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Abstract: Background: When cancer has metastasized to bone, doctors must identify the site of the
metastases for treatment. In radiation therapy, damage to healthy areas or missing areas requiring
treatment should be avoided. Therefore, it is necessary to locate the precise bone metastasis area.
The bone scan is a commonly applied diagnostic tool for this purpose. However, its accuracy is
limited by the nonspecific character of radiopharmaceutical accumulation. The study evaluated object
detection techniques to improve the efficacy of bone metastases detection on bone scans. Methods:
We retrospectively examined the data of 920 patients, aged 23 to 95 years, who underwent bone
scans between May 2009 and December 2019. The bone scan images were examined using an object
detection algorithm. Results: After reviewing the image reports written by physicians, nursing staff
members annotated the bone metastasis sites as ground truths for training. Each set of bone scans
contained anterior and posterior images with resolutions of 1024 × 256 pixels. The optimal dice
similarity coefficient (DSC) in our study was 0.6640, which differs by 0.04 relative to the optimal DSC
of different physicians (0.7040). Conclusions: Object detection can help physicians to efficiently notice
bone metastases, decrease physician workload, and improve patient care.

Keywords: faster R-CNN; Detectron2; object detection; feature pyramid network; bone scan

1. Introduction

The advancement of medical technology has led to the development of successful
treatments for numerous diseases. However, treatments with a complete cure rate are lack-
ing for some conditions, and, among these, the mortality rate is the highest in cancer. As the
severity of cancer increases, it typically metastasizes to various organs and bones, resulting
in poor treatment outcomes and prognosis. Among routine medical imaging modalities,
such as magnetic resonance imaging (MRI), positron emission tomography/computed
tomography (PET/CT), and bone scan, bone scans are the most commonly used because
of cost and time considerations [1,2]. Bone scans are conducted using 99mTc-labeled bis-
phosphonates (e.g., methylene diphosphonate [MDP]), which can accumulate in areas of
active bone formation or repair. Bone scans involve planar scans only. Therefore, unan-
ticipated small lesions that appear in three-dimensional imaging may be overlooked in
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two-dimensional scans with overlapping bone structures. The efficacy of bone scan for
bone metastasis detection is compromised by its poor specificity [3–5]. The simultaneous
annotation/localization of lesions to be treated with localized treatment (e.g., radiotherapy,
surgery and etc.) without the need for additional translation/communication from the
routine written report, assisting radiologists to directly annotate lesions for treatment
doctors, and reducing omission of lesion detection owing to fatigue of human experts.

2. Materials and Methods
2.1. Methods Overview

With the advancement of object detection technology, more researchers are using
object detection technology for nuclear medical imaging. For example, Yuan et al. used
YOLOv2 to detect skull fractures [6]. Rani et al. used region-based convolutional neural
network (R-CNN), fast region-based convolutional neural network (Fast R-CNN), faster
region-based convolutional neural network with region proposal network (Faster R-CNN),
Faster R-CNN with region proposal network (RPN), YOLO, single-shot multibox detector,
and efficient-det variety of object detection models to detect the localization of stroke
lesions on MRI [7]. Bin Liu et al. performed automatic quantification of knee osteoarthritis
severity using improved Faster R-CNN [8].

In 2015, Redmon et al. developed a new technology, namely YOLO: unified, real-time
object detection, for simple and fast object detection [9]. In this method, object detection
is considered a regression task for segmenting bounding boxes from space, and class
probabilities are computed. Critical difficulties remain in the field of object detection.
However, the potential outcomes for future use of object detection are considerable. The
YOLO series is now widely used. Its main advantage is its relative speed, but its accuracy
for small object detection is slightly lower to that of other methods. This study presents
comparisons with Ren et al.’s Faster-RCNN feature pyramid network (FPN) [10], Liu et al.’s
Swin Transformer of Faster R-CNN [11], and Wang et al.’s YOLOR [12]. Using Detectron
2 [13] provided by Facebook AI Research, this study performed Faster R-CNN, as proposed
by R. Girshick [14], based on R50 (backbone with ResNet50) FPN. Detectron2 is powered by
the PyTorch deep learning framework, including state-of-the-art object detection algorithms,
such as Mask R-CNN, Faster R-CNN, Fast R-CNN, DensePose, RetinaNet, and PointRend.

2.2. Experimental Data

This study retrospectively collected the data of 920 patients who underwent bone
scans at China Medical University Hospital between 2009 and 2019. Only those who have
cancer were included, and those who do not have cancer were excluded. The gold standard
comes from formal case report interpretation, including clinical data such as tumor markers,
PET/CT images, MRI images, cancer types and biopsy. Routine whole-body scans were
performed 2–4 h after the intravenous administration of 20 mCi of 99mTc Tc-labeled MDP
with a scan speed of 14–17 cm/min on either a Millennium MG, Infinia Hawkeye 4, or
Discovery NM/CT 670 Pro scanner (GE Healthcare, Chicago, IL, USA). Each patient’s
bone scan produced two images, namely anterior and posterior images, with a resolution
of 1024 × 256 pixels, and a total of 1840 images were obtained. Of the collected images,
870 (450 set bone metastases and 420 set no bone metastases) were used for training, and
50 (20 set bone metastases and 30 set no bone metastases) were used for testing. We used
Digital Imaging and Communications in Medicine raw values as the model input instead
of converting the data into other image formats. We used SimpleITK, a Python 3.7.0 based
package, to read the pixel values of the images in the Digital Imaging and Communications
in Medicine file. The image dimensions were 1024 × 256 pixels, and images had both front
and back sides. The same image was overlapped three times, generating images with the
dimensions of 1024 × 256 × 3. Subsequently, we used the natural logarithm to standardize
the overall image. The predominant cancer type (see Figure 1) was breast cancer (42%),
followed by lung cancer (17%), prostate cancer (12%), head and neck cancer (7%), liver
cancer (6%), colorectal cancer (3%), nasopharyngeal carcinoma (2%), renal cancer (2%), and
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other cancers (9%). The nursing staff members labeled the images after they had interpreted
the contents of the doctor’s report. The detection results consisted of five classes, namely
bone metastasis, bladder, kidney, residual radiopharmaceutical after injection, and foreign
object.
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SimpleITK was used for image loading and processing, Matplotlib was used for graph
visualization, and Numpy was used for all mathematics and array operations. Python
was used as the programming language, and Detectron2 was used for programming the
models. The execution hardware was an Nvidia V100 graphics processing unit. In the
model, we set 32 sliced images as the input batch size, and the overall training process ran
26,999 iterations.

During model training, random data augmentation included rotation and brightness
adjustment. Since bone metastasis detection involves small object detection, we adjusted
the size of the anchor box to smaller pixel sizes, which were 8, 10, 16, 32, and 64 pixels.

2.3. Experimental Design

As presented in the flowchart in Figure 2, we directly process the original image
without saving it in image formats such as portable network graphics (PNG) or joint
photographic experts group (JPG). After splitting, the data are input into the object detection
model for determining the model performance.

2.4. Faster R-CNN

R-CNN uses a selective search to locate 2000–3000 region proposals, compress the
extracted region proposals into the same size, input them into a CNN that is only used for
feature extraction, and input them into a support vector machine (SVM) for classification
and into a linear regression for bounding box correction.

Figure 3 presents the main architecture of Faster R-CNN. In this R-CNN model base,
Fast R-CNN directly extracts features from the original input image and then uses RoIPool-
ing for each region of interest (RoI) on the feature map of the entire image to extract a
feature vector of a specific length. Fast R-CNN then removes the SVM and linear regression
models, directly uses the fully connected layer for regression on feature vectors, and uses
two fully connected layer branches to predict the class of RoI and its bounding box, thus
improving the speed and prediction effect.



Diagnostics 2023, 13, 685 4 of 12
Diagnostics 2023, 13, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 2. Flowchart for this study. 

2.4. Faster R-CNN 
R-CNN uses a selective search to locate 2000–3000 region proposals, compress the 

extracted region proposals into the same size, input them into a CNN that is only used for 
feature extraction, and input them into a support vector machine (SVM) for classification 
and into a linear regression for bounding box correction. 

Figure 3 presents the main architecture of Faster R-CNN. In this R-CNN model base, 
Fast R-CNN directly extracts features from the original input image and then uses 
RoIPooling for each region of interest (RoI) on the feature map of the entire image to ex-
tract a feature vector of a specific length. Fast R-CNN then removes the SVM and linear 

Figure 2. Flowchart for this study.

Diagnostics 2023, 13, x FOR PEER REVIEW 5 of 13 
 

 

regression models, directly uses the fully connected layer for regression on feature vec-
tors, and uses two fully connected layer branches to predict the class of RoI and its bound-
ing box, thus improving the speed and prediction effect. 

 
Figure 3. Faster R-CNN architecture. 

2.5. RPN 
Figure 4 presents the main architecture of the RPN. An n × n sliding window opera-

tion on the feature map (see convolution feature map in Figure 4) generated by the back-
bone is performed, and the feature map within each sliding window is mapped to multi-
ple proposal boxes (see the regression layer branch in Figure 4). Each box corresponds to 
the class information of whether an object is present or absent (see classification layer 
branch in Figure 4). RPN uses the natural sliding window operation of CNN as the feature 
extractor (see intermediate layer in Figure 4) and maps the feature map to a lower-dimen-
sional feature map to save computation. To obtain the classes corresponding to boxes after 
the CNN operation, they are divided into two subnetworks. The input is the feature map 
output of the intermediate layer, which is a subnetwork responsible for box regression 
and for class regression. Since the features of each spatial position of the feature map gen-
erated by the intermediate layer are used to predict the presence of the class and the box 
of the class in the corresponding position of the window before mapping, a 1 × 1 CNN is 
used for calculation (the same as the fully connected layer), which is performed using 
RPN. All sliding window positions share an intermediate layer and subsequent branch 
networks for classification and box regression. 

Figure 3. Faster R-CNN architecture.



Diagnostics 2023, 13, 685 5 of 12

2.5. RPN

Figure 4 presents the main architecture of the RPN. An n × n sliding window operation
on the feature map (see convolution feature map in Figure 4) generated by the backbone
is performed, and the feature map within each sliding window is mapped to multiple
proposal boxes (see the regression layer branch in Figure 4). Each box corresponds to the
class information of whether an object is present or absent (see classification layer branch in
Figure 4). RPN uses the natural sliding window operation of CNN as the feature extractor
(see intermediate layer in Figure 4) and maps the feature map to a lower-dimensional
feature map to save computation. To obtain the classes corresponding to boxes after the
CNN operation, they are divided into two subnetworks. The input is the feature map
output of the intermediate layer, which is a subnetwork responsible for box regression and
for class regression. Since the features of each spatial position of the feature map generated
by the intermediate layer are used to predict the presence of the class and the box of the
class in the corresponding position of the window before mapping, a 1 × 1 CNN is used
for calculation (the same as the fully connected layer), which is performed using RPN. All
sliding window positions share an intermediate layer and subsequent branch networks for
classification and box regression.
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Since the sliding window operation is implemented using a square CNN convolution,
to train the network to accept objects of different aspects, ratios, and sizes, RPN introduces
the concept of anchor boxes. In each sliding window position, k anchor boxes are preset.
The position of each anchor box is the center point of the sliding window, and the aspect
ratio and size of the k anchor boxes differ. The classification branch and the bounding
box regression branch map the tensor of each spatial position of the feature map output
from the intermediate layer into k bounding boxes and the corresponding categories.
Assuming that the number of anchor boxes at each position is k, the feature vector output
by the classification branch is 2k, and the output of the bounding box regression branch
is 4k (the bounding box information, the x coordinate of the bounding box center point,
the y coordinate of the bounding box center point, the bounding box width w, and the
bounding box height h). The position (x, y, w, h) predicted by the bounding box branch
is offset relative to the anchor box. From a functional perspective, the role of the anchor
box is somewhat similar to the role of the proposal box provided to Fast R-CNN, and it
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also represents the possible location bounding box of the target. However, the anchor
box is uniformly sampled, and the proposal box is extracted by feature extraction (or
including in training). Therefore, the anchor boxes and the predicted bounding boxes have
a one-to-one correspondence. From the relationship between the anchor boxes and the
intersection over union (IoU) of the ground truth bounding boxes, the positive and negative
sample categories of each predicted bounding box can be determined. By assigning specific
bounding boxes to objects in specific positions, sizes, and aspect ratios in a supervised
manner, the model learns to fit objects of different sizes. Since the predicted bounding
boxes are offset relative to the anchor boxes and the anchor boxes are evenly distributed
on the feature map, only the predicted bounding box corresponding to the anchor box
whose distance and size are close to the ground truth bounding box (larger IoU). The loss is
calculated with the ground truth bounding box, which considerably simplifies the training.
Otherwise, large numbers of predicted bounding boxes and ground truth bounding boxes
are necessary to calculate the loss, especially in the initial stage of training.

2.6. Faster R-CNN ResNet50

On the Faster R-CNN base, the backbone is replaced by ResNet50. The feature maps
are used by RPN and Fast R-CNN. The original multi-scale feature maps are from the C2,
C3, C4, and C5 stages in ResNet (i.e., the outputs from the conv2_x, conv3_x, conv4_x, and
conv5_x stages, respectively).

2.7. Faster R-CNN R50-FPN

On the basis of Faster R-CNN ResNet, the FPN module is introduced, which uses
the feature pyramid characteristics of CNN to simulate the image pyramid function, so
that RPN and Fast R-CNN can be used in the multiple scale level feature map. Predicting
objects of different sizes considerably improves the detection ability of Faster R-CNN. The
inference time is saved compared with that of image pyramids. The principle is illustrated
in Figure 5.
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As shown in Figure 5, FPN does not simply use the feature maps output by multiple
CNN layers of the backbone for bounding box regression and classification. Rather, it
fuses the feature maps of different layers in the form of top-down and lateral connections
for later use. Therefore, the deep semantic low-resolution features generated by CNN
network forward propagation are fused with shallow semantic high-resolution features,
thereby compensating for the lack of semantic abstraction of low-level features, which
is similar to adding context information. Among the top-down process uses the nearest
neighbor interpolation to upsample the low-resolution feature map to the same size as the
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lower-level feature map, with the fusion of the maps, and the lateral connection uses a
resolution of 1 × 1 for the lower-level feature map. The convolution is scaled to the same
number of channels as the upper layer feature map for their fusion, and pixel-level addition
is then performed. The fused feature map is used for prediction and continues to propagate
in the top-down direction for the feature fusion of lower layers until the last layer. Figure 6
presents the architecture of Faster R-CNN combined with R50-FPN.
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2.8. Swin Transformer and YOLOR

Swin Transformer proposes a backbone that can be widely used in all computer vision
fields. Most of the common hyper parameters in CNN networks can also be manually
adjusted in the Swin Transformer, such as the number of network blocks, the number of
layers per block, and the size of the input image. Both ViT and iGPT use images of small
size as input, and this direct resize strategy leads to the loss of considerable information. By
contrast, the input of the Swin Transformer is the original size of the image. The hierarchical
structure of Swin Transformer also confers the ability to perform segmentation or detection
tasks with structures, such as FPN.

YOLOR constitutes a completely different set of neural networks. It serves as a memory
plug-in and can store all the information of the input model. When performing multiple
tasks, the model can extract the required information without requiring training the model
from scratch, as in traditional methods. Similar to the human brain, it combines consciously
learned explicit knowledge and unintentionally absorbed implicit knowledge. When used
to answer relevant questions, it can retrieve key information from tacit knowledge.

2.9. Model Estimation

Dice similarity coefficient (DSC) is mainly used as the evaluation standard of object
detection. DSC (Equation (1)) is a set similarity measurement target, which is usually
used to calculate the similarity of two samples. Values range from 0 to 1, with values of
1 denoting best and 0 denoting worst. In object detection, predictions can be classified as
true positives (TP), true negatives (TN), false positives (FP), or false negatives (FN). In the
case of bone metastasis detection, TP indicates that the predicted bounding box is correctly
classified and has detected bone metastasis. FP denotes that the predicted bounding box
has not detected bone metastases. FN indicates that a ground truth is present in the image
and the model failed to detect the object. TN denotes every part of the image where we did
not predict an object. This metric is not useful for object detection. Hence, we ignore TN.

DSC(P, T) =
2 ∗ TP

(FP + 2 ∗ TP + FN)
(1)

In Figure 7, the ground truth (doctor) is the red bounding box and the prediction is
the green bounding box. The intersection of the two bounding boxes is TP. The bounding
box of ground truth is detected, but the bounding box of the prediction is not detected,
indicating FN. The bounding box of ground truth is not detected, but the bounding box
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of the prediction is detected, indicating FP. TN are beyond the scope of the two bounding
boxes and are included in the calculation of DSC.

Diagnostics 2023, 13, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 7. Dice Similarity Coefficient. 

3. Results 
3.1. Results of Object Detection Model and Doctor 

We invited three senior nuclear medicine physicians (doctor A, doctor B, and doctor 
C. Their details are presented in Table 1) with more than 5 years of clinical experience to 
annotate 50 cases of test data. In a blinded manner, physicians annotated the front and 
back of patients’ bone scan images with a confidence level of more than 80%. The special 
emphasis here entails physicians without referring to patients’ clinical data, such as med-
ical records, cancer types, tumor markers, PET/CT images, and MRI images. These ground 
truths and our object detection model predicted the DSC of 50 test data case results ac-
cording to the different thresholds (0–1) of the AI model prediction confidence value (see 
Table 1). 

Table 1. The results of Different threshold Faster R-CNN R50-FPN Model and Doctor. 

Doctor Threshold DSC Doctor Threshold DSC Doctor Threshold DSC 
doctor A 0 0.0861 doctor B 0 0.0771 doctor C 0 0.1532 
doctor A 0.1 0.3009 doctor B 0.1 0.2970 doctor C 0.1 0.3601 
doctor A 0.2 0.4303 doctor B 0.2 0.4337 doctor C 0.2 0.4519 
doctor A 0.3 0.5174 doctor B 0.3 0.5299 doctor C 0.3 0.5318 
doctor A 0.4 0.5819 doctor B 0.4 0.5915 doctor C 0.4 0.5885 
doctor A 0.5 0.5784 doctor B 0.5 0.5924 doctor C 0.5 0.5707 
doctor A 0.6 0.6021 doctor B 0.6 0.6098 doctor C 0.6 0.5711 
doctor A 0.7 0.6640 doctor B 0.7 0.6210 doctor C 0.7 0.5750 
doctor A 0.8 0.6445 doctor B 0.8 0.6103 doctor C 0.8 0.5515 
doctor A 0.9 0.5890 doctor B 0.9 0.5342 doctor C 0.9 0.4656 
doctor A 1 0.4800 doctor B 1 0.4600 doctor C 1 0.3800 

In Table 1, we found that the doctor and AI performed best at a threshold of 0.7. 
Although our DSC performance is inadequate, we used the drawing result of one physi-
cian as the ground truth and the drawing result of another physician as the prediction 
result. Our highest DSC was 0.6640 (see Table 1), and the highest DSCs among the physi-
cians was 0.7040 (see Table 2), denoting a difference of only 0.04 between the DSC values 
obtained using our model and the physicians’ value. 

Figure 7. Dice Similarity Coefficient.

3. Results
3.1. Results of Object Detection Model and Doctor

We invited three senior nuclear medicine physicians (doctor A, doctor B, and doctor
C. Their details are presented in Table 1) with more than 5 years of clinical experience
to annotate 50 cases of test data. In a blinded manner, physicians annotated the front
and back of patients’ bone scan images with a confidence level of more than 80%. The
special emphasis here entails physicians without referring to patients’ clinical data, such as
medical records, cancer types, tumor markers, PET/CT images, and MRI images. These
ground truths and our object detection model predicted the DSC of 50 test data case results
according to the different thresholds (0–1) of the AI model prediction confidence value
(see Table 1).

Table 1. The results of Different threshold Faster R-CNN R50-FPN Model and Doctor.

Doctor Threshold DSC Doctor Threshold DSC Doctor Threshold DSC

doctor A 0 0.0861 doctor B 0 0.0771 doctor C 0 0.1532
doctor A 0.1 0.3009 doctor B 0.1 0.2970 doctor C 0.1 0.3601
doctor A 0.2 0.4303 doctor B 0.2 0.4337 doctor C 0.2 0.4519
doctor A 0.3 0.5174 doctor B 0.3 0.5299 doctor C 0.3 0.5318
doctor A 0.4 0.5819 doctor B 0.4 0.5915 doctor C 0.4 0.5885
doctor A 0.5 0.5784 doctor B 0.5 0.5924 doctor C 0.5 0.5707
doctor A 0.6 0.6021 doctor B 0.6 0.6098 doctor C 0.6 0.5711
doctor A 0.7 0.6640 doctor B 0.7 0.6210 doctor C 0.7 0.5750
doctor A 0.8 0.6445 doctor B 0.8 0.6103 doctor C 0.8 0.5515
doctor A 0.9 0.5890 doctor B 0.9 0.5342 doctor C 0.9 0.4656
doctor A 1 0.4800 doctor B 1 0.4600 doctor C 1 0.3800

In Table 1, we found that the doctor and AI performed best at a threshold of 0.7.
Although our DSC performance is inadequate, we used the drawing result of one physician
as the ground truth and the drawing result of another physician as the prediction result.
Our highest DSC was 0.6640 (see Table 1), and the highest DSCs among the physicians was
0.7040 (see Table 2), denoting a difference of only 0.04 between the DSC values obtained
using our model and the physicians’ value.
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Table 2. The results of Different doctors.

Doctor Be Prediction Doctor Be Ground Truth DSC

doctor A doctor B 0.7040
doctor B doctor C 0.6545
doctor C doctor A 0.6822

3.2. Results of Different Doctors

Calculations of the DSC results between two physicians are presented in Table 2.
Our Loss Function figure of Faster R-CNN R50-FPN Model is presented in Figure 8.

The horizontal axis denotes iteration, and the vertical axis denotes loss. From Figure 8, it
can be observed that the model has successfully learned the features, and that the loss has
converged. Since our loss has dropped significantly, and we have not seen a rise in loss.
Therefore, I have enough confidence to judge that the AI model has successfully learned.
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3.3. Results of Different Object Detection Models

We investigated the models Faster-RCNN X101-32x8d-FPN, Faster R-CNN Swin-T
FPN, YOLOR, and Faster R-CNN RPN R50-FPN and choose the highest DSC of threshold
for each model. The highest DSC was obtained for Faster R-CNN R50-FPN (see Table 3).
The DSC of Faster R-CNN Swin-T FPN and YOLOR were very similar and very poor
because neither model DSC all performed poorly. We can see from the performance of DSC
that the model has not successfully learned effective features.

Table 3. DSC Results of Different Object Detection Model.

Faster R-CNN
R50-FPN

Faster-RCNN
X101-32x8d-FPN

Faster R-CNN
Swin-T FPN YOLOR

doctor A 0.6640 0.5327 0.38 0.3827
doctor B 0.6210 0.6072 0.48 0.4832
doctor C 0.5750 0.5892 0.46 0.4622
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4. Discussion

The results indicate that our object detection model had the highest DSC was 0.6640,
and the highest DSC among the physicians was 0.7040, denoting a difference of only 0.04
between the DSC values obtained using our model and physicians. Since the gap between
our model results and physicians is minuscule, it is close to the standard of physicians. In
experimental results, the doctors supported this result. Senior physicians could clearly
identify bone metastases, and some physicians labeled more bounding boxes to prevent
undetected metastasis cases.

Computer-aided systems that automatically detect the location of metastatic lesions
on bone scans are uncommon. The most well-known commercial software is the Bone
Scan Index (BSI) [15]. BSI, developed using an artificial neural network, detects bone
metastases in patients with prostate cancer through image segmentation, identifies areas
of bone with increased radiopharmaceutical uptake, and classifies these areas as having
malignant or benign lesions. Hsieh et al. used deep learning to classify bone metastases
in bone scans [16]. Liu et al. used deep learning to segment bone metastases on bone
scans [17]. Zhang et al. used improved U-NET algorithms to achieve bone metastasis
segmentation [18]. Cheng et al. detected bone metastases using object detection in the chest
bone scan images of prostate cancer [19]. Few studies using object detection techniques
have been conducted.

Our study has some limitations. First, we could not focus on every single cancer,
because the data are not enough. The dataset was only collected from patients in a ter-
tiary academic medical center because manual labeling is time-consuming and requires
physicians in multiple medical centers. Second, the size and numbers of bounding boxes
annotated by each physician varied. The area was calculated according to the formula of
DSC (see Figure 7), which substantially affects the DSC of the model. Third, in our research,
annotation was performed in a blinded manner without reference to patient clinical data,
such as reports, cancer types, tumor markers, CT images, and MRI images. If physicians
could refer to this information, the DSC between physicians may have been improved. The
same applies for the model. Sex and cancer type have a substantial impact on the results.
For example, the results of male prostate cancer and female breast cancer vary considerably.
Sensitivity is the highest for prostate cancer, which is mainly osteoblastic. The detection of
breast and lung cancer is also notably high, although these tumors exhibit relatively mixed
lesion patterns. Future models that incorporate this information may exhibit improved
accuracy. Fourth, the model does simultaneously analyze the relationship between the front
and back sides of bone scan images. When the front and back sides of bone scan images
are different, they are analyzed by the training and testing models separately. However,
physicians can interpret the front and back sides of bone scan images simultaneously, and
this results in annotation differences. This affects the number of bounding boxes and results
in a decrease in DSC. Furthermore, only a minority of patients had bone lesions that could
be differentiated by other advanced medical imaging such as CT, PET/CT, or MRI.

The AI we developed does not need additional clinical information and has an interpre-
tation accuracy comparable to that of nuclear medicine physicians without access to extra
information. This makes it a useful tool for initial screening of bone metastases and can
support clinical work, while reducing barriers for non-nuclear medicine physician researchers
in organizing research data. However, it cannot replace the conventional interpretation carried
out by nuclear medicine physicians who have access to additional clinical information.

5. Conclusions

Our research is the first to use object detection on the whole body bone scan image to
detect the metastases site from cancers. Demonstrated that object detection technology can
assist in the safe detection of bone metastases. The results of the object detection techniques
were similar to the results of physicians, and object detection technology can thus reduce
the number of undetected lesions caused by physician fatigue. Object detection can also
assist oncologist in the annotation of lesions for treatment.
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