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Abstract: Histopathology is the most accurate way to diagnose cancer and identify prognostic and
therapeutic targets. The likelihood of survival is significantly increased by early cancer detection.
With deep networks’ enormous success, significant attempts have been made to analyze cancer
disorders, particularly colon and lung cancers. In order to do this, this paper examines how well
deep networks can diagnose various cancers using histopathology image processing. This work
intends to increase the performance of deep learning architecture in processing histopathology images
by constructing a novel fine-tuning deep network for colon and lung cancers. Such adjustments
are performed using regularization, batch normalization, and hyperparameters optimization. The
suggested fine-tuned model was evaluated using the LC2500 dataset. Our proposed model’s average
precision, recall, F1-score, specificity, and accuracy were 99.84%, 99.85%, 99.84%, 99.96%, and 99.94%,
respectively. The experimental findings reveal that the suggested fine-tuned learning model based on
the pre-trained ResNet101 network achieves higher results against recent state-of-the-art approaches
and other current powerful CNN models.

Keywords: histopathology images; colon cancer; lung cancer; ResNet101; fine-tuning

1. Introduction

The term “cancer” refers to a group of disorders in which the human body develops
aberrant cells as a result of chance mutations. These cells multiply out of control as soon as
they are produced, spreading throughout the organs. Any region of the body can produce
cancerous cells, although the lungs, breasts, brain, colon, rectum, liver, stomach, skin, and
prostate are the most frequently affected organs. Most cancers can eventually cause death
if they are not treated. Cancer is the second leading cause of death worldwide, behind
cardiovascular disorders. Worldwide, 9.958 million deaths from cancer and more than
19 million new cases were reported in 2020 [1]. The American cancer society forecasts
that in 2022, more than 1.9 million new cancer cases will be recorded and more than
609,360 cancer-related deaths in the USA alone [2].

A variety of factors cause cancer, including physical carcinogens such as exposure
to radiation and ultraviolet rays, behavioral features such as high body mass index and
alcohol and tobacco use, as well as specific biological and genetic carcinogens [3]. The
reason, nevertheless, may differ from patient to patient. Discomfort, exhaustion, nausea,
persistent cough, breathing problems, weight loss, muscle pain, bleeding, bruises, and
numerous other symptoms are typical cancer signs [4]. However, none of these signs are
specific to cancer, nor do all patients experience them. Due to this, it might be challenging
to identify cancer without a specific diagnostic technique such as computed tomography
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(CT), magnetic resonance imaging (MRI), positron emission tomography (PET), ultrasound,
or biopsy.

Deep learning (DL)-based automated systems for diagnosing medical diseases, partic-
ularly cancer, have become commonplace in recent years. While many works that attempt
to automate this diagnosis do so using CT and MRI scans [5–7], there are others. Deep
learning techniques have considerably improved the early detection of breast cancer, for
example, by utilizing dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).
Similarly, deep learning has been applied to CT scans to identify lung cancer and classify
images of brain tumors [8].

Lung and colon cancer diagnosis using DL has been a more popular study topic in
recent years. Automated diagnosis has been employed in the majority of successful in-
vestigations with images from histopathology slides. This study only uses histopathology
pictures to automatically detect lung and colon tumors. This work aims to categorize the
photos of colon and lung cancer into five groups: squamous cell carcinomas, adenocar-
cinomas lung, benign lung, benign colon, and adenocarcinomas colon. It also aims to
significantly enhance the DL-based prognosis of such malignancies by delivering superior
outcomes. We have carried out substantial research using several DL models. The findings
demonstrate that the model can classify related lung and colon cancer subtypes. The main
contributions of this paper are as follows:

1. The ResNet101 model is fine-tuned to diagnose multi-type cancer lesions with high
performance.

2. Transfer learning is used to train a benchmark cancer lesions dataset containing more
than 25,000 histopathology images.

3. Five different metrics are used to evaluate the performance of the proposed model.
Moreover, they are used to compare the performance of the proposed model with
other state-of-the-art models and systems. The experimental results show that the
proposed approach achieved promising results for diagnosing different cancer types.

The rest of the article is organized as follows. The most recent related research in
this area is covered in Section 2. The proposed strategy for the early identification of
lung and colon cancer is described in Section 3 and is based on many DL models. The
experimental findings where the proposed approach is contrasted with the current state-of-
the-art approaches are shown in Section 4. Section 5 ends the proposed research and offers
suggestions for further improvement.

2. Related Work

The nature of medical imaging data has always affected researchers when devel-
oping diagnosis and prognosis systems based on deep learning [9]. The most common
types of medical imaging data include MRIs, X-rays, CT scans, endoscopic images, and
histopathological slides [10–12]. Despite the difficulty of the cancer detection and classifica-
tion challenge, authors have employed deep learning techniques to significantly advance
cancer detection systems [13].

Deep learning models can identify the most common malignancies, including breast
cancer. For instance, researchers [14,15] have developed deep learning techniques to
reasonably diagnose breast cancer. Similarly, authors [16,17] have employed DL techniques
to identify bladder cancer. Another common form of cancer is skin cancer, which has
seen few significant advances. For example, Jinnai et al. [18] proposed a DL algorithm to
identify skin cancer. DL techniques have also been applied to the identification of cancer
stem cell morphology [19], gastric cancer [20], and oral squamous cell carcinoma [21].
Although DL methods for categorizing and identifying lung and colon cancer employing
histopathology images have gained popularity in recent years [22], little progress has been
made to date [23] due to a lack of data. Amidst the paucity of data, a select few researchers
have made substantial contributions [24]. While some authors primarily concentrate on
colon cancer categorization [25], others focus exclusively on lung cancer classification [26].
Recent studies have attempted to simultaneously classify images of colon and lung cancer.
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The authors used prior-trained systems in a transfer learning environment or created and
trained their originally developed systems from the start [27–29].

Few notable papers only classify lung tumors. For example, Abbas et al. [30] only classi-
fied lung cancers using prior-trained systems AlexNet, VGG-19, ResNet-101,
ResNet-50, ResNet-34, and ResNet-18. They divided the images into three categories:
benign-lung, squamous cell carcinoma-lung, and adenocarcinoma-lung. According to their
claims, all prior-trained systems achieved an F1-score of 97.3%, 99.7%, 98.6%, 99.2%, 99.9%,
and 99.9%, respectively. On the other hand, Roy et al. [31] used a capsule network to
categorize photos of lung cancer histology. They said that a relatively simple setup allows
them to achieve an average accuracy of 99%. Colon cancer has undergone a few significant
categorization changes. Bukhari et al. [32] categorized colonic tissue using histological
pictures using three convolutional neural networks (CNN): ResNet-18, ResNet-30, and
ResNet50. They asserted that ResNet-50 achieved average accuracy equal to 93.91%, while
ResNet-18 and ResNet-30 each obtained an accuracy of 93.04%.

A lung cancer diagnosis technique based on CNN plus the feature learning technique
of nodule region of interest (ROI) was introduced by Suresh and Mohan [33]. They gathered
CT scan pictures from the infectious disease research institute (IDRI) databases and the lung
image database consortium (LIDC). They used generative adversarial networks (GANs)
to create more images to expand the sample. They could attain a maximum classification
accuracy of 93.9% using CNN-based classification methods. A lung nodule detection
technique applied on CT scan images and utilizing a light CNN structure was described by
Masud et al. [34]. When tested on the LIDC dataset, their model successfully distinguished
benign, malignant, and normal cases with a classification accuracy of 97.9%. Another CT
scan image-based lung cancer screening technique was put forth by Shakeel et al. They used
an improved deep neural network (IDNN) for picture segmentation and several ensemble
methods (EM) for image classification after eliminating noise from the images [35].

Masud et al. [27] developed a histological lung and colon picture classification method
based on DL. They applied domain transformations of two types to extract four sets of
characteristics for image classification. They then mixed the characteristics of the two cat-
egories to reach their classification conclusions. They claimed to have a 96.33% accuracy
rate. Similarly, Mangal et al. [36] used a shallow neural network design to categorize
histopathological images into five categories. They asserted that their research classified
lung and colon cancers with 97% and 96% accuracy, respectively. Table 1 summarizes
existing methods for colon and lung cancer prediction.

Table 1. Summary of existing methods for colon and lung cancer prediction.

Study Methodology Obtained Results Dataset Limitation

Sakr et al. [25] CNN with four
convolution block Accuracy = 99.5% LC25000 Only colon cancer

Masud et al. [27] Multi-channel CNN Accuracy = 96.33% LC25000 Custom architecture

Mangal et al. [36] Multi-channel CNN Accuracy = 97.89% LC25000

Abbas et al. [30]

VGG-19, Alex Net,
ResNet: ResNet-18,

ResNet-34, ResNet-50,
and ResNet-101

F-1 scores = 0.973, 0.997, 0.986,
0.992, 0.999, and 0.999, respectively LC25000 Only lung cancer

Roy Medhi [31] Capsule network Accuracy = 99% LC25000 Only lung cancer

Bukhari et al. [32] ResNet-18, ResNet-30,
and ResNet50

ResNet-50 accuracy = 93.91%
ResNet-30 accuracy = 93.04%
ResNet-18 accuracy = 93.04%

LC25000 Only colon cancer



Diagnostics 2023, 13, 699 4 of 18

3. Materials and Methods
3.1. Dataset

This paper used the histopathological images (LC25000) dataset created by A. Borkowski
and his associates and published in 2020 [37]. This collection contains 25,000 photos of
lung and colon tissues divided into five groups. It has 25,000 photos, of which 15,000
are of lung cancer and 10,000 are of colon cancer. Squamous cell carcinoma, benign, and
adenocarcinoma are the three different forms of lung tissue pictures. In contrast, colon
pictures fall under benign tissues and cancer groups. The LC25000 dataset was developed
utilizing a sample of HIPAA-compliant. It verified references, including 750 lung tissue
(250 adenocarcinomas, 250 squamous cell carcinomas, and 250 benign tissue) and 500 colon
tissue (250 adenocarcinomas and 250 benign tissue) augmented to create 25,000 images. The
dataset was increased by flipping and rotating the photographs under various conditions; as
a result, the dataset was separated into five categories with 5000 images each. There are now
25,000 images in the dataset. Images were scaled to 224 × 224. Figure 1 shows samples of
histopathological images from the dataset.

Figure 1. Some examples of histopathological images from the used dataset.

3.2. Model Architecture and Training
3.2.1. Prior Processing

The preprocessing stage is applied to scale up and normalize the data before feeding
the images to the model. The pixel density of the processed images ranges from high to
low. Higher image values may produce different loss values from the lower range values.
Therefore, it is necessary to normalize the dataset. The deep learning architecture scales the
image pixels before the training stage. To harmonize image samples, image pixel values
are normalized from [0, 255] to [0, 1]. Without scaling, a significant number of votes will be
needed to decide how to update weights for the high-pixel range images [38].

3.2.2. Training Procedure

A deep learning network can handle complex problems and improve classifica-
tion/recognition accuracy [39]. However, there may be challenges when training the
deep network, such as saturation, accuracy degradation, and disappearing or bursting
gradients [40]. These issues can be resolved by utilizing deep residual pre-trained archi-
tecture. Pre-trained model architecture makes it easier to train deeper networks than the
earlier deeper framework [39]. Resnet101 was previously trained using ImageNet, which
has a total of 1.5 million photos of natural scenes [40]. ResNet has the ability to restructure
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network layers using leftover learning functions. The stacked layers in ResNet are a perfect
fit for the intended mapping (residual mapping) [40].

ResNet101’s central premise is the identity mapping, as illustrated in Figure 2. It
is used to forecast the essentials to arrive at the final prediction of the outputs from the
preceding layer [40]. ResNet101 reduces the vanishing gradient phenomenon by taking a
different shortcut. The model can pass through the extra layers due to identity mapping.
This makes it easier for the model to avoid overfitting [41].

Figure 2. Illustration of ResNet101’s identity mapping.

During training, the weights of the prior-trained ResNet101 model were used. Such
a prolonged procedure makes it easier to train deeper networks and improves accuracy.
Figure 3 depicts ResNet101’s architectural layout.

Figure 3. ResNet101’s architectural layout.

3.2.3. Optimization of the Network

Since data have increased exponentially, optimization has become increasingly impor-
tant, particularly in deep learning. The deep layer network’s extensive set of parameters
makes it challenging to manage the difficulties in changing the network settings [42].
These optimization algorithms work to improve the outcomes by applying a variety of
optimization strategies [43].

The model’s performance is affected by setting the hyper-parameter. Numerous
effective strategies for automatically adjusting the hyper-parameters have been developed
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through optimization [44]. The learning performance rate is significantly influenced by
the Adam optimizer’s optimization techniques [45]. It is necessary to tune the architecture
to increase the performance, which is called fine-tuning [46,47]. This can be achieved by
selecting a suitable network of deep learning. Furthermore, the choices of layers, hyper-
parameters, and optimizers should also be included to achieve such tuning [40]. Transfer
learning, batch normalization, hyper-parameter tuning, regularization, optimization via
the Adam optimizer, and cross-entropy are fine-tuning techniques used in the proposed
deep model.

Batch Normalization and Hyper-Parameter Tuning

For convolutional networks, batch normalization improves optimization performance [48].
Understanding the fixed input distributions could minimize the number of epochs needed,
eliminate the impacts of the internal covariate shift, and reduce generalization error [49]. Batch
normalization can be used to perform standardization by computing the average and standard
deviation for each mini-batch of input data for a layer during training [50]. The average and stan-
dard deviation of activation are calculated to normalize features using Equations (1) and (2) [49].

x f =
1
m ∑m

i=1 xi f (1)

σf =
1
m ∑m

i=1

(
xi f − x f

)
(2)

where xi f is the f th feature of the ith sample, and m is the size of a mini-batch.
Equation (3) [49] allows for the normalization of features using the average and standard
deviation of the mini-batch.

x̂ f =
x f − x f

σk + ξ
(3)

where the modest positive constant ξ is used to provide numerical stability. Batch nor-
malization employs two learnable parameters in practice as β f and γ f for each feature f
during the training phase [49].

BN
(

x f

)
= γ f x̂ f + β f (4)

The backpropagation approach updates training and adapts parameters in accordance
with the transformed inputs. Batch normalization aims to increase the network’s stability by
properly distributing the activation values during the training. Initializing weights before
deep network training is a difficult problem. When training deep networks, the choice of
weight initialization can be handled by achieving stability using batch normalization [50].
Batch normalization is a technique for data preparation that can be used to standardize raw
input data with different scales [48].

Activation Function

Regression problems are examples of complicated transformations that cannot be
learned through linear activation. As nonlinear activation functions such as sigmoid and
hyperbolic tangents do not have linear behavior, nodes can learn more complex data
structures [51]. The saturation of sigmoid and hyperbolic tangent functions is a prevalent
issue. When z is close to 0, they are sensitive to input value and saturate to very high or
very low levels for positive and negative values, respectively [52].

Using the sigmoid and tanh functions fails to provide adequate gradient information
for deep layers in big networks. With more layers, the error utilized in backpropagation,
which updates the weights over the network, becomes smaller [53]. As a result, deep
networks are unable to properly learn or determine the proper direction of parameters to
enhance the cost function [51]. This leads to the vanishing gradient problem.

Deep networks with deep layers must be trained using a specific activation function. In
order to understand the complex relationships within the data and avoid simple saturation,
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this activation function must behave as a nonlinear function. However, it must also behave
as a linear function in order to be responsive to the activation input total. To solve such
problems, Rectified Linear Units (ReLU) were introduced. They replace hidden sigmoid
units with piecewise linear hidden units [53].

a. ReLU
To all hidden layers, we applied a ReLU activation function. Three fully linked layers

came after the max pooling layers. The dropout layer and softmax classifier are coupled at
the final layers to achieve excellent training accuracy. Following the dropout, the results
are connected and smudge-free due to the softmax. Convolutions, the ReLU, and batch
normalization are all included in the feature mapping. The model is broken into numerous
blocks with stacked layers to shrink the feature map’s size while keeping it constrained. As
a result, the model eventually prepared the dataset for epochs of 14.

ReLU is a commonly used activation function in networks containing many layers.
Numerous issues are solved by ReLU, including the vanishing gradient issue [53]. Below is
the equation for ReLU:

ReLU(Z) = max(0, z) (5)

We can update a specific weight using the following update rule:

w∗ = w + η
δE2

δw
(6)

where δE2

δw is the partial derivative of the error relative to w, η is the learning rate, and w∗ is
the updated weight [54].

How sensitive the error E2 is to the weight is explained by the error term’s derivation.
The chain rule can be used to evaluate the derivative term. A vanishing gradient issue
arises if relatively tiny modifications are made to the partial derivative results. The weight
values increase quickly in the explosion task, contrary to the vanishing task [52]. If input z
is less than zero, the ReLU activation function is set to zero; if it is equal to or larger than
zero, it is set to z. ReLU helps build convolutional networks since it helps the model learn
more rapidly [51].

b. Softmax
Softmax enables the system to associate particular classes with particular logits by en-

hancing logit values for the target classes. Additionally, it may offer a discrete probabilistic
model of the class results [48]. This may result in a successful training procedure and the
creation of a valuable machine learning model. In addition to its normalizing capabilities,
softmax can be quite beneficial for optimizing the network model [54].

Vectors are compressed into the range of (0, 1) using the softmax function for all
results or some. These vectors are seen as scores representing class likelihood in multiclass
prediction [48]. The output scores should be written as s. Not only the Si classes separately,
but also the complete class is necessary for the softmax function to work. The corresponding
equation is described below:

f (Si) =
eSi

∑c
j eSj

(7)

where Sj is the score derived from the net for all classes. When no activation function is
used, softmax ensures that the final network layer outputs have non-negative real-valued
probabilities and an overall summation of one [48]. The forecasts and targets are compared
via iterative procedures, and the results are compiled into a loss value. The gain for
backpropagation is estimated using the loss value [55]. After that, the performance is
improved by utilizing the optimizer and its quirks. The iterative processes end when the
model significantly improves its performance [48].
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Optimization

The goal of optimization tasks is to search the optimum mapping function f (x) that
minimizes the loss function L of the training rows of number N [42],

min
θ

1
N ∑N

i=1 L
(

yi, f
(

xi, θ
))

(8)

where xi is the feature vector for the ith sample, yi is the matching label, and θ is the
parameter of the mapping function.

Stochastic gradient descent (SGD) performs better for large-scale data than batch
gradient descent [43]. SGD eliminates calculation redundancy and reduces updating times
for big data samples. Instead of computing the gradient’s value during iterations, SGD
updates the gradient using just one random sample. The SGD has the ability to converge
more quickly, and its cost is independent of the sample size [42]. This is how the loss
function in the equation might be expressed [45]:

L(θ) =
1
N ∑N

i=1
1
2

(
yi, fθ

(
xi
))2

=
1
N ∑N

i=1 cost
(

θ,
(

xi, yi
))

(9)

For a randomly chosen sample i in SGD, the loss function L is as follows [42]:

L∗(θ) =
1
2

(
yi, fθ

(
xi
))2

= cost
(

θ,
(

xi, yi
))

(10)

In SGD, the gradient is updated using a random sample i rather than all samples in
each iteration [45]:

θ́ = θ + η
(

yi, fθ

(
xi
))

xi (11)

where θ́ is the update of the gradient depending on the preceding update, and η is the
learning rate. The Adaptive Gradient Method (AdaGrad) is a simple improvement to
SGD. AdaGrad dynamically modifies the learning rate utilizing previous iterations. The
following is the gradient update for AdaGrad [45]:

θt+1 = θt + η
gt

Vt
(12)

where Vt is the total historical gradient of parameter θ at step t, gt is the gradient of
parameter θ at step t, η is the learning rate, and θt is the value of parameter θ at step t.
AdaGrad enhancement is used to compute the second-order cumulative momentum to
address the radically decreasing learning rates [45].

Vt =

√
β Vt−1 + (1 − β)(gt)

2 (13)

where β denotes the exponential decay parameter. The SGD technique adds a new advance-
ment with adaptive moment estimation (Adam). Adam integrates the adaptive learning
approach with the momentum methods and provides an adjustable learning rate for each
parameter [44]. As with the momentum approach [45], Adam stores the average of the ex-
ponential decay of the past squared gradients mt, rather than the average of the exponential
decay of the past squared gradients Vt.

mt = β1 mt−1 + (1 − β1)gt (14)

Vt =

√
β2 Vt−1 + (1 − β2)(gt)

2 (15)
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where the exponential decay rates are β1 and β2. As a result, Equation (16) [33] provides
the parameter θ’s ultimate form.

θt+1 = mt − η

√
1 − β2

1 − β1

mt

Vt + ε
(16)

Most implementations use 0.9, 0.999, and 10−8 as the default values for β1, β2, and ε,
respectively. Compared to similar adaptive learning rate algorithms, Adam performs better
in practice [42]. An extension of Adam is adaptive max pooling (AdaMax), which can be
used to reduce network errors and improve performance.

Another important aspect of optimization is the selection of the loss function. The
current model state can be regularly estimated using the model’s loss function [56]. The
weights might be updated in a suitable manner to lessen the loss on the subsequent
evaluation depending on the chosen loss function [57].

The cross-entropy loss function is frequently utilized when solving multiclass classifi-
cation problems with provided integer target values. The goal integer values assigned in
experiments are regarded as categorical [42]. The cross-entropy score is calculated based
on the average difference between actual and anticipated values across all classes. This
score is decreased up to the optimal cross-entropy score of 0. In Equation (17), categorical
cross-entropy L is defined [57].

L = ∏C
c=1 yc(x, wc)

tc (17)

where yc is the output-based input x and weight wc, c is the index running over the classes
number, and tc is the number of occurrences of c. Mathematically, this function is assessed
using the maximum likelihood approach to inference. Maximizing the likelihood of the
training set is achieved by minimizing the loss, as in Equation (18) [57].

L = −∑C
c=1 yc . log ŷc (18)

where log indicates log-likelihood, ŷc is the corresponding model output, and yc is the
corresponding target value. Using this function for a prediction problem rather than the
sum of squares yields better generalization and training results [56].

4. Model Implementation and Evaluation
4.1. Hardware and Software Specifications

Kaggle is used in experiments to speed up GPU-focused deep learning applications.
Nvidia K80 GPU, 12 GB RAM, and 2496 CUDA cores comprise the hardware setup for
Kaggle’s accelerated runtime, which is used to run the written program.

4.2. Model Implementation

The LC25000 dataset’s histopathology images were initially scaled down to 224 × 224
and sampled for scale augmentation. Then, in order to create new data, affine picture
modifications, including rotation, shifting, scaling (zoom in/out), and flipping, were
combined. Before each activation and after each convolution, batch normalization was
used. Additionally, different batch sizes were used (40 and 80). The model underwent
15 training iterations. Epsilon was set at 0.001, momentum to 0.99, and weight decay
to 0.0001. The initial learning rate was set to 0.001, and the error rate reached a plateau. The
learning rate dropped by 0.5. Ninety percent of the dataset’s images were used for training,
and 10% were used for testing and validation. Different hyper-parameter methods were
used to achieve the best results, including regularization and optimization utilizing the
AdaMax and SGD optimizers and the categorical cross-entropy loss function. All used
hyper-parameters that achieved the highest performance for the tested model are listed
in Table 2.
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Table 2. Values of the hyper-parameters used in the Resnet101 model architectures.

Hyper-Parameters Value The Best Value

Number of epochs 14 14
Batch size 40/80 80

Activation function Swish/ReLU ReLU
Optimizer Adam/AdaMax/SGD AdaMax

Initial learning rate 0.001 0.001
Dropout 0.5 0.5
Patience 10 10

Loss function Categorical cross-entropy Categorical cross-entropy

4.3. Performance Evaluation

The metrics used to evaluate the performance of the proposed fine-tuning model are
shown in Equations (19)–(23).

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

F-Score = (2 × Precision × Recall)/(Precision + Recall) (21)

Spec =
TN

TN + FP
(22)

Accuracy =
TP + TN

(TP + FP + TN + FN )
× 100 (23)

where TP represents the number of correctly labeled positive occurrences, FP represents
the number of incorrectly labeled positive instances, TN represents the number of cor-
rectly labeled negative instances, and FN represents the number of incorrectly labeled
negative instances.

4.4. Experimental Results

The LC25000 dataset, which consists of 25,000 histopathology images of five distinct
classes, was divided into 90% for training, 5% for validation, and 5% for testing for the first
run. The model was trained by using 14 epochs. The AdaMax optimizer was used for the
first training run, while the SGD optimizer was used for the second trial. Six performance
indicators were computed separately for each class in the proposed framework to assess its
performance. As a result, these values’ averages were calculated.

4.4.1. Analysis of ResNet101 Model

The analysis of our proposed model was carried out with different activation func-
tions, optimizers, and batch sizes. Table 3 shows the suggested model’s performance
using different hyper-parameters, including optimizers, activation functions, and batch
sizes. Six performance metrics were used to record the performance: precision, recall,
F-score, specificity, accuracy, and Cohen Kappa. Additionally, the test time was recorded
to compare the speed of each hybrid of the parameters. As illustrated in Table 3, the
proposed model achieved the highest performance measures: precision, recall, F-score, and
specificity, when using the AdaMax optimizer. The ReLU activation function and batch
size is 80, achieving precision equals 99.70%, recall equals 99.68%, F-score equals 99.68%,
and specificity equals 99.91%. The best accuracy is (99.89%). This was achieved when using
the SGD optimizer and ReLU activation function. The best Cohen Kappa is 100%, which
was achieved using batch size 40, optimizer AdaMax, and activation function ReLU.
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Table 3. The performance of the proposed model using different hyper-parameters.

Batch Parameters Precision
(%)

Recall
(%)

F-Score
(%)

Specificity
(%)

Accuracy
(%)

Cohen
Kappa (%) Test_Time/Step

Batch size 40

SGD&Swish 99.07 99.04 99.05 99.75 99.61 98.39 5 s 215 ms
Adam&Swish 94.21 94.16 94.14 98.51 97.63 91.99 7 s 213 ms

Adamax&Swish 97.88 97.67 97.70 99.44 99.10 96.40 7 s 213 ms
SGD&ReLU 97.82 97.53 97.61 99.39 99.04 96.00 8 s 239 ms

Adam&ReLU 93.73 92.49 92.19 98.03 96.86 89.24 8 s 244 ms
Adamax&ReLU 99.37 99.38 99.37 99.83 99.74 100.00 7 s 227 ms

Batch size 80

SGD&Swish 98.60 98.60 98.59 99.63 99.42 97.60 5 s 198 ms
Adam&Swish 97.61 97.40 97.47 99.35 98.97 97.20 7 s 232 ms

Adamax&Swish 98.04 97.82 97.84 99.48 99.16 97.20 7 s 219 ms
SGD&ReLU 99.53 99.52 99.52 99.87 99.89 99.60 7 s 224 ms

Adam&ReLU 97.29 97.11 97.03 99.23 98.78 98.00 7 s 217 ms
Adamax&ReLU 99.70 99.68 99.68 99.91 99.87 99.60 6 s 232 ms

Figure 3 displays the performance of the suggested model using three different
optimizers—SGD, Adam, and AdaMax—while keeping Swish as the activation function
and 40 as the batch size. Figure 4 displays the effectiveness of the suggested model using
the same varied optimizers with the activation function changed only to ReLU. Figure 5
shows that the SGD optimizer provides the best performance compared to other optimiz-
ers. Adam has the lowest accuracy results since it requires many hyperparameters and
iterations. Moreover, it is sensitive to feature scaling.

Figure 4. The performance of the ResNet101 model with different optimizers using batch size 40 and
the ReLU activation function.

The effectiveness of the suggested model using different optimizers is shown in
Figure 5. The SGD, Adam, and AdaMax optimizers have their batch size fixed at 40 and
the activation function set to ReLU. It is obvious that the AdaMax optimizer performs
better than the other optimizers. Adam also has the worst results when the ReLU activation
function is used. Figure 6 displays the performance of the suggested model with the same
optimizers, the batch size set to 80, and the activation function fixed at Swish. It is clear that
the SGD optimizer performs well, whereas the Adam optimizer yields the poorest results.
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Figure 5. The performance of the ResNet101 model with different optimizers using batch size 40 and
the Swish activation function.

Figure 6. The performance of the ResNet101 model with different optimizers using batch size 80 and
the Swish activation function.

The effectiveness of the suggested model using various optimizers is shown in Figure 7.
The SGD, Adam, and AdaMax optimizers have their batch size fixed at 80 and the activation
function set to ReLU. It is obvious that the AdaMax optimizer performs better than the
other optimizers. Adam also notes the worst performance when the batch size is 80 and
the ReLU activation function is used.

From Figures 4–7, it is concluded that the optimizer SGD will work with the activation
function Swish, while the AdaMax optimizer will work with the ReLU activation function.
In contrast, the Adam optimizer is not affected by the activation function change.
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Figure 7. The performance of the ResNet101 model with different optimizers using batch size 80 and
the ReLU activation function.

The accuracy and loss are displayed in Figures 8 and 9 for every epoch of the training
and validation sample. As shown in Figure 8, the model accuracy is constant and roughly
comparable to the training and validation datasets after epoch 4. Furthermore, between
epochs 7 and 14, the model loss is significantly reduced and almost equal for both the
training and validation sample, as shown in Figure 9. This suggests that the proposed
model is free of the well-known overfitting issue.

Figure 8. The ResNet101 model accuracy vs. epoch numbers.
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Figure 9. The ResNet101 model loss vs. epoch numbers.

Figure 10 shows the confusion matrix for colon and lung cancer classes using the
ResNet101 model classification problem. Figure 10 clarifies that all photos of colon cancer
are correctly classified, whereas photographs of lung cancer are incorrectly classified. Just
2% of lung_aca photos were incorrectly categorized as lung_scc images. It is, therefore,
fantastic that additional lung cancer photos were incorrectly categorized under differ-
ent disease groups. Apparently, the network confuses lung cancer images with colon
cancer images.

Figure 10. The confusion matrix for colon and lung cancer class classification using the
ResNet101 model.

4.4.2. Comparison with Other Four Powerful Deep Learning Models

Table 4 compares the proposed model’s average classification performance to four
well-known DL models for the classification problem. It shows that MobileNet, Xception, In-
ceptionV3, and Resnet101 have average accuracy levels greater than 99%. Resnet101model
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has the highest average accuracy (99.94%). On the other hand, VGG16 achieves the lowest
average accuracy (97.63%). The highest F-score (99.84%), highest recall (99.85%), best preci-
sion (99.84%), and highest specificity (99.96%) are all produced by the Resnet101 model. It
is also noticed that the VGG16 model attains the lowest performance metric, achieving the
lowest precision (94.22%), recall (94.08%), F-score (94.06%), and specificity (98.52%).

Table 4. Average classification results for the classification task.

Precision
(%)

Recall
(%)

F1-Score
(%)

Specificity
(%) Accuracy (%)

MobileNet 99.52 99.52 99.52 99.88 99.81
Xception 99.61 99.20 99.60 99.60 99.84
VGG16 94.22 94.08 94.06 98.52 97.63

InceptionV3 99.60 99.60 99.60 99.90 99.84
Resnet101 99.84 99.85 99.84 99.96 99.94

4.4.3. Comparison of the Proposed Model and the State-of-Art Methods

Table 5 shows a comparative analysis of the proposed model and state-of-the-art
methods. As indicated in the last row in Table 5, our proposed fine-tuned ResNet model
outperforms other state-of-the-art methods in all performance metrics.

Table 5. The comparison of the proposed model and the state-of-the-art methods.

Reference Methodology Performance

Bukhari et al. [30] ResNet-18, ResNet-30, and ResNet-50
ResNet-50 accuracy = 93.91%
ResNet-30 accuracy = 93.04%
ResNet-18 accuracy = 93.04%

Roy Medhi [29] Capsule network Accuracy = 99%

Abbas et al. [28] VGG-19, Alex Net, ResNet: ResNet-18,
ResNet-34, ResNet-50, and ResNet-101

F-1 scores = 0.973, 0.997, 0.986, 0.992, 0.999,
and 0.999, respectively

Sakr et al. [36] CNN with four convolution block Accuracy = 99.5%
Masud et al. [25] Multi-channel CNN Accuracy = 96.33%
Mangal et al. [34] Multi-channel CNN Accuracy = 97.89%

The proposed model Fine-tuned ResNet101 Precision (99.84%), recall (99.85%), F-Score (99.84%),
specificity (99.96%), and accuracy (99.94)

4.4.4. Discussion

Deep learning approaches employ pre-trained convolutional neural network models to
detect lung and colon cancer. A fine-tuning model for lung and cancer detection is presented
in this paper. The outcome demonstrates that the suggested model significantly enhances
multi-type cancer detection performance, particularly for histopathology slide images.

Early research predictions of colon and lung cancer frequently occurred independently.
They categorize images of lung and colon cancer using pre-trained models. Lung and colon
cancer are treated independently as a binary classification problem. Although all binary
classification tasks yielded respectable results, this does not necessarily mean that these
models are ready for use in practical situations. Our method differs from earlier systems
in that it uses a fine-tuning model. Our method simultaneously classifies lung and colon
cancer photos using a multiclass technique.

Our findings suggest that the suggested model could be applied to lung and cancer
detection histopathological image analysis. Table 4 lists the classification accuracy and
methods used in earlier studies that used the same LC25000 dataset. Deep learning-based
methodologies have typically produced successful results in past studies. However, the
proposed model is as accurate as older state-of-the-art techniques. The classification
of cancerous tissues using many raw data sets produced by merging various datasets



Diagnostics 2023, 13, 699 16 of 18

would have more clinical value and produce more accurate results. The limitations and
shortcomings of the proposed paradigm will be the main topics of our future work.

5. Conclusions

Due to the huge success of deep networks, major efforts have been made to research
cancer problems, particularly colon and lung cancer. The potential of deep learning in
the multi-classification of seven main colon and lung lesions was studied in this work.
We examined a range of fine-tuning strategies for the improvement of diagnostic perfor-
mance. The pre-trained ResNet101 network outperforms other deep learning models in
performance evaluation using LC25000 histopathology images (25,000 total). The model is
fine-tuned using regularization, batch normalization, and hyperparameter optimization.
The Adam optimizer and cross-entropy loss function are also used with ideal settings. By
contrasting MobileNet, Xception, VGG16, and InceptionV3, four strong models—including
the suggested fine-tuned deep model—were assessed. The suggested model demonstrates
that fine-tuning models perform better than current strong techniques in terms of diagnostic
accuracy. Future work will test the proposed model on different types of human cancers and
use hyper-optimization algorithms to obtain better hyper-parameterization automatically.
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