of Harris hawks is updated by the follow-
ing equation: 

𝕏𝕏(iter + 1) = 𝕏𝕏p(iter) − Ep|∆𝕏𝕏(iter)| (10) 

Soft Besiege with Progressive Rapid Dives 
This strategy is selected when the prey has sufficient energy to evade form the at-

tack. This situation is explained as �Ep� ≥ 0.5 and 𝓇𝓇 < 0.5. Based on this behavior, the 
next position of the hawks is updated as follows: 

𝔜𝔜 = 𝕏𝕏p(iter) − Ep|𝔉𝔉𝕏𝕏p(iter − 𝕏𝕏(iter))| (11) 

As this strategy involves progressive dives, the hawk’s dive is formulated as fol-
lows: 
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𝒵𝒵 = 𝔜𝔜 + ℬ ∗ lf(𝒹𝒹) (12) 

where ℬ represents the random vector; lf(𝒹𝒹) represents the levy flight with the di-
mension 𝒹𝒹. Thus, the next position is updated as follows: 

(iter + 1) = �𝔜𝔜  if f(𝔜𝔜) < 𝑓𝑓(𝕏𝕏(iter))
𝒵𝒵 if f(𝒵𝒵) < f(𝕏𝕏(iter))  (13) 

Hard Besiege with Progressive Rapid Dives 
This situation is defined as the prey has not sufficient energy to escape. This situa-

tion is formulated as �Ep� < 0.5 and 𝓇𝓇 < 0.5. The rule for this situation is formulated as 
follows: 

𝕏𝕏(iter + 1) = �𝔜𝔜  if f(𝔜𝔜) < 𝑓𝑓(𝕏𝕏(iter))
𝒵𝒵 if f(𝒵𝒵) < f(𝕏𝕏(iter))  (14) 

Here, 𝔜𝔜 is estimated using the upcoming Equation, 

𝔜𝔜 = 𝕏𝕏p(iter) − Ep|𝔉𝔉𝕏𝕏p(iter − 𝕏𝕏a(iter)) (15) 

Based on the above rules, the position of each hawk is updated, and the optimal 
solution is derived over iteration. Finally, the optimum threshold value was computed 
for the prediction of contrast values throughout the images. 

Algorithm 1 deals with Generalized Linear Model (GLM), which is used for regres-
sion and classification tasks, is one of the key algorithms in H2O. GLM is a versatile and 
effective modeling approach that can deal with different data kinds and distributions. 

Algorithm 1. Pseudocode for H2O 
Input: PS,Maxite 
Output: Optimal Threshold 
Begin 
Initialize → hawks population 𝕏𝕏i (C. U.i); 
While (Stopping Condition Not Met) do 
Compute → fitness function 
For (𝕏𝕏i ∈ 𝕏𝕏PS)do 
Update → Eo and 𝔉𝔉; 
Update → Ep using Equation (8); 
End For 
If (Ep ≥ 1)Then 
Update position using Equation (9); 
End If 
If (Ep < 1)Then 
If (𝓇𝓇 ≥ 0.5&&|Ep| ≥ 0.5) 
Update → position using Equation (10); 
Else If (𝓇𝓇 ≥ 0.5&&|Ep| < 0.5)Then 
Update → position using Equation (11); 
Else If (𝓇𝓇 < 0.5&&|Ep| ≥ 0.5)Then 
Update → position using Equation (12); 
Else If (𝓇𝓇 < 0.5&&|Ep| < 0.5)Then 
Update → position using Equation (13); 
End If 
End If 
End While 
End 
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4.2. Blood Vessel Segmentation 
Blood vessels are important in computing the image intensity, edges, texture, and 

other analyses of image features. Analyzing the diagnosis over the segmented area in-
creases the accuracy and precision rate of any disease. Hence, the optic disk is removed 
from the contrast-enhanced image, and then the blood vessels are extracted using im-
proved mask RCNN, in which ROI alignment is the first step that predicts the region of 
interest from the input image. In this work, pixel-wise softmax was applied for accurate 
segmentation of blood vessels, which was better than the CNN, RNN, RCNN, and 
DCNN algorithms [39,40]. 

OPTICS clustering stands for ordering points to identify clustering structure. It is 
more similar to DBSCAN clustering. OPTICS algorithm includes two measurements, 
which are defined as follows, 
• Core distance: This represents the minimum values of the radius essential to classify 

the given point as a core point. If the considered point is not a core point, then its 
core distance is indeterminate. 

• Reachability distance: This is represented with respect to another cluster data point. 
The reachability distance between two points (x,y) is the highest of the core distance 
and then the Euclidean distance between the two points (x, y). The reachability dis-
tance is not defined if the y point is not a core point. Figure 3 represents the calcula-
tion of the reachability distance. The general procedure of M-OPTICS is defined as 
follows: 

 
(a) 

3mm

6mm
7mm

x

y

RD(x,y)=7mm

RD(r,x)=3mm

r

 
(b) 

Figure 3. (a) OPTICS clustering algorithm. (b) Reachability distance. 

Next, the proposed M-OPTICS explanation is defined as follows: M-OPTICS con-
siders three important conditions: maximum radius, distance, and number of cluster 
points including the core distance, core points, and reachability distance. In the 
M-OPTICS algorithm, the point P is known as the core point when the point is on MinPts. 
The reachability distance and core distance calculations are given as follows: 

CD(o) = �∞                   , |o, ε| < 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
MinPts − D(o),   otherwise  (16) 
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R. D. (p, o) = max (CD(o), D(p, o)) (17) 

where p represents the object and o represents the center point. The core distance rep-
resents the lowest value, which is the radius. From the radius, the core point is different. 
RD represents the reachability distance, which is estimated as the highest core distance, 
and ε represents the radius of the data. The reachability distance data are clustered 
separately. The data similarities were measured by Jaccard similarity, which calculates 
the similarity between a finite set of samples. The calculation of the Jaccard similarity is 
defined as follows: 

JD = 1 − Jμ(A, B) (18) 

Jμ(A, B) =
μ(A ∩ B)
μ(A ∪ B)

 (19) 

where A and B represent the two points obtained from the blood vessels. 
The CNN-based ensemble learning model was incorporated due to two major 

unique features: shared weights and local connections. The extraction of features from 
the input data using convolutional layers and determining the relationship between the 
obtained features using the pooling layers was implemented, which can be formulated 
as: 

aql = � apl−1 ∗ Jpql
V

p=1

+ yql   (20) 

where Jpql , yql  denote the trainable parameters, and V denotes the input features. The 
output provided by the nonlinear layer is computed as: 

xd = f�vd� (21) 

where function f�vd� denotes the output of the rectified linear unit. The performance of 
the model can be further improved by executing batch normalization. The dataset com-
prising of fused images of R dimensions comprised of a T number of training samples 
can be denoted as H = {(hi, cli)|1 ≤ i ≤ T}, where the classes are cli ∈ Cl = {1,2, … , M} 
and the maximum count of classes is denoted as M. In the ensemble model, each mod-
el’s training is performed randomly. The input of each CNN will be H� = ��hı� , cli�|1 ≤
i ≤ T�, which comprises r “R feature subspaces that are randomly selected. 

For instance, i and j are two identical features with dimension d, and for that 
similarity function simpd

(i,j), which is computed by: 

simpd
(i,j) =

vectori × vectorj
‖vectori‖ × �vectorj�

 (22) 

For a different number of CNN layers and the operations involved in this study, 
computational complexity was evaluated, which is described as follows: 

Pvs(i)
=  (1 − μ) × O(N) + μ × O(N) = O(N)  (23) 

where O(N) represents the sum of iterations for performing the feature extraction and 
classification μ ∈ [0,1] and then S. S.upd with respect to the fx as follows: 

S. S.upd = arg�maxipεidxi �fx �PVsn��� = O(N)  (24) 

where O(N) represents the sum of iterations for S. S.upd, which provides the near opti-
mum feature matches from the trained set. Once the features are extracted, they are then 
updated by the presented method. 

The output obtained from each CNN is denoted as x = CNN (H�); the collective 
outputs obtained from the individual CNN are denoted as X = {x1, x2, … , xL}, where L 
denotes the ensemble’s size, and the global output of the ensemble model is obtained by 
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using weighted averaging of the output of the individual CNN. The weighted average of 
the output of the individual CNN is formulated as: 

    G =  
∑ wjsj
T
j=1

T
with wj ≥ 0  

�wj = 1
T

j=1

 (25) 

where sj denotes the score and wj denotes the weight of the j − th(j = 1, 2, 3) model. 
The classifier diversity between any two CNN models is computed as: 

CD(i, j) =
Tw
NT

           (26) 

where NT and Tw denote the total number of test samples and the difference of results 
caused by the samples. The diversity of the ensemble model is computed as the average 
of the classifier diversities, which can be formulated as: 

ED =
∑ ∑ CD(i, j)M

j=1
M
i=1

L
, i ≠ j                      (27) 

where ED denotes the diversity of the ensemble model, and CD denotes the classifier 
diversity. The classification output achieved from the weighted averaging of the indi-
vidual CNN models possessed increased accuracy than the individual CNN models. 
Figure 4 presented the SMDTR-CNN-based land cover classification for identifying 
normal, DR and DME. 
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Figure 4. SMDTR-CNN-based land cover classification. 

Table 1 addresses the ensemble deep learning model below with their filters, filter 
size, stride, padding, and output image size. A CNN’s fundamental building block is a 
convolutional layer and includes a series of filters, the parameters of which must be 
learned throughout the training process. The filters are often smaller in size than the real 
image. The pooling layer’s function is to lower the spatial size of the representation in 
order to reduce the number of parameters and calculations in the network; it operates 
independently on each feature map (channels). Maximum pooling and average pooling 
are the two types of pooling layers. Max pooling is a procedure commonly used for the 
individual CNN convolution layers listed below when they are added to a model. Max-
pooling minimizes the picture dimensionality by lowering the number of pixels in the 
preceding convolution layer’s output. The rectified linear activation unit (ReLU) is one of 
the few milestones in the deep learning revolution. It is basic, but it is superior to the ac-
tivation features of its predecessors such as sigmoid or tanh. 

Table 1. Layers of the convolutional neural network. 

Operational layer Filters Filter Size Stride Padding Output Image Size 
Preprocessed image - - - - 224 × 224 × 3 

Convolutional layer (2 times) 
Convolutional 64 3 × 3 × 3 1 × 1 1 × 1 224 × 224 × 64 

ReLU - - - - 224 × 224 × 64 
Pooling layer Max pooling 1 2 × 2 2 × 2 0 112 × 112 × 64 

Convolutional layer (2 times) Convolutional 128 3 × 3 × 64 1 × 1 1 × 1 112 × 112 × 128 
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ReLU - - - - 112 × 112 × 128 
Pooling layer Max pooling 1 2 × 2 2 × 2 0 56 × 56 × 128 

Convolutional layer (4 times) 
Convolutional 256 3 × 3 × 128 1 × 1 1 × 1 56 × 56 × 256 

ReLU - - - - 56 × 56 × 256 
Pooling layer Max pooling 1 2 × 2 2 × 2 0 28 × 28 × 256 

Convolutional layer (4 times) 
Convolutional 512 3 × 3 × 256 1 × 1 1 × 1 28 × 28 × 512 

ReLU - - - - 28 × 28 × 512 
Pooling layer Max pooling 1 2 × 2 2 × 2 0 14 × 14 × 512 

Convolutional layer (4 times) 
Convolutional 512 3 × 3 × 512 1 × 1 1 × 1 14 × 14 × 512 

ReLU - - - - 14 × 14 × 512 
Pooling layer Max pooling 1 2 × 2 2 × 2 0 7 × 7 × 512 

Inner product layer 
Fully connected - - - - 4096 

ReLU - - - - 4096 

5. Results and Discussion 
The E-CNN performance was estimated with the accuracy, precision, recall, F-score, 

error rate, and computational time. 

5.1. Accuracy 
Accuracy is defined as the ratio of the received input image inventive classification 

scheme by the assessed classification scheme, which can be formulated as: 

A =
𝒯𝒯1 + 𝒯𝒯2

𝒯𝒯1 + 𝒯𝒯2 + ℱ1 + ℱ2
   (28) 

From the above equation, ℱ1,ℱ2 denote the false positive and false negative values, 
respectively; and 𝒯𝒯1,𝒯𝒯2 denote the true positive and true negative values, respectively. 
Accuracy is the significant metric for calculating the performance of the system. 

5.2. Precision 
Precision is computed by the ratio of excluding the significant classification result 

from the overall classification outcome. The meticulousness of the system can be meas-
ured using precision, which can be formulated as: 

𝒫𝒫 =  
𝒯𝒯2

𝒯𝒯1 + ℱ1
  (29) 

5.3. Recall 
The recall is defined as the ratio of excluding the same classification result to the 

recovered results. The recall is used for measuring the comprehensiveness of the system, 
which can be formulated as: 

ℛ =  
𝒯𝒯1

𝒯𝒯1 + ℱ2
     (30) 

5.4. F-Score 
The F-score is computed by using the parameters of recall and precision by jointly 

assessing them. The results accuracy can be computed using F-score, which can be for-
mulated as: 

FS =
2 ∗ 𝒫𝒫 ∗ ℛ
𝒫𝒫 + ℛ

    (31) 

5.5. Computation Time 
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Computation time is the amount of time needed to complete a computational oper-
ation. Computation time is calculated by calculating the time elapsed between the classi-
fication completion and computation. The system’s efficacy is assessed in terms of com-
putation time. It is appreciated whether the study obtained a greater accuracy with better 
precision of outcome in a shorter computing period. 

5.6. Error Rate 
In Table 2, the results analysis of all models is furnished in the numerical form for 

better understanding. The error rate is defined as the ratio of errors in the sample to the 
overall samples. The error rate is used to determine the system’s performance. A good 
system has a much lower error rate, which can be formulated as: 

Error Rate =  
No of Errors

No of Samples 
   (32) 

Table 2. Results analysis of Figures 5–10. 

Figures SVM KNN Improved CNN DL E-CNN 
Figure 5. Detection Accuracy. (a) IDRiR  61.3–69.96% 65–71% 79–83% 83–91% 94–98% 
Figure 5. Detection Accuracy. (b) Messidor 54–59% 65–71% 79–84% 84–92 96–98% 
Figure 6. Precision. (a) IDRiR  60.5–69% 70–77.5% 80.12–87.5% 84–91.25% 92.5–97% 
Figure 6. Precision, (b) Messidor. 60.5–69% 70–77.5% 80.12–87.5% 84–91.25% 92.5–97% 
Figure 7. Recall. (a) IDRiR  60.5–67.5% 70.5–76.8% 80.25–88% 82.5–88.5% 91.2–97.5 
Figure 7. Recall. (b) Messidor. 60.5–67.5% 70.5–76.8% 80.25–88% 82.5–88.5% 91.2–97.6 
Figure 8. F-Score. (a) IDRiR  61.25–70% 70.69–79.5% 81–87.5% 85–91.2% 93–98.5% 
Figure 8. F-Score. (b) Messidor 61.25–70% 70.69–79.5% 81–87.5% 85–91.2% 93–98.5% 
Figure 9. Computation Time. (a) IDRiR  
(seconds) 

11 14 10.5 8.8 2.6 

Figure 9. Computation Time. (b) Messidor 
(seconds) 

14 11 9.5 8.2 2.4 

Figure 10. Error Rate. (a) IDRiR  0.985 0.774 0.865 0.923 0.15 
Figure 10. Error Rate. (b) Messidor 0.99 0.792 0.865 0.923 0.19 

As can be seen in Figures 5–10, we evaluated the proposed E-CNN to various 
state-of-the-art approaches such as SVM, KNN, enhanced CNN, and deep learning (DL). 
When analyzing performance, the optic disk (OD) is eliminated because it is a non-lesion 
area. The numerical findings suggest that our proposed E-CNN was superior. E-CNN 
had a mean accuracy of 99.84 percent, which was 4.38 percent greater than the bench-
mark. Although its effectiveness was equivalent to that of the Messidor database, it per-
formed poorly in blood vessel segments. 
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Figure 5. Detection accuracy (a). IDRiR and (b). Messidor. 
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Figure 6. Precision. (a) IDRiR and (b) Messidor. 
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Figure 7. Recall. (a) IDRiR and (b) Messidor. 
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Figure 8. F-Score. (a) IDRiR and (b) Messidor. 
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Figure 9. Computation time. (a). IDRiR and (b) Messidor. 
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Figure 10. Error Rate. (a) IDRiR and (b) Messidor. 
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lesions DR and DME due to fewer samples; however, our proposed technique could still 
meet this obstacle. The quantitative class labels are also shown in Figure 5 to further il-
lustrate the suggested strategy’s efficiency. In the DR lesion segmentation challenge, one 
can see that the E-CNN was much more accurate and robust. We also performed an ab-
lation experiment to prove the accuracy of the proposed E-CNN. The SVM is referred to 
as the baseline approach for convenience. The suggested strategy has been demonstrated 
to generate significant improvements over the baseline regarding four targets, as shown 
in Figures 5–10. The addition of preprocessing also improved the performance. The 
mean precision improved by 3.83 percent in comparison to the benchmark. Our pro-
posed technology, in particular, can be simply integrated into other encoder–decoder 
networks, which we wish to conduct soon. Additionally, the proposed E-CNN achieved 
the greatest accuracy values in DR and DME diagnosis, demonstrating the efficacy of 
our proposed method. 

In this work, ensemble convolutional neural networks (ECNNs) were used to clas-
sify images of diabetic retinopathy. A recently developed meta-heuristic method, the 
Harris hawks optimization (HHO) algorithm, was used to optimize the ECNN hy-
perparameters. Then, the Harris hawks optimization technique was used to improve the 
feature extraction and classification processes to obtain the most significant features. 
Compared to previous systems, the deep learning model provides extremely satisfactory 
results regarding the specificity, precision, accuracy, and recall. 

6. Conclusions 
All of the studies on the DR classification issue can be divided into two groups. The 

first is a binary DR diagnosis in which the individual possesses or does not. The problem 
with this technique is that after we realize a person has DR, we cannot tell how serious 
the disease is. Multi-class identification is the answer to this challenge. As previously 
mentioned, we classified DR into five classes or phases using multi-class classification. 
However, almost all of the associated studies, particularly in the early stages of DR, have 
been unable to appropriately define every one of the stages of DR. It is critical to identify 
the DR at a very early stage to treat the disease, as treating the disease at a much later 
date is challenging and can result in death. To our understanding, no other study has 
employed the IDRiR and Messidor databases to identify the milder phases of DR that we 
used in our study. Our approach outperformed the present advancements in detecting 
the mild stage. Furthermore, no one else has demonstrated the impact of a balanced da-
taset in previous research. The unbalanced dataset may have caused the classification 
accuracy to be skewed. The network can be trained on features correctly when samples 
in the classes are evenly distributed such as in a balanced dataset; however, in the case 
of asymmetrical distributions, the network performs for heavily tested classes. Further-
more, the present CNN architectures for DR identification do not consider the impact of 
varied hyperparameter tweaking (meta-learning) as well as its consequences. In the fu-
ture, we plan to use some other deep-learning techniques for DR and DME disease clas-
sification. 

Recently, CNN-based methodology has been considered to learn features for classi-
fication. However, tuning non-trainable hyperparameters for such networks is manual, 
intuitive, and non-trivial. In the future, a technique based on DR and DME will be pro-
posed to adjust the CNN architecture parameters. The convolution and pooling layer 
number, the kernel number, and the kernel size of the convolution layer are determined 
by the upcoming proposed technique. Therefore, the number of untrainable hyperpa-
rameters can be reduced. There are some challenges in adapting DR and DME to a CNN. 
Based on the dimension of the input image, the maximum and minimum sizes of the 
kernel must be specified for clear classification. 
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