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Abstract: Background and Objectives: Intervertebral disc degeneration (IDD) is a common cause
of symptomatic axial low back pain. Magnetic resonance imaging (MRI) is currently the standard
for the investigation and diagnosis of IDD. Deep learning artificial intelligence models represent a
potential tool for rapidly and automatically detecting and visualizing IDD. This study investigated
the use of deep convolutional neural networks (CNNs) for the detection, classification, and grading
of IDD. Methods: Sagittal images of 1000 IDD T2-weighted MRI images from 515 adult patients
with symptomatic low back pain were separated into 800 MRI images using annotation techniques
to create a training dataset (80%) and 200 MRI images to create a test dataset (20%). The training
dataset was cleaned, labeled, and annotated by a radiologist. All lumbar discs were classified for disc
degeneration based on the Pfirrmann grading system. The deep learning CNN model was used for
training in detecting and grading IDD. The results of the training with the CNN model were verified
by testing the grading of the dataset using an automatic model. Results: The training dataset of the
sagittal intervertebral disc lumbar MRI images found 220 IDDs of grade I, 530 of grade II, 170 of
grade III, 160 of grade IV, and 20 of grade V. The deep CNN model was able to detect and classify
lumbar IDD with an accuracy of more than 95%. Conclusion: The deep CNN model can reliably
automatically grade routine T2-weighted MRIs using the Pfirrmann grading system, providing a
quick and efficient method for lumbar IDD classification.

Keywords: automation model; intervertebral disc degenerations; lumbar spine; MRI; deep learning;
diagnostic performance; computer neural network

1. Introduction

The incidence of low back pain varies widely in different reports. It is the fifth most
common cause for a visit to the doctor and affects up to 40% of patients [1]. Low back pain
is strongly connected to the degenerative process of intervertebral discs. The height of the
affected intervertebral disc gradually falls, causing a change in the dynamics of the affected
segment of the spine [2].

Intervertebral disc degeneration (IDD) is a common cause of symptomatic axial low
back pain and can be caused by several factors. It also represents an important cause of
morbidity and mortality. Numerous factors can initiate degenerative processes, which
most commonly affect the nucleus pulposus and ultimately influence the biomechanics
of the entire spine [3]. The number of individuals diagnosed with symptomatic lumbar
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disc herniation increases with age, and the incidence of these diseases is higher in women
than in men [4]. The duration, severity, type, and position of loads affect the state of the
intervertebral disc and, thus, the biological response to these factors [5]. The current reviews
of symptomatic low back pain with degenerative changes show it to be a common problem
in elderly patients with an orthopedic disease. Symptomatic degenerative disc disease
represents between 30 and 40% of cases of degenerative spinal disease. Intervertebral
discs are pads of fibrocartilage that resist spinal compression while permitting limited
movement. Even when the spine is bent or extended, they distribute the weight equally
across the vertebral bodies. The retention of damaged macromolecules is encouraged by
degeneration, which likely results in decreased tissue strength [6].

In the United States, nearly USD 50 billion is spent annually for the evaluation and
treatment of low back pain [7]. Magnetic resonance imaging (MRI) is currently the most
commonly ordered test to evaluate patients with sciatica, and it is the standard for the
investigation and diagnosis of IDD [8]. The high prevalence of asymptomatic intervertebral
disc diseases results in a need for an accurate diagnosis, which is key to management [9].

1.1. Medical Image Modalities

Magnetic resonance imaging (MRI) is the standard imaging modality used to detect
IDD. It has the advantage of being radiation-free and allowing for a multiplanar evalu-
ation with good soft tissue contrast, allowing for a more accurate interpretation of disc
changes [10]. The common MRI classification used by spine surgeons in the interpretation
of degenerative disc disease and its related problems is the Pfirrmann classification for disc
morphology, which classifies changes in disc degeneration progression in stages, indicating
more progression in the destruction of the disc architecture as one moves from grade I to
V [11] (Figure 1).
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grade V (e).

While radiographs can provide useful information, especially for identifying interver-
tebral disc degeneration or calcification, there are notable limitations [12].

1.2. Convolutional Neural Network (CNN) for MR Image Analyses

In recent years, it has become natural to hypothesize that neural networks and deep
learning methods can be harnessed for the effective detection of IDD in MRI sequences [7].
Machine learning and artificial intelligence (AI) are powerful tools with the ability to
improve the understanding of predictive metrics in clinical spine surgery [13]. Many studies
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have shown that AI programs can be used to extract “radiomic” information from images
that is not discernible by a visual inspection with the naked eye, potentially increasing the
diagnostic and prognostic value derived from image datasets [14], as well as increasing the
value that musculoskeletal imagers provide to patients and referring clinicians through
improved image quality, patient centricity, imaging efficiency, and diagnostic accuracy [15].
Moreover, there are many other innovative applications of AI in various technical aspects
of processes ranging from removing image artifacts, normalizing/harmonizing images,
improving image quality, lowering radiation and contrast dose, and shortening the duration
of imaging studies [16].

Deep learning models of artificial intelligence can potentially provide tools to auto-
matically detect IDD and provide visuals with significant speed. The purpose of this study
was to investigate the potential of using deep convolutional neural networks (CNNs) for
the detection, classification, and grading of IDD.

AI technology might be a future game changer in the medical field, with the possibility
of being applied in many clinical settings. This technology could be implemented in
hospital radiological imaging systems to analyze the MRI data of unclarified spinal diseases.
Another potential application is as an additional tool for physicians to use in making
accurate early diagnoses of IDD, decreasing medical errors and personal bias, reducing
the routine hospital work load, and creating a new approach to detecting and classifying
lumbar intervertebral disc degeneration, as well as similar medical applications. The
technology could also shrink the ambiguous zone when making diagnoses of IDD via
MR imaging, which could also reduce the mortality caused by delayed management,
decrease unnecessary investigations, and lower costs, as well as assisting physicians to
make accurate diagnoses.

One of the most effective target detection networks is You Only Look Once (YOLO).
Directly from the input frame, the YOLO network can forecast class probabilities and
bounding boxes in an evaluation. Each input image from the training set is divided into
square grids by the YOLO network. The grid is utilized to detect an object when it is filled
by the center of the target ground truth. Several bounding boxes and their confidence
scores are projected for each grid. Unlike other detection networks, the YOLO network can
predict class probabilities and bounding boxes and can provide an assessment directly from
the input frame. However, YOLO detectors need to be taught using annotated datasets in
order to attain the highest variability of the target [17].

Ramesh et al. reported the Yolov5 method to automatically identify, locate, and
describe microsurgical instruments from intraoperatively recorded footage of neurosurgery,
which achieved a high 93.2% mean average precision [18]. A study by Gromada et al.
presented a combination of YOLOv5 with post-processing using classic image analyses.
That study reported that the new system improves both the classification accuracy and the
location of the identified object [19].

Combining MR imaging with machine learning could help physicians to identify
management needs earlier while reducing the need for time-consuming and expensive
investigative procedures. This could also aid both physicians with limited experience and
primary physicians who are often faced with difficult diagnostic situations. For example,
with the advances in medical imaging technology and artificial intelligence (AI), many
computer-aided detection (CAD) systems have been developed to increase the performance
of lesion detection [20].

Currently, there are many research studies on using the deep learning model to detect
or predict the severity of degenerative intervertebral disc disease, but no study reports on
real-time prediction using YOLOv5 detectors.

Our findings imply that a single thorough CNN is capable of automatically diagnosing
a variety of various lumbar spine degenerative abnormalities. The CNN provides a high
diagnostic accuracy for real-time intervertebral disc interpretation.
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Our objective was to evaluate the diagnostic performance of a convolutional neural net-
work (CNN)—YOLOv5—trained on multiple MRIs of the intervertebral disc degeneration
of the lumbar spine to determine the accuracy of its interpretation.

2. Material and Methods

Sagittal IDD T2-weighted MRI images were obtained from an open-access lumbar
spine MRI dataset from Sudirman et al., which contains an anonymized clinical MRI
study [21]. We affirm that all procedures performed in this study were in accordance with
ethical standards and comply with the 1964 Helsinki Declaration. Patient identification
data were not collected.

2.1. Protocol for MRI Recruitment

The sample MRIs were obtained as sagittal images of IDD T2-weighted MRIs of
1000 disc levels from 200 adult patients from a standard dataset of 515 adult patients with
symptomatic low back pain [21]. Computerized randomization was used to choose the
image dataset. The inclusion dataset of the sagittal images of IDD T2-weighted MRIs
(1000 disc levels from 200 adult patients) included in this study was of degenerative disc
disease, where the diagnosis had been confirmed by a musculoskeletal radiologist. The
exclusion criteria were patients whose IDD T2-weighted MRIs images showed tumors,
infection, inflammatory disorders, congenital diseases, or a fracture of the lumbar spine.
Training and validation data were separated before data augmentation.

2.2. Computational Environment

Python 3.6 was used in the development of the model. The algorithms were trained
and validated using Google Colaboratory. In this study, a personal computer (PC) with an
Intel I7 8700 K 3.70 GHz processor, 32 GB DDR4 RAM, Nvidia GeForce GTX 1080 8 GB,
Anaconda with Python, and TensorFlow was used. The latest Anaconda was downloaded
from https://www.anaconda.com/products/distribution accessed on 1 July 2022. This
study aimed to create a Conda and Deep Learning Conda environment. A PC usually has
a graphic card and a graphics processing unit (GPU) environment that can be used for
deep learning.

2.3. Image Preprocessing

Focus slices of the 608 × 608 × 3 image were used to create a 304 × 304 × 12 image.
Then, after the convolution of 32 kernels, a 304 × 304 × 32 feature map was obtained
and processed. The region of interest was selected at the labeled lesion outlined by a
musculoskeletal radiologist covering the adjacent upper and lower vertebral bodies and
intervertebral discs in the mid-sagittal view (Figure 2). The images were cropped to
256 pixels on their shortest side. The images were then classified based on the Pfirrmann
grading system [11] by a musculoskeletal radiologist.

2.4. Data Augmentation

Because of the relatively small sample size, to prevent overfitting, all images were
randomly augmented using the Python package Augmentor, which is a software package
that focuses on offering functions that are frequently utilized in the creation of image
data for machine learning, including flipping, rotating, zooming, scaling, cropping, and
translating. In this study, we ran the standard image augmentation set with a horizontal
flip, crop (zoom 0–20%), rotation (between −15◦ and 15◦), and shear (±15◦ horizontal and
±15◦ vertical). The segmented images were shuffled and randomized for training. The
final dataset contained 800 MRI images in the training dataset (80%) and 200 MRI images
in the test dataset (20%). In each group, disc degeneration was classified based on the
Pfirrmann grading system [11].

https://www.anaconda.com/products/distribution
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2.5. Deep Learning Training

The deep learning method used the deep CNN model to train, detect, and grade
the IDDs (Figure 3). However, this model cannot determine the segment of the spine
images. The training CNN model was verified by testing the grading of the dataset using
an automatic model. We used the YOLOv5 architecture (Figure 4) for high-performance
object detection, which divides an image into a grid system, where each grid module
detects objects within itself. The images can also be used for real-time object detection
based on data streams, a process that requires very few computational resources. A total
of 100 epochs were performed to test the model because the model’s accuracy increases
until 100.
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2.6. Model Performance Evaluation

Accuracy, precision, recall, F1 score, and mean average precision were used to evaluate
model performance.

3. Results

We collected the sagittal intervertebral disc lumbar MRI training dataset from an
open-resource dataset, which included a total of 1000 disc levels from 515 adult patients.
The data were augmented and used to train and evaluate the models using the YOLOv5
model. Based on the Pfirrmann grading system, the results found 220 cases of grade I,
530 of grade II, 170 of grade III, 160 of grade IV, and 20 of grade V (Figure 5).
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The deep CNN model was able to detect and classify lumbar IDD with an accuracy
of more than 95%. The training of the CNN model was verified using the test dataset and
was found to have an automatic classification and detection of IDD accuracy of more than
95%. Figure 6 shows the IDD distribution of the grades and the shape information of the
bounding boxes.

Figure 7 shows the training results for the dataset. There are three types of losses:
box_loss, obj_loss, and cls_loss. A box_loss represents the difference between the target
disk box and the detected one. An obj_loss is the difference in object existence for each grid.
cls_loss represents the misclassification of class between the target and detected objects.
All loss values decreased sufficiently as the epoch numbers grew, showing that the training
was successful. The precision and recall values were good, as they were close to one. The
most frequently used metric, the mean average precision, was also satisfactory. While AP
represents the average precision for each class, mAP shows the AP for all classes, and
mAP_0.5 represents a mAP value under a fixed Intersection over Union (Boussios, #141) of
0.5. mAP_0.5:0.95 represents mAP values between IOU 0.5 and 0.95 intervals, where the
step size is 0.05. All these graphs of the results show that the training was carried out well
for the dataset under the default training hyper-parameters. Figure 8 shows the confusion
matrix for the CNN applied to the collected data accuracy results for each grade of IDD,
all of which were above 0.98. The light blue in the “background” is probably objects that
should have been classified but were not.
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Figure 9 shows the F1 scores for the confidence values, where confidence is defined
as the recognition reliability for each detected IDD box. The F1 score shows the relative
recognition performance between the precision and recall values. The figure shows the
IDD F1 scores for all grades, where the best is 0.98 at a confidence level of 0.438.
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4. Discussion

Understanding the risks, prevention, treatments, and possible outcomes of spine
injuries, as well as the incidence of degenerative spinal pathologies and pertinent demo-
graphic risk factors, is crucial for separating acute injuries from degenerative pathologies.

The gold standard for diagnosis and investigation is currently radiographic MRI
imaging for classification and grading that can indicate prognosis and inform doctors’
decision making regarding management (non-operative or operative treatment) based on
the Pfirrmann grading system, which is widely used by radiologists and orthopedists.
However, that process is time-consuming for radiologists who are already overloaded
with work related to prediction and having to classify the level of each patient. Moreover,
70% of all medical errors in diagnostic radiography are “missed findings” according to an
examination of those errors [22]. This significant error rate demonstrates how difficult the
“detection process” is for humans.

The application of artificial intelligence (AI) technology to medical imaging is growing.
The potential of AI for practical applications has been unlocked by advances in machine
learning (ML) and deep learning (DL), which facilitate procedures requiring high levels
of cognitive ability, increase the accuracy of radiologist diagnoses, and have many more
applications [23]. The many benefits and advantages of AI technology represent a fu-
ture trend in computer-assisted diagnoses for improving the screening and detection of
pathology lesions that will help the health care system. The Cross-ministerial Strategic
Innovation Promotion Program (SIP) “Innovative AI Hospital System” project supported
by the Japanese government emphasizes that it is essential that healthcare professionals
and the general public share diverse updated and useful information in order to maintain
or improve the quality of health and medical care systems [24].

In 2020, a study found that one of the many ways to succeed in training the convo-
lutional neural network was to use a convolutional neural network called “VGG16” to
correctly detect intervertebral disc lesions. That study, however, did not use the Pfirrmann
grading system. The objective of the present study was to develop machine learning or
deep learning algorithms that can detect, classify, and grade IDD. This study is the first to
use a CNN with the YOLO-v5 model to detect degenerative disc disease and classify the
severity into five grades based on the Pfirrmann grading system with a high accuracy. The
advantage of the YOLO-v5 model includes the use of real-time detection systems, such as
the VDO file and monitoring screen detection. We used this model to detect IDD in our
routine work as an optional clinical application to assist orthopedists at our center. We also
demonstrated the real-time detection and grading of degenerative disc disease using the
YOLO-v5 model (Video S1).

The YOLO model is a one-stage detection model. The mean average precision is the
current benchmark metric used by the computer vision research community to evaluate
the robustness and accuracy of an object detection model [25] and represents an essential
parameter for network model training. From the F1 curve, it was found that the confidence
value that optimized the precision and recall was 0.438. In many cases, a higher confidence
value is desirable. In the case of this model, it may be optimal to select a confidence of 0.6
since the F1 value appeared to be about 0.97, which is not far off from the maximum value
of 0.98. Observing the precision and recall values at a confidence of 0.6 also confirms that
this may be a suitable design point. Starting at about 0.6, the recall value began to decline,
and the precision value still remained roughly at the maximum value (Figure 9). Based on
our findings, we may apply this result setting to the other dataset to prove and find the
most accurate point in order to improve real-time, better personalized, population medicine
at lower costs and optimize decision making. It will become simpler to classify problems
according to which solution strategy is the most rational as machine learning researchers
and practitioners gather more experience. The acceptance of the addition of such systems
is anticipated to increase as enough high-impact software systems based on mathematics,
computer science, physics, and engineering are incorporated into clinics’ daily workflows.
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A limitation of this study is that we used an open assessment dataset of MRIs of
symptomatic low back pain that was imbalanced and varied in the distribution of data,
as evidenced by the fact that grades IV and V were rarely found and that grades I and
II were the most common types [26]. Due to the use of a provided open assessment
dataset of MRIs, the data were anonymized, so they did not report on the identification
of the participants, the relevant dates, the periods of recruitment, the eligibility criteria,
the sources and methods of selection, exposure, follow-up, and data collection [21]. A
radiologist was the only person who classified the photos using the Pfirrmann Classification.
If two radiologists classify the same set of data, deviations can happen [27]. This model
focuses only on the severity grading of the IDD. It cannot determine the segment of the
spinal images. This study introduced a novel technique of using machine learning to
simultaneously identify and differentiate types of spinal cord disorders. The local image
gradient orientation properties of each structure were determined using machine learning.
K-fold Cross-Validation is the preferred method to evaluate model performance, although
the YoloV5 model can report the Model mAP, recall, and F1 score. The data cannot be
generalized to all patients, as the dataset contains anonymized clinical MRI studies and,
thus, does not provide an accurate description of the dataset. Additionally, a larger and a
multi-center dataset would be desirable for the training, validation, and testing of advanced
deep learning in the future. However, this is a standard public dataset, and this study was
completely operated by a computer without human bias, so there were no sources of bias.

5. Conclusions

The new system of the automatic detection and classification of lumbar intervertebral
disc degeneration grading described in this study represents a step forward in the computer-
aided diagnosis and image-guided evaluation of spine diseases. This study demonstrates
that a deep learning model can accurately classify and grade IDDs of the spine. A deep CNN
model can automatically and reliably grade routine T2-weighted MRIs using the Pfirrmann
grading system, providing a quick and efficient method for lumbar IDD classification.
This method is practical for use in orthopedic and neurological applications, as well as for
disease and anomaly identification. Continued development of the model using a larger,
multi-center dataset is recommended.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/diagnostics13040663/s1, Video S1: Real-time detection and grading
of degenerative disc disease using YOLO-v5 model.
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