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Abstract: Deep learning (DL) models are state-of-the-art in segmenting anatomical and disease
regions of interest (ROIs) in medical images. Particularly, a large number of DL-based techniques have
been reported using chest X-rays (CXRs). However, these models are reportedly trained on reduced
image resolutions for reasons related to the lack of computational resources. Literature is sparse
in discussing the optimal image resolution to train these models for segmenting the tuberculosis
(TB)-consistent lesions in CXRs. In this study, we investigated the performance variations with an
Inception-V3 UNet model using various image resolutions with/without lung ROI cropping and
aspect ratio adjustments and identified the optimal image resolution through extensive empirical
evaluations to improve TB-consistent lesion segmentation performance. We used the Shenzhen
CXR dataset for the study, which includes 326 normal patients and 336 TB patients. We proposed a
combinatorial approach consisting of storing model snapshots, optimizing segmentation threshold
and test-time augmentation (TTA), and averaging the snapshot predictions, to further improve
performance with the optimal resolution. Our experimental results demonstrate that higher image
resolutions are not always necessary; however, identifying the optimal image resolution is critical to
achieving superior performance.

Keywords: aspect ratio; chest X-ray; deep learning; image resolution; segmentation; tuberculosis;
test-time augmentation; threshold selection

1. Introduction

Mycobacterium tuberculosis (MTB) is the cause of pulmonary tuberculosis (TB) [1];
however, it can also affect other body organs including the brain, spine, and kidneys. TB
infection can be categorized into latent and active types. Latent TB refers to cases where
the MTB remains inactive and causes no symptoms. Active TB is contagious and can
spread to others. The Centers for Disease Control and Prevention recommends people
having an increased risk of acquiring TB infection including those with HIV/AIDS, using
intravenous drugs, and from countries with a high prevalence, be screened for the dis-
ease [2]. Chest X-ray (CXR) is the most commonly used radiographic technique to screen for
cardiopulmonary abnormalities, particularly TB [3]. Some of the TB-consistent abnormal
manifestations in the lungs include apical thickening; calcified, non-calcified, and clustered
nodules; infiltrates; cavities; linear densities; adenopathy; miliary patterns; and retraction,
among others [1]. These manifestations can be observed anywhere in the lungs and may
vary in size, shape, and density.

While CXRs are widely adopted for TB infection screening, human expertise is
scarce [4], particularly in low and middle-resourced regions, for reading the CXRs. The
development of machine learning-based (ML) artificial intelligence (AI) tools could aid in
the screening through automated segmentation of disease-consistent regions of interest
(ROIs) in the images.
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2. Related Literature and Contributions of the Study

Currently, deep learning (DL) models, a subset of ML algorithms, are observed
to perform on par with human experts in segmenting body organs such as the lungs,
heart, clavicles [5,6], and other cardiopulmonary disease manifestations including brain
tumor [7–9], COVID-19 [10], pneumonia [11], and TB [12] in CXRs. These CXRs are made
publicly available at high resolutions. Digital CXRs typically have a full resolution of
approximately 2000× 2500 pixels [13]; however, these may vary based on the sensor matrix.
For instance, the CXRs in the Shenzhen CXR data collection [14] have an average resolution
of 2644-pixel width × 2799-pixel height. However, a majority of current segmentation stud-
ies [15–17] are conducted using CXRs that are down-sampled to 224 × 224 pixel resolution
due to GPU constraints. An extensive reduction in image resolution may eliminate subtle
or weakly-expressed disease-relevant information. This important information may be
hidden in small details, such as the surface and contour of the lesion, and other patterns
in findings. As the details preserved in the visual information can drastically vary with
the changes in image resolution and the type of subsampling method used, we believe the
choice of image resolution should not depend on the computational hardware availability,
but rather on the characteristics of the data.

Our review of the literature revealed the importance of image resolution and its impact
on performance. For example, the authors in [18] found that changes in endoscopy image
resolution impact classification performance. Another study [19] reported an improved
disease classification performance at lower CXR image resolutions. The authors observed
that the overfitting issues were resolved at lower input image resolutions. Our review
of the literature also revealed that identifying the optimal image resolution for the task
under study remains an open avenue for research. Until the writing of this manuscript,
we have not found any study that discussed the impact of image resolution on a CXR-
based segmentation task, particularly for segmenting TB-consistent lesions. To close
this gap in the literature, this work aims to study the impact of training a model on
varying image resolutions with/without lung ROI cropping and aspect ratio adjustments
to find the optimal resolution that improves fine-grained TB-consistent lesion segmentation.
Further, this work proposes to improve performance at the optimal resolution through a
combinatorial approach consisting of storing model snapshots, optimizing the test-time
augmentation (TTA) methods, optimizing the segmentation threshold, and averaging the
predictions of the model snapshots.

Section 3 discusses the materials and methods. Section 4 elaborates on the results, and
Section 5 discusses and concludes this study.

3. Materials and Methods
3.1. Data Characteristics

This study uses the Shenzhen CXR dataset [14] collected at the Shenzhen No. 3 hospital,
in Shenzhen, China. The CXRs were de-identified at the source and are made available by
the National Library of Medicine (NLM). The dataset contains 336 CXRs collected from mi-
crobiologically confirmed TB cases and 326 CXRs showing normal lungs. Table 1 shows the
dataset characteristics.

Table 1. Dataset characteristics. The age of the population of men and women, image width, and
image height are given in terms of mean ± standard deviation.

# TB CXRs # Men # Women Age of Men
(in Years)

Age of Women
(in Years) # Lung Masks # TB Masks Image Width

(in Pixels)
Image Height

(in Pixels)

336 228 108 38.29 ± 15.12 36.5 ± 14.75 287 336 2644 ± 253 2799 ± 206

# denotes the number of images.

The CXRs manifesting TB were annotated by two radiologists from the Chinese Uni-
versity of Hong Kong. The labeling was initially conducted by a junior radiologist, and
then the labels were all checked by a senior radiologist, with a consensus reached for all
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cases. The annotations were stored as both binarized masks as well as pixel boundaries
stored in JSON format [1]. The authors of [20] manually segmented the lung regions and
made them available as lung masks. These masks are available for 287 CXRs manifest-
ing TB-consistent abnormalities and 279 CXRs showing normal lungs. We used these
287 TB CXRs out of 336 TB CXRs that have both lung masks and TB lesion-consistent masks.
Figure 1 shows the following: (a) The binarized TB masks of men and women were resized
to 256 × 256 to maintain uniformity in scale. Then, the masks were averaged, normalized
to the range [0, 1], and displayed using the “jet” colormap. (b) Pie chart showing the
proportion and distribution of TB in men and women. (c) Age-wise distribution of the
normal and TB-infected population of men and women.

These 287 CXRs were further divided at the patient level into 70% for training
(n = 201), 10% for validation (n = 29), and 20% for hold-out testing (n = 57). The masks
were thresholded and binarized to separate the foreground lung/TB-lesion pixels from the
background pixels.

3.2. Model Architecture

We used the Inception-V3 UNet model architecture that we have previously demon-
strated [12] to deliver superior TB-consistent lesion segmentation performance. The
Inception-V3-based encoder [21] was initialized with ImageNet weights. The model was
trained for 128 epochs at various image resolutions and is discussed in Section 3.3. We used
an Adam optimizer with an initial learning rate of 1 × 10−3 to minimize the boundary-
uncertainty augmented focal Tversky loss [8]. The learning rate was reduced if the valida-
tion loss ceased to improve after 5 epochs. This is called the patience parameter; its value
was chosen from pilot evaluations. We stored the model weights whenever the validation
loss decreased. The best-performing model with the validation data was used to predict the
test data. The models were trained using Keras with Tensorflow backend (ver. 2.7) using a
single NVIDIA GTX 1080 Ti GPU and CUDA dependencies.

3.3. Image Resolution

We empirically identified the optimal image resolution at which the Inception-V3
UNet model delivered superior performance toward the TB-consistent lesion segmentation
task. The model was trained using various image/mask resolutions, viz., 32 × 32, 64 × 64,
128 × 128, 256 × 256, 512 × 512, 768 × 768, and 1024 × 1024. We used a batch size of
128, 64, 32, 16, 8, 4, and 2, respectively. We used bicubic interpolation to down-sample the
287 CXR images and their associated TB masks to the aforementioned resolutions, as shown
in Figure 2. As expected, the visual details improved with increasing resolution.

We evaluated the model performance under the following conditions:

(i) The 287 CXRs and their associated TB masks were directly down-sampled using
bi-cubic interpolation to the aforementioned resolutions. The OpenCV package (ver.
4.5.4) was used in this regard.

(ii) The lung masks were overlaid on the CXRs and their associated TB masks to delineate
the lung boundaries. The lung ROI was cropped to the size of a bounding box and
also down-sampled to the aforementioned resolutions.

(iii) Based on performance, the data from step (i) or step (ii) was corrected for aspect ratio,
the details are discussed in Section 3.4. The corrected aspect-ratio CXRs/masks were
further down-sampled to the aforementioned resolutions.

3.4. Aspect Ratio Correction

The aspect ratio is defined as the ratio of width to height [22]. To find the aspect
ratio, the mean and standard deviation of the widths and heights of the CXRs manifesting
TB-consistent abnormalities were computed. For the original CXRs, we observed that
the width and height are 2644 ± 253 pixels and 2799 ± 206 pixels, respectively. For the
lung-cropped CXRs, we observed that the width and height are 1929 ± 151 pixels and
1999 ± 231 pixels, respectively. For the original CXRs, the computed aspect ratio is 0.945.
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For the lung-cropped CXRs, the computed aspect ratio is 0.965. We maintained the larger
dimension (i.e., height) as constant at various image resolutions and modified the smaller
dimension (i.e., width) to adjust the aspect ratio. We constrained the width and height of
the images/masks to be divisible by 32 to be compatible with the UNet architecture [23].
For this, we padded the images such that the width was to the nearest lower value that is
divisible by 32.
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Figure 1. Data characteristics are shown as a proportion of men and women in the Shenzhen CXR
collection. (a) Heatmaps showing regions of TB infestation in men and women. (b) Pie chart showing
the proportion and distribution of TB in men and women, and (c) Age-wise distribution of the normal
and TB-infected population in men and women.
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Figure 2. CXRs and their corresponding TB-consistent lesion masks at various image resolutions.
(a) 32 × 32; (b) 64 × 64; (c) 128 × 128; (d) 256 × 256; (e) 512 × 512; (f) 768 × 768; and (g) 1024 × 1024.
All images and masks are rescaled to 256 × 256 to compare quality. The red contours indicate ground
truth annotations.

3.5. Performance Evaluation

The trained models were evaluated using (i) pixel-wise metrics [24], consisting of
the intersection of union (IoU) and Dice score, and (ii) image-wise metrics, consisting
of structural similarity index measure (SSIM) [25,26] and signal-to-reconstruction error
ratio (SRE) [27]. While IoU and Dice are the most commonly used metrics to evaluate
segmentation performance, a study of the literature [28] reveals that pixel-wise metrics
ignore the dependencies among the neighboring pixels. The authors of [29] minimized a
loss function derived from SSIM to segment ROIs in the Cityscapes and PASCAL VOC
2012 datasets. It was found that the masks predicted by the model that was trained to
minimize the SSIM loss were more structurally similar to the ground truth masks compared
to the model trained using the conventional cross-entropy loss. Motivated by this study,
we used the SSIM metric to evaluate the structural similarity between the ground truth and
predicted TB masks.

The SSIM of a pair of images (a, b) is given by a multiplicative combination of the
structure (s), contrast (c), and luminance (l) factors, as given in Equation (1):

SSIM (a, b) = [l(a, b)]α.[c(a, b)]β.[s(a, b)] γ (1)

The luminance (l) is measured by averaging over all the image pixel values. It is given
by Equation (2). The luminance comparison between a pair of images (a, b) is given by a
function of µa and µb, as shown in Equation (3):

µa =
1
N

N

∑
i=1

ai (2)

l(a, b) =
2µaµb + C1

µ2
a + µ2

b + C1
(3)



Diagnostics 2023, 13, 747 6 of 18

The contrast (c) is measured by taking the square root of the variance of all the
image pixel values. The comparison of contrast between two images (a, b) is given by
Equations (4) and (5):

σa = (
1

N − 1

N

∑
i=1

(ai − µa)
2)1/2 (4)

c(a, b) =
2σaσb + C2

σ2
a + σ2

b + C2
(5)

The structural (s) comparison is given by dividing the input by its standard deviation,
as shown in Equations (6) and (7):

s(a, b) =
σab + C3

σaσb + C3
(6)

σab =
1

N − 1

N

∑
i=1

((ai − µa)((bi − µb) (7)

The constants C1, C2, C3 ensure numerical stability when the denominator becomes 0.
The value of IoU, Dice, and SSIM range from [0, 1].

We visualized the SSIM quality map (using “jet” colormap) to interpret the quality
of the predicted masks. The quality map is identical in size to the corresponding scaled
version of the image. Small values of SSIM appear as dark blue activations, denoting
regions of poor similarity to the ground truth. Large values of SSIM appear as dark red
activations, denoting regions of high similarity.

The authors of [27] proposed a metric called signal-to-reconstruction error ratio (SRE)
that measures the error relative to the mean image intensity. The authors discussed that
the SRE metric is robust to brightness changes while measuring the similarity between the
predicted image and ground truth. The SRE metric is measured in decibels (dB) and is
given by Equation (8):

SRE = 10 log10

 µ2
a

||â−a||2
n

 (8)

where, µa denotes the average value of the image a and n denotes the number of pixels in
image a.

3.6. Optimizing the Segmentation Threshold

Studies in the literature [15,30,31] used a threshold of 0.5 by default in segmentation
tasks. However, the process of selecting the segmentation threshold should be driven
by the data under study. An arbitrary threshold of 0.5 is not guaranteed to be optimal,
particularly considering imbalanced data, as in our case, where the number of foreground
TB-consistent lesion pixels is considerably smaller compared to the background pixels. It is
therefore important to perform a threshold tuning, in which we iterate among different
segmentation threshold values in the range of [0, 1] and find the optimal threshold that
would maximize performance. In our case, we generated 200 equally spaced samples in
the closed interval [0, 1] and used a looping mechanism to find the optimal segmentation
threshold that maximized the IoU metric for the validation data. This threshold was used
to binarize the predicted masks using the test data and the performance was measured in
terms of the evaluation metrics discussed in Section 3.5.

3.7. Storing Model Snapshots at the Optimal Resolution

After we empirically identified the optimal resolution, we further improved perfor-
mance at this resolution as follows: (i) we adopted a method called “snapshot ensem-
bling” [32], which involves using an aggressive cyclic learning rate to train and store
diversified model snapshots (i.e., the model weights) during a single training run; (ii) we
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initialized the training process with a high learning rate of 1 × 10−2, defined the number of
training epochs as 320, and the number of training cycles as 8 so that each training cycle is
composed of 40 epochs; (iii) the learning rate was rapidly decreased to the minimum value
of 1 × 10−8 at the end of each training cycle before being drastically increased during the
next cycle. This acts similar to a simulated restart, resulting in using good weights as the
initialization for the subsequent cycle, thereby allowing the model to converge to different
local optima; (iv) the weights at the bottom of each cycle are stored as snapshots (with
8 training cycles, we stored 8 model snapshots); (v) we evaluated the validation perfor-
mance of each of these snapshots at their optimal segmentation threshold identified as
discussed in Section 3.6. This threshold was further used to binarize the predicted test data
and the performance was measured.

3.8. Test-Time Augmentation (TTA)

Test-time augmentation (TTA) refers to the process of augmenting the test set [33]. That
is, the trained model predicts the original and transformed versions of the test set, and the
predictions are aggregated to produce the final result. One advantage of performing TTA is
that no changes are required to be made to the trained model. TTA ensures diversification
and helps the model with improved chances of better capturing the target shape, thereby
improving model performance and eliminating overconfident predictions. However, these
studies [33–35] are observed to perform multiple random image augmentations without
identifying the optimal augmentation method(s) that would help improve performance. A
possible negative effect of destroying/degrading visual information with non-optimal aug-
mentation(s) might outweigh the benefit of augmentation while also resulting in increased
computational load.

After storing the model snapshots as discussed in Section 3.7, we performed TTA
with the validation data using each model snapshot. In addition to the original input, we
used the augmentation methods consisting of horizontal flipping, pixel-wise width, height
shifting (−5, 5), and rotation in degrees (−5, 5) individually and in combination, as shown
in Table 2.

Table 2. TTA combinations.

Method TTA Combinations

M1 Original + horizontal flipping

M2 Original + width shifting

M3 Original + height shifting

M4 Original + width shifting + height shifting

M5 Original + horizontal flipping + width shifting + height shifting

M6 Original + rotation

M7 Original + width shifting + height shifting + rotation

M8 Original + horizontal flipping + width shifting + height shifting + rotation

For each TTA combination shown in Table 2, an aggregation function takes the set of
predictions and averages them to produce the final prediction. We identified the optimal
segmentation threshold that maximized the IoU for each model snapshot and every TTA
combination. With the identified optimal TTA augmentation combination and the segmen-
tation threshold, we augmented the test data, recorded the predictions, binarized them, and
evaluated performance. This process is illustrated in Figure 3. We further constructed an
ensemble of the top-K (K = 2, 3, . . . , 6) by averaging their predictions. We call this snapshot
averaging. The pseudocode explaining our proposal is shown in Figure 4.
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3.9. Statistical Analysis

We measured the 95% binomial Clopper–Pearson confidence intervals (CIs) for the
IoU metric obtained at various stages of our empirical analyses.
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4. Results

Table 3 shows the performance achieved through training the Inception-V3 UNet
model using the CXRs/TB masks of varying image resolutions, viz., 32 × 32, 64 × 64,
128 × 128, 256 × 256, 512 × 512, 768 × 768, and 1024 × 1024. Figure 5 shows the sample
predictions at these resolutions. The performances are reported for each image resolution
at its optimal segmentation threshold. The term O and CR denote the original and lung-
cropped CXRs/masks, respectively. We observed poor performance at 32 × 32 resolution
with both original and lung-cropped data.

Table 3. Performance achieved by the Inception-V3-UNet model with original and lung-cropped CXRs
and TB-lesion-consistent masks. The term SRE, O, CR, and Opt. T denotes signal-to-reconstruction error
ratio, original CXRs and TB-lesion-consistent masks, lung-ROI-cropped CXRs and TB-lesion-consistent
masks, and the optimal segmentation threshold. Values in parenthesis denote the 95% CIs as the Exact
measure of the Clopper–Pearson interval for the IoU metric. The bold numerical values denote superior
performance for the respective columns.

Resolution IoU Dice SSIM SRE Opt. T

32 × 32 (O) 0.2183 (0.1110, 0.3256) 0.3583 0.3725 19.9014 0.9548

32 × 32 (CR) 0.2934 (0.1751, 0.4117) 0.4537 0.4414 22.5763 0.6332

64 × 64 (O) 0.3105 (0.1903, 0.4307) 0.4739 0.5548 20.5444 0.3719

64 × 64 (CR) 0.3789 (0.2529, 0.5049) 0.5496 0.5584 24.4192 0.1005

128 × 128 (O) 0.4298 (0.3012, 0.5584) 0.6012 0.6694 23.1622 0.2663

128 × 128 (CR) 0.4652 (0.3357, 0.5947) 0.6350 0.7028 30.1203 0.0704

256 × 256 (O) 0.4567 (0.3273, 0.5861) 0.6271 0.7456 25.3184 0.9900

256 × 256 (CR) 0.4859 (0.3561, 0.6157) 0.6540 0.7720 29.1329 0.9950

512 × 512 (O) 0.4435 (0.3145, 0.5725) 0.6144 0.8327 27.6090 0.9799

512 × 512 (CR) 0.4799 (0.3502, 0.6096) 0.6485 0.8788 31.7887 0.9950

768 × 768 (O) 0.4428 (0.3138, 0.5718) 0.6138 0.8683 29.3264 0.9899

768 × 768 (CR) 0.4512 (0.3220, 0.5804) 0.6219 0.9073 33.3214 0.9899

1024 × 1024 (O) 0.2746 (0.1587, 0.3905) 0.4309 0.8545 28.4218 0.9796

1024 × 1024 (CR) 0.3387 (0.2158, 0.4616) 0.5060 0.8796 33.3320 0.9950

The performance kept improving until 256 × 256-pixel resolution where the model
achieved the best IoU of 0.4859 (95% CI: (0.3561, 0.6157)) and superior values for Dice,
SSIM, and SRE metrics. The performance then kept decreasing from 256 × 256 to
1024 × 1024 resolution. The performance achieved with the lung-cropped data is
superior compared to the original counterparts at all resolutions. These observa-
tions highlighted that 256 × 256 is the optimal resolution and using lung-cropped
CXRs/masks gave a superior performance.

Figure 6 shows the SSIM quality maps achieved by the Inception-V3 UNet model for a
sample test CXR at varying image resolutions. The quality maps are identical in size to the
corresponding scaled version of the images/masks. We observed high activations, shown
as red pixels, in regions where the predicted masks were highly similar to the ground truth
masks. Blue pixel activations denote regions of poor similarity. We observed the following:
(i) The predicted masks exhibited poor similarity to the ground truth masks along the mask
edges for all image resolutions. (ii) The SSIM value obtained with the lung-cropped data
was superior compared to the original counterparts.
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Table 4 shows the performance achieved by the Inception-V3 UNet model with aspect-
ratio corrected (AR-CR) lung-cropped CXRs/masks for varying image resolutions. We
observed no improvement in performance with aspect-ratio corrected data at any given
image resolution compared to the results reported in Table 3.

Table 4. Performance achieved by the Inception-V3-UNet model with the aspect-ratio corrected
lung-cropped (AR-CR) CXRs and TB-lesion-consistent masks. The image resolutions are given in
terms of height × width.

Resolution (AR-CR) IoU Dice SSIM SRE Opt. T

64 × 32 0.1583 (0.0635, 0.2531) 0.2734 0.1884 21.5695 0.9950

128 × 96 0.3474 (0.2237, 0.4711) 0.5157 0.5175 25.2175 0.9950

256 × 224 0.4447 (0.3156, 0.5738) 0.6151 0.7336 28.8964 0.9698

512 × 480 0.4815 (0.3517, 0.6113) 0.6500 0.8333 31.7451 0.9796

768 × 736 0.4200 (0.2918, 0.5482) 0.5916 0.8544 32.8540 0.9796

1024 × 960 0.3259 (0.2042, 0.4476) 0.4915 0.8710 33.6026 0.0204

To improve performance at the optimal image resolution, i.e., 256 × 256, we stored the
model snapshots, as discussed in Section 3.7, and performed TTA augmentation for each
recorded snapshot, as discussed in Section 3.8. Table 5 shows the optimal TTA combinations
that delivered superior performance for each model snapshot at its optimal segmentation
threshold identified from the validation data.

Table 5. Optimal test-time augmentation combination for each model snapshot.

Snapshot Opt. TTA Combination

S1 Original+ width shifting + height shifting + rotation

S2 Original + height shifting

S3 Original+ horizontal flipping + width shifting + height shifting + rotation

S4 Original+ horizontal flipping + width shifting + height shifting + rotation

S5 Original+ horizontal flipping + width shifting + height shifting + rotation

S6 Original+ width shifting + height shifting

S7 Original+ horizontal flipping + width shifting + height shifting + rotation

S8 Original+ horizontal flipping + width shifting + height shifting + rotation

The terms S1, S2, S3, S4, S5, S6, S7, and S8 denote the 1st, 2nd, 3rd, 4th, 5th, 6th, 7th,
and 8th model snapshot, respectively. The TTA combination that aggregates (averages)
the predictions of the original test data with those obtained from other augmentations
consisting of horizontal flipping, width shifting, height shifting, and rotation, delivered
superior performance for the S3, S4, S5, S7, and S8 model snapshots. The aggregation of
the original predictions with height-shifting augmentation delivered superior performance
for the S2 snapshot. The S6 snapshot delivered superior performance while aggregating
the original predictions with those obtained from the width and height-shifted images.
Aggregating the predictions of the original test data with those augmented by width,
height shifting, and rotation, delivered superior test performance while using the S1 model
snapshot. The first row of Table 6 shows the performance achieved by the model trained
with the 256 × 256 lung-cropped CXRs/masks, denoted as CR-baseline (from Table 3).
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Table 6. Performance achieved by each model snapshot before and after applying the optimal TTA
and averaging the snapshots after TTA. Bold numerical values denote superior performance in
respective columns.

Model IoU Dice SSIM SRE Opt. T

256 × 256 (CR-Baseline) 0.4859 (0.3561, 0.6157) 0.6540 0.7720 29.1329 0.9950

S1 0.4880 (0.3582, 0.6178) 0.6559 0.7676 29.0406 0.9950

S2 0.5090 (0.3792, 0.6388) 0.6746 0.7937 29.4457 0.9698

S3 0.5024 (0.3725, 0.6323) 0.6688 0.7900 29.4709 0.9749

S4 0.4935 (0.3637, 0.6233) 0.6609 0.7872 29.4803 0.9296

S5 0.4974 (0.3675, 0.6273) 0.6643 0.7906 29.4893 0.4271

S6 0.4939 (0.3641, 0.6237) 0.6612 0.7876 29.4833 0.6683

S7 0.4970 (0.3671, 0.6269) 0.6640 0.7887 29.5248 0.9296

S8 0.4780 (0.3483, 0.6077) 0.6469 0.7772 29.4381 0.0100

S1-TTA 0.4947 (0.3649, 0.6245) 0.6620 0.7788 29.2889 0.7959

S2-TTA 0.5107 (0.3809, 0.6405) 0.6762 0.7943 29.4858 0.6633

S3-TTA 0.5110 (0.3812, 0.6408) 0.6764 0.7950 29.5209 0.4975

S4-TTA 0.5000 (0.3701, 0.6299) 0.6667 0.7926 29.5162 0.4975

S5-TTA 0.5031 (0.3732, 0.6330) 0.6694 0.7952 29.5535 0.4975

S6-TTA 0.5020 (0.3721, 0.6319) 0.6684 0.7920 29.5307 0.4271

S7-TTA 0.5083 (0.3785, 0.6381) 0.6740 0.7944 29.5845 0.4925

S8-TTA 0.4872 (0.3574, 0.6170) 0.6552 0.7888 29.5341 0.3878

S2, S3-TTA 0.5174 (0.3876, 0.6472) 0.6819 0.7997 29.6055 0.5779

S2, S3, S5-TTA 0.5182 (0.3884, 0.6480) 0.6827 0.8002 29.6076 0.5126

S2, S3, S5, S7-TTA 0.5200 (0.3902, 0.6498) 0.6842 0.8007 29.6174 0.4925

S2, S3, S5, S7, S6-TTA 0.5200 (0.3902, 0.6498) 0.6842 0.8018 29.6408 0.4874

S2, S3, S5, S7, S6, S4-TTA 0.5193 (0.3895, 0.6491) 0.6836 0.8009 29.6186 0.4925

Rows 2–9 denote the performance achieved by the model snapshots S1–S8. Rows 10–17
show the performances achieved by the model snapshots at their optimal TTA combination
(Table 5). We observed that TTA improved segmentation performance for the recorded
model snapshot in terms of all metrics compared to the model snapshots without TTA and
the “CR baseline”.

We ranked the model snapshots S1–S8 in terms of their IoU. We observed the S2
snapshot delivered the best IoU, followed by S3, S5, S7, S6, and S4 model snapshots. We
constructed an ensemble of the top-K snapshots (K = 2, 3, . . . , 6), as discussed in Section 3.8,
by averaging their predictions obtained using their optimal TTA combination. Rows 18–22
show the performances achieved by the ensemble of the top-2, top-3, top-4, top-5, and
top-6 model snapshots, respectively. We observed that the snapshot averaging ensemble
constructed using the top-4 and top-5 model snapshots delivered superior performance in
terms of the IoU and Dice metrics while the top-5 snapshot ensemble delivered superior
values also in terms of the SSIM and SRE metrics. The segmentation performance improved
in terms of all evaluation metrics at the optimal 256 × 256 resolution by constructing an
averaging ensemble of the top-5 model snapshots compared to the CR-baseline.

Figure 7 shows the predictions achieved by the baseline (i.e., the Inception-V3 UNet
model trained with the lung-cropped CXRs/masks at the 256 × 256 resolution), and
snapshot averaging of the top-5 model snapshots with TTA for a couple of CXRs from
the test set. In the first row, we could observe that snapshot averaging removed the false
positives (predictions shown with blue contours). In the second row, we could observe that
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the predicted masks were increasingly similar to the ground truth masks (shown with red
contours), compared to the baseline.
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Figure 7. Visualizing and comparing the segmentation predictions of the baseline (i.e., Inception-V3
UNet model trained with lung-cropped CXRs/masks at the 256 × 256 resolution), and the snapshot
averaging of the top-5 model snapshots. The red and blue contours denote ground truth and
predictions, respectively.

Figure 8 shows the SSIM quality maps achieved with the baseline and snapshot
averaging for a couple of CXR instances from the test set.
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Figure 8. SSIM quality maps shown for the predictions achieved for a couple of test CXRs, by the
baseline (Inception-V3 UNet model trained with lung-cropped CXRs/masks at the 256 × 256 resolu-
tion), and the snapshot averaging of the top-5 model snapshots with their optimal TTA combination.
We observed higher values for the SSIM using the snapshot averaged predictions compared to the
baseline, signifying that the predicted masks were increasingly similar to the ground truth masks.
Snapshot averaging removed the false positives, and demonstrated improved prediction similarity to
the ground truth, with a higher SSIM value, compared to the baseline.

5. Discussion and Conclusions

We observed that the segmentation performance improved with increasing image
resolution from 32 × 32 up to 256 × 256. The performance achieved with the lung-cropped
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CXRs/TB-lesion masks was superior compared to their original counterparts. These
findings are consistent with [31,36–38], in which lung cropping was reported to improve
performance in medical image segmentation and classification tasks. We observed that
increasing the resolution beyond 256 × 256 decreased segmentation performance. This
can be attributed to the fact that (i) increasing resolution also increased the feature space
to be learned by the models, and (ii) increased parameter count might have led to model
overfitting to the training data because of limited data availability.

We observed that the SSIM value decreased with decreasing resolution. The possible
reasons for this reduction are as follows: the SSIM index is based on three components, the
luminance component, which compares the average pixel intensity of the two images, the
contrast component, which compares the standard deviation of the pixel intensities, and the
structural component, which compares the similarity of patterns in the two images. When
the resolution of an image is decreased, the number of pixels in the image is reduced, which
can lead to a loss of detail in the image. This loss of detail can result in lower values for the
luminance and contrast components, which in turn can lead to a lower overall SSIM score.
In addition, the structural component of the SSIM index compares the similarity of patterns
in the two images using a windowed function, which is sensitive to the resolution of the
image. When the resolution is reduced, the window function captures less information
and thus, the structural component becomes less effective in capturing the similarities
between the two images. However, the SSIM metrics achieved with the lung-cropped
images were superior to the original images, and the performance further improved with
snapshot averaging.

We did not observe a considerable performance improvement with aspect ratio correc-
tions. We were constrained by the UNet architecture [23], which requires that the length and
width of the images/masks should be divisible by 32. This limitation did not allow us to
make precise aspect ratio corrections. However, the study of literature [22] revealed that DL
models trained on medical images are robust to changes in the aspect ratio. Abnormalities
manifesting TB do not have a precise shape and they exhibit a high degree of variabilities
such as nodules, effusions, infiltrations, cavitations, miliary patterns, and consolidations,
among others. These manifestations would appear with their inherent characteristics that
provide diversified features to learn for a segmentation model.

We identified the optimal image resolution and further improved performance at
that resolution through a combinatorial approach consisting of storing model snapshots,
optimizing the TTA and segmentation threshold, and averaging the snapshot predictions.
These findings are consistent with the literature in which storing model snapshots and
performing TTA considerably improved performance in natural and medical computer
vision tasks [33,39–42]. We further emphasize that identifying the optimal TTA method(s)
is indispensable to achieve superior performance compared to randomly augmenting the
test data. We underscore the importance of using the optimal segmentation threshold
compared to the conventional threshold of 0.5, as widely discussed in the literature [43,44].

Another limitation is that our experiments and conclusions are based on the Shen-
zhen CXR dataset where we observed that segmenting TB-consistent lesions using an
UNet model trained on lung-cropped CXRs/masks delivers optimal performance at the
256 × 256 image resolution. These observations could vary across the datasets. We, there-
fore, emphasize that the characteristics of the data under study, the model performances
at varying image resolutions with/without ROI cropping, and aspect ratio adjustments
should be discussed in all studies.

Due to GPU constraints, we were not able to train high-resolution models at larger
batch sizes. However, with the advent of high-performance computing, this can be made
feasible. High-resolution datasets might require newer model architecture and hardware
advancements. Nevertheless, although the full potential of high-resolution datasets is
not explored yet, it is indispensable to collect data at the highest resolution possible.
Additionally, irrespective of the image resolution, adding more experts to the annotation
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process may reduce the variation in the ground truth, which we believe may improve
segmentation performance.
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