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Abstract: Background and purpose: Based on artificial intelligence (AI), 3D angiography (3DA) is a
novel postprocessing algorithm for “DSA-like” 3D imaging of cerebral vasculature. Because 3DA
requires neither mask runs nor digital subtraction as the current standard 3D-DSA does, it has the
potential to cut the patient dose by 50%. The object was to evaluate 3DA’s diagnostic value for visual-
ization of intracranial artery stenoses (IAS) compared to 3D-DSA. Materials and methods: 3D-DSA
datasets of IAS (nIAS = 10) were postprocessed using conventional and prototype software (Siemens
Healthineers AG, Erlangen, Germany). Matching reconstructions were assessed by two experienced
neuroradiologists in consensus reading, considering image quality (IQ), vessel diameters (VD1/2),
vessel-geometry index (VGI = VD1/VD2), and specific qualitative/quantitative parameters of IAS
(e.g., location, visual IAS grading [low-/medium-/high-grade] and intra-/poststenotic diameters
[dintra-/poststenotic in mm]). Using the NASCET criteria, the percentual degree of luminal restriction
was calculated. Results: In total, 20 angiographic 3D volumes (n3DA = 10; n3D-DSA = 10) were success-
fully reconstructed with equivalent IQ. Assessment of the vessel geometry in 3DA datasets did not
differ significantly from 3D-DSA (VD1: r = 0.994, p = 0.0001; VD2:r = 0.994, p = 0.0001; VGI: r = 0.899,
p = 0.0001). Qualitative analysis of IAS location (3DA/3D-DSA:nICA/C4 = 1, nICA/C7 = 1, nMCA/M1 = 4,
nVA/V4 = 2, nBA = 2) and the visual IAS grading (3DA/3D-DSA:nlow-grade = 3, nmedium-grade = 5,
nhigh-grade = 2) revealed identical results for 3DA and 3D-DSA, respectively. Quantitative IAS as-
sessment showed a strong correlation regarding intra-/poststenotic diameters (rdintrastenotic = 0.995,
pdintrastenotic = 0.0001; rdpoststenotic = 0.995, pdpoststenotic = 0.0001) and the percentual degree of lumi-
nal restriction (rNASCET 3DA = 0.981; pNASCET 3DA = 0.0001). Conclusions: The AI-based 3DA is a
resilient algorithm for the visualization of IAS and shows comparable results to 3D-DSA. Hence,
3DA is a promising new method that allows a considerable patient-dose reduction, and its clinical
implementation would be highly desirable.

Keywords: artificial intelligence; 3D angiography; deep learning; dose reduction; flat-detector
computed tomography (FD-CT); intracranial artery stenosis; innovative postprocessing

1. Introduction

Atherosclerosis is considered the most important cause of the development of intracra-
nial artery stenosis (IAS) [1,2] and accounts for approximately 8–37% of acute ischemic
strokes worldwide [3–9]. Although non-invasive doppler sonography and CT and MR
angiography represent valuable first-line diagnostics of IAS in the clinical routine [10–16],
(because of its invasiveness) strictly indicated digital subtraction angiography (DSA) is
the gold standard not only for providing secure evidence and grading of IAS but also for
precise visualization of the vessel lumen [17,18].

Diagnostics 2023, 13, 712. https://doi.org/10.3390/diagnostics13040712 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13040712
https://doi.org/10.3390/diagnostics13040712
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-9768-9630
https://orcid.org/0000-0002-8560-2582
https://orcid.org/0000-0001-9962-3870
https://doi.org/10.3390/diagnostics13040712
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13040712?type=check_update&version=1


Diagnostics 2023, 13, 712 2 of 11

Yet, IAS is by far not as complex as cerebral arteriovenous malformations (AVMs),
and IAS grading by exclusive assessment of two-dimensional DSA (2D-DSA) series is
potentially inadequate because intrastenotic measurements are frequently restricted to
monoplanar images. Moreover, the evaluation of intracranial arteries is characterized by
very small diameters and definitely suffers from a relevant measurement inaccuracy. As a
consequence, 2D-DSA on its own is vulnerable to over- or underestimation of the stenotic
dimensions and might be associated with incorrect therapeutic decisions in clinically symp-
tomatic patients [19]. Thus, three-dimensional DSA volumes (3D-DSA) are obligatory for
correct measurement and grading of IAS: 3D-DSA provides the opportunity to visual-
ize the stenotic vessel segment at any angle and allows precise quantitative assessment.
From a technical view, 3D-DSA relies—comparable with the principles of conventional
2D-DSA—on digital subtraction of a non-contrast-enhanced mask volume from a contrast-
enhanced volume in order to generate angiographic 3D volumes without (e.g., osseous)
overlap [20]. Because of its simple acquisition and postprocessing, 3D-DSA is currently
seen as an essential part of DSA in the clinical routine and is considered highly reliable.

Nevertheless, the effective patient dose for a non-collimated 3D-DSA acquisition is
0.9 mSv and accounts for a relevant radiation dose of the entire examination [21]. Because
3D-DSA is one of the most frequent applications in the field of interventional neurora-
diology, an optimization of its required radiation dose would be strongly desirable. In
particular, the mask run, as a substantial component of the subtraction technique, accounts
for approximately 50% of a 3D-DSA’s total radiation dose without actual information on
vasculature. Hence, the mask run, especially, bears enormous potential for reduction in
3D-DSA’s radiation dose.

In this context, innovative postprocessing techniques using artificial intelligence (AI)
for dose-reduced 3D angiographies (3DA) have been recently developed [22,23]. These (pro-
totypical) algorithms allow a “DSA-like“ visualization of vessels but do not require mask
runs. On the contrary, these algorithms exclusively operate with contrast-enhanced 3D vol-
umes and are based on a deep neuronal network that is trained to classify different types of
tissue (e.g., vasculature vs. bone vs. soft tissue [22] or vasculature vs. non-vasculature [20]).
Until now, such algorithms have been primarily applied for the visualization of normal
vasculature, cerebral aneurysms (CAs), AVMs, and fistulas (dAVFs) [22,23]. Both algo-
rithms turned out to be diagnostic in these cases and were able to create high-resolution 3D
angiographies for these pathologies.

However, IAS visualization can be extremely challenging due to low contrast intensi-
ties within the stenotic segment and associated vessel wall calcifications. Because there is no
evidence of 3DA’s qualification in the field of IAS so far, we want to present our experience
in visualization of IAS with a prototypical AI-based 3DA algorithm which classifies tissue
also in a binary way (as previously described by Lang et al. [20,23]). Moreover, we want
to evaluate the diagnostic value of 3DA reconstructions for IAS by comparison with the
current standard technique, 3D-DSA.

2. Methods
2.1. Patient Selection

We screened our angiographic database (2018-2022) for consecutive patients pre-
senting with intracranial artery stenosis and having received a 3D-DSA with diagnostic
quality in order to evaluate the precise IAS grade and the indication for endovascular
treatment, respectively. In a retrospective analysis, 3D-DSA datasets from 10 patients
(agemean ± SD = 60.1 ± 17.12 years; nfemale = 4, nmale = 6) with untreated intracranial artery
stenosis (nIAS = 10) were selected and analyzed. The considered datasets for visualization
of the anterior and posterior circulation (nanterior circulation = 6; nposterior circulation = 4) have
been acquired in a standardized technique by contrast medium application via a diagnostic
catheter positioned within the proximal internal carotid artery (ICA) or vertebral artery
(VA), respectively. Written, informed consent was obtained from all patients enrolled.
The study was performed according to the Declaration of Helsinki and the European
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Guidelines for Good Clinical Practice. Additional ethical review was not required for
participation in this retrospective analysis in accordance with local legislation (BayKrG
Section 27, paragraph 4) and institutional requirements.

2.2. Three-Dimensional Angiography

The current standard to visualize vasculature in an unobstructed way is to perform a
subtraction of a non-contrast-enhanced (“mask run”) from a contrast-enhanced volume
(“fill run”), whereas the AI-based 3DA aims at the separation of vascular information to
generate a 3D-DSA-like volume via an innovative postprocessing algorithm demanding a
“fill run” only.

The core of the AI-based method can be formulated as a binary classification problem:
distinguishing vascular from non-vascular structures. To solve this problem, a machine
learning-based approach was chosen incorporating the use of a deep convolutional neural
network [24] and specifically trained for this task. The training of the network, which
was carried out prior to this evaluation, entailed the presentation of contrast-enhanced
volumes of cerebral vasculature (with and without digital subtraction) to the network.
By this, it can be ensured that the network inherently learns to focus on the removal
of the distinguishing information between the respective volumes, i.e., the non-vascular
information, and to retain the vascular information. As a result, a 3D-segmentation mask
featuring the determined vascular structures is generated. The segmentation mask can then
be used on the data acquired during the fill run to calculate a 3D-DSA-like volume.

In terms of the network architecture, a feedforward 3D convolutional neural network
has been chosen. The choice was driven by aiming for a reasonable trade-off between the
runtime during application and the resulting quality of the classification process. In addi-
tion to this, it was important that volumes of arbitrary size, e.g., 512 × 512 × 512 voxels,
could be used. The used network includes 4 convolutional layers with 8 filters each. The
kernel size is 5 × 5 × 5 voxels. To include more contextual information during the classifica-
tion process, while keeping the memory requirements low, dilated convolutions, as shown
for example for a 1D scenario in [25], but also applicable to multidimensional approaches,
were chosen to be incorporated. The dilation rate was set to 2. In the final layer of the
network, the kernel size is 3 × 3 × 3 voxels with 1 result filter. In terms of the activation
function, rectified linear unit (ReLu) activations were selected and normalized via batch
normalization [26]. As a loss function, the binary cross entropy was set. Instead of a
classical stochastic gradient descent optimization, the Adam optimization [27] approach
with a batch size of 64 and a base learning rate of 0.01 was chosen.

The training of the prototypical AI-based 3DA algorithm was conducted on the basis
of 98 conventionally acquired 3D-DSA datasets (free from metal as well as motion arti-
facts to ensure a high level of consistency) covering various conditions (e.g., datasets for
three-dimensional visualization of cerebral aneurysms, AVMs, dAVFs, etc.) to prevent an
algorithm’s overfitting during the training process. The presence of contrast-enhanced fill
runs and the processed 3D-DSA volumes in the training data and their presentation to
the network to be trained allowed for a suitable classification of the respective structures.
The parameters used during the training were based on hyperparameter tuning. As an
additional measure to increase the robustness of the algorithm, a patch-based training ap-
proach with randomly selected patches with a size of 31 × 31 × 31 voxels was chosen. This
size represented the minimum input size for the neuronal network, and thus resulted in a
single voxel response. Even though patches were used during the training, the application
of the prototypical 3DA method is based on the processing of an entire volume. Testing
and validation of 3DA were carried out multimodally with separate 3D-DSA datasets not
involved in the training process (e.g., visualizing normal vasculature, cerebral aneurysms,
AVMs, dAVFs, etc.). Essentially, neither datasets used for the prototype’s training nor those
used for the prototype’s validation have been taken into account for the present evaluation
of 3DA in the context of IAS. Finally, only the prototype’s successful validation allowed its
application as part of this publication.
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2.3. Data Acquisition and Postprocessing

Acquisition of 3D-DSA was performed on a biplane flat panel detector angiographic
system (Artis zee biplane; Siemens Healthineers AG, Erlangen, Germany). A 5F catheter
was positioned in the proximal internal carotid artery (ICA) or vertebral artery (VA) to
obtain 3D-DSA datasets by using a standard protocol for acquisition as provided by the
manufacturer (5s 3D-DSA): An initial rotational scan (native mask run) was followed by
a second rotational scan (contrast-enhanced fill run) of 5s each. Each run yields 133 pro-
jections (rotational angle: 200◦). The detector dose per projection image is selected as
0.36 µGy (70 kV, 1240 × 960 detector elements with 2-by-2 binning of pixels, projection on a
30 × 40 cm flat panel size, increment of 1.5◦/frame, frame-rate of 30 frames/s). According
to the protocol, a manual injection of contrast was initiated 1s before the beginning of the fill
run, maintained for 6 s, and stopped after the C-arm system covered the complete rotation
angle. The total contrast volume was 15 mL (Iopamidol, Imeron 300; Bracco, Milan/Italy).

Both mask- and fill runs of the acquired 3D-DSA datasets were transferred to a
dedicated workstation (syngo X-Workplace; Siemens Healthineers AG, Erlangen/Germany)
running both commercially available software for conventional 3D-DSA postprocessing
and an additional software prototype plug-in for the 3DA postprocessing. Reconstruction
of the 3D-DSA volumes was performed using data derived from both runs, whereas
reconstruction of 3DA volumes was accomplished using only data from the fill runs.

According to standardization, we used conventional reconstruction parameters for both 3DA
and 3D-DSA (kernel type: “edge-enhanced”; characteristics: “smooth”; 512 × 512 image matrix).

2.4. Image Evaluation

The image quality of all datasets was evaluated for parameters that could compromise
the diagnostic value using a 5-fold grading scale (see Table 1). The 3D-DSA and 3DA
reconstructions were assessed in consensus reading by 2 experienced neuroradiologists
(with 8 and 12 years of clinical experience) blinded to the type of reconstruction (based on
either the subtraction technique or the AI algorithm).

Table 1. Image Quality (IQ).

GradeIQ Characteristics

4 excellent (high contrast, clear delineation of the stenosis, no artifacts)

3 good (high contrast; good delineation of the stenosis, minimal artifacts, e.g., due to movement)

2 compromised (e.g., noticeable movement artifacts and/or reduced homogeneity of the vessel contrast, delineation of
the stenosis still acceptable)

1 heavily compromised (low contrast and/or strong movement artifacts, difficult delineation of the stenosis)

0 not diagnostic (no delineation of the stenosis)

2.5. Assessment of 3DA and 3D-DSA Reconstructions
2.5.1. Vessel-Geometry Index (VGI)

As previously described in [20], the maximum transversal diameters of the injection
vessels (in mm; VD1/VD2) have been measured in multiplanar reconstructions in all 3DA-
and 3D-DSA reconstructions. Taking the three-dimensionality of these datasets into account,
the ratio of VD1 and VD2 was defined as the “vessel-geometry index” (“VGI” = VD1/VD2).
Measurements for vessels of the anterior and posterior circulation were performed at the
C4 segment of the ICA and at the V4 segment of the VA, respectively. See also Figure 1 for
further illustration.

2.5.2. Intracranial Artery Stenosis

The degree of agreement between the 3DA and 3D-DSA datasets of the IAS was evalu-
ated with a compound of MPR-/MIP-/VRT-datasets from both types of reconstructions.



Diagnostics 2023, 13, 712 5 of 11

As qualitative parameters, firstly the location of IAS (e.g., M1 for the proximal segment
of the middle cerebral artery [MCA], etc.) and secondly a visual grading of the IAS (e.g., low-
grade IAS in cases of only minimal narrowing of the arterial lumen, medium-grade IAS in
cases of moderate narrowing of the arterial lumen and high-grade IAS in cases of severe
narrowing of the arterial lumen) were determined for all datasets. Analogous to the
North American Symptomatic Carotid Endarterectomy Trial (NASCET) [28], the narrowest
intrastenotic diameter (dintrastenotic in mm) and the normal vessel diameter distal to the
stenosis (dpoststenotic in mm) were assessed as quantitative parameters for calculation of the
percentual degree of luminal restriction [(dpoststenotic − dintrastenotic)/dpoststenotic × 100].
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Figure 1. Exemplary measurement of a vessel-geometry-index (VGI) in a 3D-DSA dataset. In this
anterior circulation case, the vessel diameters (VD1; VD2) of the ICA (B) are determined using
multiplanar reconstructions at the level of the C4 segment (A) in an axial plane (B) after precise
alignment of the vessel (C,D). In the end, the ratio of VD1 to VD2 enables the estimation of the VGI
(VGI = VD1/VD2).

2.6. Statistical Analysis

Statistical analysis was performed using commercially available software (SPSS Statis-
tics Version 20, IBM, Chicago, IL, USA).

Because of their non-continuous character, qualitative parameters (e.g., location of IAS
and visual grading of the IAS) were analyzed by use of descriptive statistics.

Quantitative parameters from both groups (e.g., vessel diameters, vessel-geometry in-
dices, intrastenotic diameter [dintrastenotic], vessel diameter distal to the stenosis [dpoststenotic],
and percentual degree of luminal restriction were tested for normal distribution by using
the D’Agostino–Pearson test (if p > 0.05 normality was accepted) and were compared by
using the Pearson correlation coefficient (r) and a paired t-test (p), respectively.

3. Results
3.1. Image Quality

All 3DA and 3D-DSA reconstructions (ntotal = 20) were of diagnostic quality. There
was no case with a relevant reduction in the IQ (3DA: nexcellent = 10; 3D-DSA: nexcellent = 10).

3.2. Qualitative and Quantitative Assessment of 3D-DSA and 3DA Reconstructions

Vessel-Geometry-Index (VGI)
Measurement of vessel diameters was successfully performed for all 3DA and 3D-DSA

reconstructions, (n3DA = 20, n3D-DSA = 20). Neither the acquired values for VD1/VD2 nor the
calculated values for the corresponding VGI showed significant differences (rVD1 = 0.994;
pVD1 = 0.0001; rVD2 = 0.994; pVD2 = 0.0001; rVGI = 0.899; pVGI = 0.0001).

See Table 2 for further details.

3.3. Intracranial Artery Stenosis

Qualitative assessment of the corresponding 3DA and 3D DSA datasets revealed equiv-
alent results concerning the location of IAS (3DA: nICA/C4 = 1, nICA/C7 = 1, nMCA/M1 = 4,
nVA/V4 = 2, nBA = 2; 3D DSA: nICA/C4 = 1, nICA/C7 = 1, nMCA/M1 = 4, nVA/V4 = 2, nBA = 2)
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and visual IAS-grading (3DA: nlow-grade = 3, nmedium-grade = 5, nhigh-grade = 2; 3D DSA:
nlow-grade = 3, nmedium-grade = 5, nhigh-grade = 2).

Quantitative assessment of the corresponding 3DA and 3D DSA datasets showed a
strong correlation with regards to the intra- and poststenotic diameters (rdintrastenotic = 0.995,
pdintrastenotic = 0.0001; rdpoststenotic = 0.995, pdpoststenotic = 0.0001). Consecutively, also cal-
culation of the percentual degree of luminal restriction according to the NASCET criteria
correlated well for both reconstruction types (rNASCET = 0.981; pNASCET = 0.0001).

Please see Table 2 for further details and Figures 2 and 3 for illustrative cases.

Table 2. Vessel diameters (VD), vessel-geometry index (VGI), NASCET graduation of IAS.

Parameter 3DA 3D-DSA r p

VD1IAS 4.41 ± 0.69 mm 4.36 ± 0.64 mm 0.994 0.0001

VD2IAS 4.65 ± 0.63 mm 4.58 ± 0.61 mm 0.994 0.0001

VGIIAS 0.95 ± 0.03 mm 0.95 ± 0.03 mm 0.899 0.0001

dpoststenotic 1.74 ± 0.58 mm 1.68 ± 0.53 mm 0.995 0.0001

dintrastenotic 3.12 ± 0.71 mm 3.04 ± 0.67 mm 0.993 0.0001

NASCETIAS 43 ± 0.16% 44 ± 0.15% 0.981 0.0001
3DA = 3D angiography; 3D-DSA = 3D digital-subtraction angiography; VD1/2 = vessel diameter1/2; IAS = in-
tracranial artery stenosis; dintra-/poststenotic = diameterintra-/poststenotic; NASCET = North American Symptomatic
Carotid Endarterectomy Trial.
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Figure 2. Illustrative case 1. Visualization of a vertebrobasilar stenosis (red arrows) with the artificial
intelligence-based 3DA (A–C) and 3D-DSA (D–F). 3DA (A,B) provides a 3D-DSA (D,E) comparable
visibility of the stenotic segment (red arrows) in the volume-rendered reconstructions. Due to the high
level of correspondence of the measurements of the intra- and poststenotic diameters in multiplanar
reconstructions of 3DA (C) and 3D-DSA (F), the calculation of the percentual degree of luminal
restriction revealed a 64% stenosis of the vertebrobasilar junction for both reconstruction types
(NASCET3DA = 63.9%; NASCET3D-DSA = 63.6%).
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Figure 3. Illustrative case 2. Visualization of a stenosis of the cavernous segment of the right internal
carotid artery (red arrows) with the artificial intelligence-based 3DA (A–C) and 3D-DSA (D–F).
Comparable with 3D-DSA (D,E), 3DA (A,B) provides a clear visualization of the stenosis (red arrows)
in the volume-rendered reconstructions. The measurements of the intra- and poststenotic diameters
in multiplanar reconstructions of 3DA (C) and 3D-DSA (F) do not show a relevant deviation from
each other. As a consequence, the calculation of the percentual degrees of luminal restriction in
the 3DA (NASCET3DA = 70.5%) and the 3D-DSA (NASCET3D-DSA = 69.5%) reconstruction shows a
strong accordance.

4. Discussion

Three-dimensional imaging of neurovascular pathologies as part of cerebral catheter
angiography is substantial for precise diagnostics and adequate therapy. Even though
3D-DSA is currently considered the gold standard for this purpose, application of the
subtraction technique is linked with relevant disadvantages: 3D-DSA always requires
the acquisition of both a native and a contrast-enhanced volume for the separation of
vasculature. On the one hand, this procedure leads to a doubled radiation exposure for
patients. On the other hand, the actual image quality strongly depends on the efficiency
of the data registration and is highly susceptible to motion artifacts. Therefore, AI-based
algorithms relying on a single contrast-enhanced volume for “DSA-like” 3D imaging
of vasculature are a promising new development. In particular, the application of the
AI-based 3DA cuts down not only radiation doses but also improves image quality in
cases of patient motion [22]. By now, the qualification of such AI-based algorithms has
already been demonstrated for a variety of neurovascular pathologies (e.g., AVMs, CAs,
etc.) [20,22,23]. However, data on 3DA’s diagnostic value for visualization of IAS is still
pending. Consequently, an evaluation of 3DA focusing on IAS should be pursued, not least
because of its clinical importance.

In our series, all IAS datasets have been successfully reconstructed with the prototypi-
cal AI-based 3DA. Moreover, the quantitative and qualitative comparison of 3DA with the
conventional 3D-DSA demonstrated equivalent visualization of IAS. Thus, the results of
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our analysis confirm existing data on AI-based algorithms for dose-reduced 3D imaging
of vasculature.

In 2018, Montoya et al. [22] were the first to describe an AI-based algorithm (“3D
deep-learning angiography”/3D-DLA) that effectively extracts vascular structures by
differentiating three types of tissue (vasculature/bone/soft tissue) for each image voxel.
3D-DLA had been trained and validated with 43 datasets. After that, 62 other datasets with
cerebrovascular abnormalities were the object of the actual evaluation. For this purpose,
both subtraction technique-based and AI-based reconstructions have been assessed, for
example, with respect to vasculature classification accuracy and quality of bone removal.
3D-DLA turned out to be highly reliable and precise. As another key finding, the application
of 3D-DLA for blurred datasets improved overall image quality and in particular the
visibility of small vessels. Moreover—as a consequence of the “single-run design” of 3D-
DLA—Montoya et al. stated that their algorithm helps to significantly reduce the radiation
dose. Even though an explicit evaluation of IAS has not been performed in [22], our data
support Montoya’s statements concerning the high potential of AI-based approaches to
optimize patient dose and image quality.

In 2019, Lang et al. [20] reported on a similar AI-based algorithm (3D angiogra-
phy/“3DA”) that also enables “DSA-like” visualization of vasculature by classifying two
different types of tissue (vasculature/non-vasculature) for each image voxel. This algo-
rithm was trained and validated with 98 datasets. Initially, 15 datasets without pathological
findings [20] and later 30 datasets with neurovascular pathologies (AVMs, dAVFs, CAs) [23]
were quantitatively and qualitatively evaluated. In both series, subtraction technique and
AI-based reconstructions were compared with regard to the quality of vessel visualization.
Similar to Montoya’s results, a high level of reliability and accuracy was demonstrated
for 3DA in cases of normal and pathologic vasculature. Consequently, the manuscripts’
central statement is that 3DA’s “single-run design” offers a considerable reduction in the
patient dose and should find a direct path to clinical implementation. Although focusing
on IAS, our data indicate 3DA’s efficiency in terms of dose reduction and improving image
quality as well. Therefore, we believe that—not least because our proposed 3DA algorithm
is also characterized by a binary design comparable with [20,23]—our results fit in well
with existing data.

Beyond AI-based algorithms, thresholding of contrast-enhanced datasets can also
provide a “DSA-like” 3D rotational angiography (3D-RA) and supersede the acquisition of
a native mask run for application of the subtraction technique [29]. Because of the “single-
run design” comparable with 3D-DLA or 3DA, approximately 50% of the usual 3D-DSA
dose can be saved in case of 3D-RA’s application, and the negative effects of the DSA-typical
problem of intersweep motion can be completely eliminated. On the basis of reliability and
accuracy in cases of cerebral aneurysms, 3D-RA has already proven its diagnostic value.
From a technical point of view, 3D-RA works by modifying thresholds to separate vascular
from nonvascular structures [30,31]. Thus, imaging of low-opacified vessels is prone to
error [32]. In detail, visualization of very small vessels cannot securely be provided by
3D-RA. Hence, 3D-RA seems to be of limited applicability in cases of IAS, because small
vascular proportions are characteristic of IAS and associated with low contrast, especially
in high-grade stenoses. In contrast, AI-based algorithms appear unimpressive as 3DA has
demonstrated an accurate visualization of small perforating arteries as well [20]. Therefore,
our results indicate that the use of 3D-RA should focus on vascular structures with an
expectable high contrast (e.g., aneurysms), whereas 3DA is unconditionally applicable for
all neurovascular pathologies.

Apart from AI-based and thresholding algorithms, variations of scanning parameters
as the most obvious approach to achieve effective dose reductions have been described as
useful for subtraction-based 3D imaging [33,34]. In this context, especially the “dose per
frame” and “scanning time” attracted attention because downscaling of dose per frame up
to 70% (from 0.36 µGy/f towards 0.10 µGy/f) still generated useful image quality in an
animal model. Finally, Pearl et al. identified a smart combination of parameters (5s and
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0.24 µGy/frame) providing tolerable image quality for patients with intracranial aneurysms
and an estimated dose reduction of 30%. Even though Pearl et al. rated these deviations
as acceptable, any manipulation of the standard protocol was associated with relevant
deviations regarding the vascular geometry. Due to the natural susceptibility of (high-grade)
IAS for over- or underestimation, Pearl’s low-dose protocols do not seem appropriate for
IAS. However, we fully agree with the hypothesis [20,23] that Pearl’s low-dose approach is
highly relevant for further development of AI-based algorithms: Simultaneous application
of low-dose protocols and AI-based algorithms (regardless of a binary or ternary design) has
potentially a far greater impact on dose reduction for 3D imaging of vasculature than any
of these methods on their own. Hence, future research should prioritize the development
of clinically applicable dose-reduced single-run protocols.

5. Limitations

Even though useable 3DA reconstructions of IAS have been realized for all considered
datasets, our analysis has limitations. First, it was limited by the small sample size of
IAS, the strict selection criteria for the considered datasets (e.g., selective catheter position
for contrast application, no metal artifacts, etc.), and its evaluation design without an
independent assessment of the reconstructions. Moreover, our analysis does not include
volumes with compromised image quality (e.g., heavy motion artifacts, etc.) and low
contrast (e.g., datasets with varying contrast media dilutions because of unexpected loss
of the catheter position). Apart from this, our analysis exclusively evaluated one specific
AI-based algorithm based on a specific neuronal network trained for binary classification
of cerebral structures (vasculature vs. non-vasculature). Thus, a valid transfer of our
results concerning the diagnostic value of our proposed 3DA algorithm can only be directly
transferred to other algorithms with comparable technical characteristics (incl. training
and validation conditions) [20,23]. As a consequence of these issues, further investigations
should focus on a direct comparison between the existing AI-based algorithms to precisely
evaluate the drawbacks of each algorithm and provide an independent evaluation design
by preference. Moreover, these AI-based algorithms should prospectively cover both
dual-volume datasets (e.g., coiled/clipped aneurysms) to allow dose savings also for
postinterventional cases and volumes with compromised image quality to further extend
3DA’s field of application. Besides technical aspects and because of the high clinical
relevance of lacunar ischemic strokes [35], future publications should also evaluate the
diagnostic accuracy of such AI-based algorithms in the assessment of stenotic changes of
small arteries (e.g., lenticulostriate perforators).

6. Conclusions

Reconstructions of the proposed AI-based 3DA algorithm provide a reliable and accu-
rate visualization of intracranial artery stenoses. In direct comparison with conventionally
reconstructed 3D-DSA volumes, 3DA turned out to be equivalent for IAS imaging. Further-
more, 3DA cuts the effective patient dose by approximately 50% because of its single-run
design. Thus, a broad clinical application of this innovative post-processing algorithm
would be highly desirable. The concepts and results presented in this paper are based on
research and are not commercially available.
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