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Abstract: Intracranial hemorrhage (ICH) can lead to death or disability, which requires immediate
action from radiologists. Due to the heavy workload, less experienced staff, and the complexity of
subtle hemorrhages, a more intelligent and automated system is necessary to detect ICH. In literature,
many artificial-intelligence-based methods are proposed. However, they are less accurate for ICH
detection and subtype classification. Therefore, in this paper, we present a new methodology to
improve the detection and subtype classification of ICH based on two parallel paths and a boosting
technique. The first path employs the architecture of ResNet101-V2 to extract potential features
from windowed slices, whereas Inception-V4 captures significant spatial information in the second
path. Afterwards, the detection and subtype classification of ICH is performed by the light gradient
boosting machine (LGBM) using the outputs of ResNet101-V2 and Inception-V4. Thus, the combined
solution, known as ResNet101-V2, Inception-V4, and LGBM (Res-Inc-LGBM), is trained and tested
over the brain computed tomography (CT) scans of CQ500 and Radiological Society of North America
(RSNA) datasets. The experimental results state that the proposed solution efficiently obtains 97.7%
accuracy, 96.5% sensitivity, and 97.4% F1 score using the RSNA dataset. Moreover, the proposed
Res-Inc-LGBM outperforms the standard benchmarks for the detection and subtype classification
of ICH regarding the accuracy, sensitivity, and F1 score. The results prove the significance of the
proposed solution for its real-time application.

Keywords: intracranial hemorrhage; computed tomography; light gradient boosting machine;
support vector machine; convolutional neural networks

1. Introduction

Intracranial hemorrhage (ICH) occurs within the cranium due to a traumatic brain
injury, tumor, stress, vascular abnormality, arteriovenous malformations, and smoking
[1–3]. One of the major concerns of ICH is the high death rate of about 35% to 52% in
the first 30 days [4,5]. Other concerns such as disability, epilepsy, vascular issues, blood
clotting, loss of memory, and vision are also faced by the survivors [6,7]. Therefore, a rapid
and accurate mechanism is required to give medical treatment at the initial level to reduce
the high mortality rate of ICH. Primarily, computed tomography (CT) scans are used by
radiologists to locate the ICH region and type manually. These scans are based on adjacent
slices examined by the radiologist to identify the region and pattern of hemorrhage [8].
The ICH region can be intra-axial or extra-axial. The intra-axial represents the bleeding
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inside brain tissues, whereas the bleeding inside of cranial but outside of the brain tissues
is known as extra-axial. The first region covers two types: intraparenchymal hemorrhage
(IPH) and intraventricular hemorrhage (IVH), whereas subarachnoid hemorrhage (SAH),
subdural hemorrhage (SDH) and epidural hemorrhage (EDH) are covered by the second
region [9,10].

The primary way of ICH detection and subtype classification is to physically analyze
the CT images of the human head by radiologists. However, due to subtle complexities,
overloaded burden, and the time-consuming task of ICH detection, the expertise of radi-
ologists is required to rapidly and accurately detect the ICH region and its cause [9,11].
Another issue that leads to a high death rate is the unavailability of expert radiologists
at an emergency time in many developing countries [11]. Therefore, the junior radiolo-
gists analyze the CT scans and detect the cause and region of ICH. Although there is a
difference in the detection of ICH by expert radiologists than the juniors, which affects on
the treatment and medication [9,12]. Therefore, to deal with the large dataset, streamline
workflow, timely availability of the detection system, and improve the ICH detection accu-
racy, an artificial-intelligence-based automated mechanism is required [7,12,13]. Recently,
many studies have been proposed to automate ICH detection and subtype characterization,
classified into machine learning and deep-learning-based solutions.

Machine-learning-based solutions for identifying ICH have risen significantly in the
past few years. ICH has different types in which subarachnoid hemorrhage (SAH) is one of
them. The authors in [14,15] propose a decision tree (DT) and random forest 50 (RF)-based
model using the clinical data of patients to detect the SAH.

Likewise, Ramos et al. [16] employ four efficient machine learning models, known as
DT, RF, support vector machine (SVM), and multilayer perceptron (MLP), to improve the
detection of SAH using the laboratory dataset of patients. Another study [17] proposes a
hybrid of deep learning and machine learning model where a deep convolutional neural
network (CNN) is used to extract features and linear SVM to detect ICH using head
CT scans.

Raima et al. [11] detect the presence of ICH using SVM. Afterwards, U-Net segmen-
tation is performed to locate and classify the ICH region. The researchers in [18] show
the performance comparison of six machine learning models for the spontaneous detec-
tion of ICH. The machine above learning algorithms improve ICH detection and subtype
classification results. However, the presented solutions require significant manual data
preprocessing, parameters optimization, and feature engineering. Furthermore, these solu-
tions become less efficient and lead to overfitting as the size of the dataset increases [8,9,13].
Thus, with the increasing number of cases globally, data size is increasing, which requires a
more effective approach, known as deep learning, to overcome the shortcomings.

Deep learning approaches are efficient in handling large datasets and automating
the feature extraction from brain CT slices, attracting the research community’s attention.
Sage et al. [19] employ two parallel paths based on ResNet50 to capture the potential
features from the head CT scans. These features are forwarded as input to the random
forest (RF) and SVM for the detection of ICH. The researchers in [20] propose a deep CNN
model based on five convolutional layers to extract features and two dense layers for
the identification of ICH. Grewal et al. [21] perform the ICH detection using the 3D CT
images where a baseline architecture of DenseNet is used along with the recurrent neural
network (RNN). Wu et al. [8] employ the deep CNN model, known as EfficientNet-B0,
in two parallel paths to obtain both brain tissue and spatial-based features. Afterwards,
the ensemble mechanism is applied to the outputs to perform the ICH detection. In [12],
Lee et al. execute four deep learning models, VGG16, Inception-ResNetV2, Inception-V3,
and ResNet50, where CNN is used as the baseline architecture. The models are combined
to form an ensemble mechanism for improving the detection of ICH. Mansour et al. [22]
perform the segmentation to identify the affected regions using a segmentation technique
known as Graph-Cut.
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Furthermore, the Capsule network is used for feature extraction and fuzzy deep
neural network to detect and characterize ICH. Another work in [23] demonstrates the
importance of brain windows setting to improve the detection of ICH. The authors attach a
window estimator module with the deep CNN model to automate the estimation of brain
windows setting.

Anupama et al. [24] locate the ICH regions using the Grab-Cut segmentation mecha-
nism. Moreover, a synergic deep learning concept is used for feature extraction and subtype
classification of ICH using head CT images. Wang et al. [2] and Ye et al. [25] identify ICH
and its subtypes through a hybrid of CNN- and RNN-based models using 3D CT images.
The intention behind this is to extract important features using CNN. Then, RNN performs
sequential learning and detection of ICH following a similar approach [5,26,27] where a
CNN-based architecture is used to capture features from 3D brain CT images. Then, the
long short-term memory (LSTM) model uses the high-level features provided by CNN
and performs correlation analysis at slices to identify the ICH and its subtypes. In [28],
a faster R-CNN-based architecture is proposed to localize the ICH region and its type
categorization using brain CT images.

Lee et al. [29] apply a conventional artificial neural network (ANN) model to demon-
strate its acceptability over the CNN model regarding detection and subtype classification
of ICH. The aforementioned deep learning solutions significantly rise to ICH detection and
its subtype classification performance. However, some of the answers are based on 3D CT
images, which require extra time and memory for model training due to a high number of
parameters [21,25,28]. Furthermore, it is important to capture spatial features from adjacent
CT slices in a similar way that have a significant impact on the ICH detection performance,
which is not covered by the studies [5,11,21,25,27]. Few of the studies [14,17,19] have em-
ployed machine learning techniques such as SVM, DT, and RF for the ICH detection using
the CNN-based features, which are less effective for large dataset and prone to overfitting.

To address the limitations mentioned above, we propose a new deep learning and
machine learning-based hybrid model for ICH detection and subtype classification. The
proposed solution employs two deep learning models, ResNet101-V2 and Inception-V4, in
parallel ways to extract the potential features from brain CT slices. The architecture of these
solutions consists of CNN. The ResNet101-V2 captures intensity-related elements from
windowed CT slices, whereas the spatial features from adjacent pieces are obtained through
the Inception-V4. The prime intention behind extracting spatial and intensity features
are to mimic radiologists’ real-world diagnostic processes. Afterwards, a more efficient
and fast technique, a light gradient boosting machine (LGBM), is applied to the extracted
features by windowed and spatial features to detect the ICH and its subtypes. Therefore,
the proposed solution is a combined ResNet101-V2, Inception-V4, and LGBM (Res-Inc-
LGBM) based model for ICH detection. To evaluate the performance of the proposed
Res-Inc-LGBM, extensive experimentation is performed using the dataset of intracranial
hemorrhage detection challenge (IHDC) provided by the Radiological Society of North
America (RSNA). Moreover, the proposed solution is tested on the CQ500 dataset to analyze
its generalization.

2. Materials and Methods

In this section, we present a detailed description of the proposed methodology for
detection and subtypes classification of ICH, as shown in Figure 1. The proposed method
consists of three major phases: preprocessing, feature extraction, and ICH detection. There-
after, in the preprocessing phase, noncontrast brain CT images are used as input data. This
phase includes techniques such as skull removal and multiwindowing to enhance ICH
detection. Afterwards, the feature extraction phase utilizes two excellent deep learning
models to capture intensity-based and spatial features from the given CT scans, as shown in
Figure 1. Then, an LGBM model detects the ICH and its subtypes in the third phase using
the extracted features from the previous phase. In this regard, the proposed method effi-
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ciently overcomes the shortcomings of the existing models for ICH detection and subtype
classification. The description of each phase is given in the following subsections.
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Figure 1. Systematic view of the proposed methodology for detection and subtype classification of ICH.

2.1. Data Preprocessing

The proposed mechanism for the identification and characterization of ICH requires
the preprocessing of input to smooth the training process and reduce the training time of the
model. Therefore, we apply preprocessing techniques such as skull removal, windowing to
capture brain and bone tissues, and data augmentation.

2.1.1. Dataset

The proposed solution is trained and evaluated over the brain hemorrhage data of
ICH patients, known as IHDC, which was made available in 2019 by the RSNA [2,30,31].
The dataset is collected from three universities, which is further evaluated by about 60 ra-
diologists of RSNA and made available to develop automated solutions for the detection
and subtype classification of ICH [2]. The dataset consists of noncontrast head CT slices in
digital imaging and communications in medicine (DICOM) annotated with IPH, IVH, SAH,
SDH, and EDH. The slices that contain no hemorrhage or more than one are annotated as
‘Any’. The selected dataset for the training and validation of the proposed Res-Inc-LGBM
solution includes information on 13,334 patients with different types of brain hemorrhages.
The total number of brain CT images containing hemorrhage is 4579, as shown in Figure 2.
The general representation of subtypes of ICH is shown in Figure 3. In addition, another
dataset is employed to analyze the proposed solution’s generalisation ability, known as
CQ500 [32]. It consists of head CT scans collected from different radiological centres, an-
notated by expert radiologists. Furthermore, detailed information about both datasets is
given in Table 1.
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Table 1. Detailed information about the dataset.

Hemorrhage RSNA Instances CQ500 Scans

Any
0 11,399

205
1 1934

IVH
0 12,881

28
1 452

SAH
0 12,708

60
1 625

EDH
0 13,279

13
1 55

SDH
0 12,488

53
1 845

IPH
0 12,666

134
1 668
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Figure 2. Overview of subtypes of ICH.
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Figure 3. Representation of subtypes of ICH.
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2.1.2. Multiwindowing and Adjacent Slicing

Here, we elaborate on the two types of preprocessing, windowing and adjacent slicing.
Before that, we apply the skull removal process that improves ICH detection by specifically
focusing on the brain region. Moreover, it improves the model’s training without focusing
on the skull region. Therefore, Otsu’s morphological method removes the skulls of head
CT images [33,34]. Afterwards, we applied the windowing strategy, known as Hounsfield
units, to capture the intensity-based features. This strategy improves the contrast level of
head CT scans through window width and level to capture the bone, brain, and subdural
tissues [2,35].

Moreover, in the actual application, the radiologists also adjust the windows of brain
CT slices to improve the contrast for better locating the lesions. The prime intention is to
focus on the specific tissues to discover the hidden complexities of ICH [8]. In this paper, we
have applied three intensity windows, termed brain window, bone window, and subdural
window, to improve the visualization of brain tissues, skull lesions, and soft tissues, as
shown in Figure 4. The first window focuses on the brain tissues where window width
and level are defined as 80 and 40, respectively. Afterwards, the window width of 380
and window level 40 are set to focus on the bone tissues. The third window, the subdural
window, is obtained by setting the window level to 80 and the width to 200, which captures
the subdural hematomas. The three intensity windows are combined to form a single image
with three channels.

Default window Brain window Subdural window Bone window

Figure 4. Representation of three intensity windows.

The other type of preprocessing, the adjacent slicing mechanism, helps the proposed
model to focus on the adjacent slices for locating the bleeding regions. Furthermore, this
mechanism mimics the real-time diagnostic process of radiologists that use adjacent slices
to find the subtle bleeding spots and improve the detection process Wu et al. [8,12,36].
Therefore, to capture the spatial features, a slice interpolation, also known as an adjacent
slicing mechanism, is utilized to improve the ICH detection process. In this mechanism,
two adjacent slices and the centre slice are concatenated to form a single image with three
channels. After applying windowing and adjacent slices, an image augmentation procedure
is used to enhance the generalization ability of the proposed solution. In addition, it resolves
the overfitting issue. The augmentation method includes scaling, flipping, translating,
zooming, and shearing range to get different representations. Afterwards, the slices are
rescaled to 224 × 244 to match the model’s input representation because the original CT
slices are given in the shape of 512 × 512. Image rescaling is important to reduce the
proposed model’s training time because of fewer parameters and memory usage.

2.2. Feature Extraction Using ResNet101-V2 and Inception-V4

Feature extraction is important as it reduces the model’s parameters and computa-
tion cost, ultimately enhancing the ICH detection and subtype classification performance.
Therefore, the windowing and adjacent slicing-based inputs are passed to the two feature
extraction techniques, ResNet101-V2 and Inception-V4. These models extract intensity-
based and spatial features in a similar way to enhance the identification of ICH and its
subtype. To extract the potential windowed features, this paper proposes a new variant
of the ResNet model, known as ResNet101-V2. It depends on the baseline architecture of
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CNN that extracts high-level features from the given input. Many studies demonstrate the
importance of deep learning to capture the hidden complexities efficiently and significantly
improve the ICH detection performance [37,38]. The authors Wang et al. in [2,8,39,40]
employ deep learning feature extractors such as EfficientNet-B0, DenseNet121, Capsule
network, and Visual geometry group (VGG), respectively. Although, with the deep archi-
tecture, the gradient vanishes during back-propagation and leads to poor performance,
resolved through the skip connections in the ResNet architecture. Therefore, this paper
utilizes the pre-trained deep learning architecture of ResNet101-V2 that consists of resid-
ual blocks and skip links to efficiently obtain the intensity base features from CT scans.
Specifically, it is deep with 101 layers that efficiently find the subtle lesions. The deep
architecture of ResNet101-V2 has achieved more excellent performance than the shallow
levels architecture such as ResNet50 and ResNet30 Rahman et al. [37]. In this regard, the
pre-trained architecture of ResNet101-V2 is employed as a feature extractor to enhance the
ICH detection performance, given Keras et al. [41,42].

The spatial features are obtained parallel to the intensity features to follow the real-
world diagnostic process of ICH detection. The spatial information in the proposed method-
ology is obtained through the Inception-V4 model that receives the adjacent slices as input.
The prime intention behind using the inception-V4 is the identification of hidden bleeding
regions at low computation cost and high performance [43]. It has achieved the highest
performance in the classification of ImageNet due to efficient training speed, and fewer
model parameters [44]. Likewise to the ResNet101-V2, it is based on the CNN architecture
and has both residual skip connections and inception blocks to improve the ICH detection
rate. Therefore, in this paper, we use an effective pre-trained feature extractor, Inception-V4,
as stated Keras et al. [41,43]. The ResNet101-V2 returns the 2048 intensity-based features,
whereas 1536 spatial features are obtained through the Inception-V4. Afterwards, the
features provided by both feature extractors are concatenated to form a new input for ICH
detection and subtype characterization.

2.3. ICH Detection and Subtype Classification

The final detection and five subtype classification of ICH are performed by the LGBM
which uses the concatenated windowed and spatial features. The researchers use SVM [11],
DT [14], RF [19], and DT-, RF-, SVM-, and MLP-based four machine learning models
in [16] to identify and characterize the ICH. However, these machine learning models
become expensive for large datasets, leading to overfitting problems. Moreover, these
models have slow feature learning mechanisms and poorly detect ICH. Therefore, in this
paper, we have used the boosting mechanism known as LGBM, which is light and has
fast training. The boosting strategy learns from the mistakes of previous classifiers and
optimizes the performance of the upcoming classifier [45]. It significantly enhances the
performance of ICH detection and its subtype classification through rapid learning, less
memory consumption, and minimization of previous mistakes during the training process.

Moreover, it can efficiently handle a large dataset, which makes it suitable for this
study [46]. LGBM follows the leaf wise strategy to solve the hidden complexities compared
to other tree-based models, such as DT or extreme gradient boosting (Xgboost) that employ
a level-wise approach. Therefore, the leaf wise strategy of LGBM helps find the hidden
complexities of ICH and enhance its detection score. LGBM has several important hyper-
parameters, such as the number of classifiers, depth, and learning rate. These parameters
have a significant impact on the ICH detection performance. Thus, the hyperparameters of
LGBM are tuned through the grid-search technique.

3. Experimental Results

This section describes the experimental results of the proposed methodology to assess
its performance for subtype classification and detection of ICH. The proposed solution is
compared with the existing benchmark techniques for ICH detection to demonstrate its
effectiveness and suitability for real-time application.
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The proposed Res-Inc-LGBM solution is developed over the workstation with specifi-
cations of Intel core i7-7200, 16GB RAM, and a 1TB hard drive using the Python language.
In addition, the TensorFlow and Keras libraries and the graphics processing unit (GPU)
of NVIDIA are employed to form and train the deep learning models. The proposed
Res-Inc-LGBM is developed and assessed over the dataset of IHDC, which is mentioned
in Section 2.1.1. The dataset is divided into two subsets, training and testing, with a ratio
of 70 and 30, respectively. In this study, the pre-trained architecture of ResNet101-V2 and
Inception-V4 are employed to capture the windowed and spatial features [45].

The proposed architectures are trained using the adaptive moment estimation (Adam)
learning technique and weighted binary cross-entropy (WBC) loss function. The weighted
loss function is used to deal with the effects of imbalanced data. The weight value is
assigned concerning the class importance, such as 1.0, 0.29, 0.22, 0.15, 0.16, and 0.18 for
‘Any’, EDH, IVH, IPH, SDH, and SAH subtypes. The CT scans are reshaped to 224 × 244
and 299 × 299 for forwarding as an input of ResNet101-V2 and Inception-V4, respectively.
The feature extractors use the batch size of 16 and learning rate of 1×10-3 to train over
50 iterations where the performance of models is evident. Afterwards, the extracted features
are received as input by LGBM for ICH detection and its subtype categorization, which is
mentioned in Section 2.3.

3.1. Experimental Results of Proposed Solution

To assess the performance of the proposed Res-Inc-LGBM algorithm, several
classification-based performance indicators are employed in this study. These indica-
tors are obtained through the confusion matrix that provides four outcomes: true positive
(TP), false positive (FP), true negative (TN), and false negative (FN).

These four outcomes provide the basis to form several potential performance indicators
that are used in this study, such as F1-measure, precision, sensitivity (also known as recall)
and TP rate (TPR), specificity, also identified as TN rate (TNR), area under the precision-
recall (AUPR), accuracy, and area under the curve (AUC) Sage et al. [19,46].

After the preprocessing of data, feature extraction techniques, Inception-V4, and
ResNet101-V2, are applied to obtain important features. The Inception-V4 extracts the
important elements from the adjacent CT slices. Specifically, it finds the complex bleeding
regions through the adjacent CT slices. Figure 5 shows the performance of the Inception-V4
while obtaining the spatial features. It is seen that the deep architecture of Inception-V4
efficiently learns the subtle complexities and minimizes the loss function.

0 10 20 30 40 50
epochs

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

W
BC

train_loss
val_loss

Figure 5. Loss analysis of Inception-V4 during training.
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The Inception-V4 has uniform performance for both training and validation data,
such as the loss values of 0.01. During the validation, the model loss sometimes fluctuates
due to the complexity of ICH. Afterwards, the accuracy of the Inception-V4 is shown in
Figure 6 during the model training. It achieves an accuracy level of 0.85 during the training,
showing the proposed solution’s excellency.
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0.2
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0.8
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cu
ra
cy
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val_accuracy

Figure 6. Accuracy of Inception-V4 during training.

The performance of Inception-V4 in terms of AUC and AUPR is shown in Figures 7 and 8
during the model execution, respectively. As it is clear that the model excellently finds the
hidden complexities of ICH, which the AUC and PRAU validate. The Inception-V4 feature
extractor obtains scores of 0.97 and 0.98 for AUC and PRAU, respectively. These scores
are obtained using the training and validation sets. The execution results of Inception-V4
validate that the proposed mechanism has significant potential to enhance ICH detection
and its subtype classification.

0 10 20 30 40 50
epochs

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

train_AUC
val_AUC

Figure 7. AUC during the training Inception-V4.

In the parallel way of spatial features, the intensity-based representations are achieved
through another feature extractor, ResNet101-V2. It has the potential to efficiently extract
the brain, bone, and subdural tissues based on subtle complexities, as shown in Figure 9.
It is depicted that the second model also achieves excellent results for feature extraction
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on training and validation sets. However, the fluctuations are seen for the validation
data due to complexities and similarities between the subtypes of ICH, such as EDH and
SDH. Except that, the model efficiently minimizes the loss value and obtains 0.10 for the
validation set, as shown in Figure 9. Likewise, the accuracy of the ResNet101-V2 is depicted
in Figure 10. The figure shows the accuracy of training and validation sets regarding the
extraction of brain, bone, and subdural tissues.
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Figure 8. AUPR of Inception-V4 during execution.
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Figure 9. Loss analysis of ResNet101-V2 during training.

In contrast to the loss value, the accuracy value gradually increases for both training
and validation sets. It is evident that ResNet101-V2 efficiently finds insights from CT scans
and improves the accuracy level. In addition, to demonstrate the efficiency of the ResNet101-
V2 for the extraction of intensity features, the AUC and AUPR scores are also depicted in
Figures 11 and 12. It is shown in Figure 11 that ResNet101-V2 smoothly optimizes the AUC
for both training and validation sets. The AUC score of 0.98 is obtained by the model for
training and unseen dataset. Likewise, Figure 12 highlights the AUPR-based performance
over the model training iterations. The figure depicts that the ResNet101-V2 uniformly
improves the AUPR score for the training and testing sets regarding the extraction of
intensity features.
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Figure 10. Accuracy of ResNet101-V2 during training.

0 10 20 30 40 50
epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

train_AUC
val_AUC

Figure 11. AUC during the training ResNet101-V2.
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Figure 12. AUPR of ResNet101-V2 during execution.

The AUC- and AUPR-based performance of the ResNet101-V2 validates that the
employed feature extractor has significant capability to obtain the hidden bleeding regions
from intensity-based CT slices. Furthermore, the AUC-based performance of the proposed
solution in terms of the receiver operating characteristics (ROC) curve is shown in Figure 13.
The ROC curves depict the TPR versus FPR to demonstrate the ICH detection and its
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subtype classification ability of the model. The high value of the curve states the excellent
detection power of the proposed mechanism. In a similar fashion to AUC, the proposed
solution’s performance regarding AUPR is depicted in Figure 14 where precision against
recall is demonstrated. The curves in the figure show the performance for each subtype of
ICH. In general, the feature extraction results of ResNet101-V2 and Inception-V4 validate
that these models efficiently the detection and subtype classification of ICH.
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Figure 13. AUC-based performance of the proposed solution.
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Figure 14. Proposed solution’s performance based on AUPR.

To assess the performance of the proposed Res-Inc-LGBM solution for ICH detection
and its subtype categorization, Table 2 presents the complete analysis of the results. The
table illustrates the performance results for each of the subtypes of ICH. It is seen that the
proposed Res-Inc-LGBM achieves 0.985 AUC, 0.954 sensitivity, 0.972 specificities, 0.947 pre-
cision, 0.963 F1-score, 0.974 AUPR, and 0.975 accuracies for ICH detection. The proposed
solution obtains efficient results for ICH detection due to the efficiency of hybrid deep
learning and machine learning techniques. The deep learning features extractors capture
the important intensity and spatial features that significantly improve the ICH subtype
classification and detection, as stated in Table 2.
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Table 2. ICH detection and subtype classification results of the proposed solution using the
IHDC dataset.

Subtypes Model AUC Sensitivity Specificity Precision F1-Score AUPR Accuracy

any

Res-Inc-LGBM 0.985 0.954 0.972 0.947 0.963 0.974 0.975

Res-LGBM 0.938 0.764 0.926 0.825 0.843 0.892 0.926

Inc-LGBM 0.952 0.803 0.926 0.863 0.875 0.952 0.936

SDH

Res-Inc-LGBM 0.974 0.965 0.983 0.963 0.972 0.971 0.987

Res-LGBM 0.951 0.924 0.986 0.905 0.892 0.931 0.992

Inc-LGBM 0.957 0.931 0.963 0.962 0.893 0.945 0.996

SAH

Res-Inc-LGBM 0.976 0.962 0.973 0.964 0.963 0.972 0.985

Res-LGBM 0.967 0.944 0.973 0.925 0.912 0.921 0.972

Inc-LGBM 0.975 0.901 0.982 0.975 0.932 0.952 0.991

EDH

Res-Inc-LGBM 0.980 0.972 0.963 0.966 0.952 0.964 0.975

Res-LGBM 0.927 0.804 0.896 0.883 0.832 0.844 0.936

Inc-LGBM 0.935 0.822 0.885 0.895 0.875 0.902 0.945

IPH

Res-Inc-LGBM 0.979 0.968 0.982 0.973 0.972 0.965 0.987

Res-LGBM 0.956 0.923 0.951 0.916 0.911 0.903 0.954

Inc-LGBM 0.963 0.935 0.966 0.953 0.932 0.936 0.967

IVH

Res-Inc-LGBM 0.977 0.962 0.973 0.972 0.963 0.968 0.985

Res-LGBM 0.953 0.934 0.962 0.943 0.932 0.922 0.963

Inc-LGBM 0.967 0.954 0.973 0.967 0.959 0.952 0.974

Furthermore, the performance results for SDH subtype detection are 0.974 AUC,
0.965 sensitivity, 0.983 specificities, 0.963 precision, 0.972 F1-score, 0.971 AUPR, and 0.987
accuracies. These results show significant improvement in detecting SDH due to its simi-
larity with EDH. Likewise, 0.980, 0.972, 0.963, 0.966, 0.952, 0.964, and 0.975 are obtained
for detecting EDH in terms of AUC, sensitivity, specificity, precision, F1-score, AUPR, and
accuracy, respectively. The proposed solution secures excellent results for EDH, which is a
significant improvement. The traditional studies have fewer detection scores for SDH and
EDH due to their hidden subtleties and similarities.

Moreover, the dataset contains less number of EDH cases, which are usually falsely
classified by the model. However, the proposed solution has the detection capability that
efficiently learns the bleeding regions and reduces the misclassification of EDH. Afterwards,
the detection of other ICH subtypes such as SAH, IPH, and IVH are also efficiently covered
by the proposed solution with a minimum false detection rate. The detection results of
SAH, IPH, and IVH by the Res-Inc-LGBM are also similar to the SDH and EDH, as given
in Table 2. In general, the results demonstrate that the proposed solution has significantly
improved ICH’s detection and subtype classification.

To validate the effectiveness of ResNet101-V2 for intensity base features and Inception-
V4 for spatial, Table 2 presents the results in terms of ResNet101-V2-LGBM (Res-LGBM)
and Inception-V4-LGBM (Inc-LGBM). These are the two variants of the proposed Res-Inc-
LGBM mechanism to show the importance of intensity and spatial features. In the first
variant Res-LGBM, the Inception-V4 is removed from the mechanism to demonstrate the
importance of spatial features. Res-LGBM receives windowed CT slices as an input and
outputs the intensity features, which are fed as an input to the LGBM for the detection
and subtype characterization of ICH. Likewise, the other variant Inc-LGBM highlights the
significance of intensity features by removing the Inception-V4 module. The Inc-LGBM
model is trained with the adjacent slices as an input and outputs the spatial features.

The LGBM uses spatial features to identify and classify the ICH into subtypes. In
terms of ICH detection, the Res-LGBM-based variant gains 0.938 AUC, 0.764 sensitivity,
0.926 specificities, 0.825 precision, 0.843 F1-score, 0.892 AUPR, and 0.926 accuracies. It is
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seen that the spatial features have a significant impact, such as about 5% to 13% in terms of
AUC, sensitivity, F1-score, and AUPR. Likewise, the Inc-LGBM achieves 0.952, 0.803, 0.926,
0.863, 0.875, 0.952, and 0.936 for AUC, sensitivity, specificity, precision, F1-score, AUPR,
and accuracy in terms of ICH detection, respectively. The results demonstrate that the
intensity-based features also impact the detection score, such as about 3% to 15% regarding
AUC, sensitivity, F1-score, and AUPR. It is concluded that the proposed feature extractors
have improved the ICH detection and subtype categorization performance due to excellent
feature extraction capabilities.

The ICH subtype classification results of Res-LGBM and Inc-LGBM are quite inferior to
the results of the proposed Res-Inc-LGBM solution, as given in Table 2. The table states that
the performance results of Res-LGBM for EDH are 0.927 AUC, 0.804 sensitivity, 0.896 speci-
ficities, 0.883 precision, 0.832 F1-score, 0.844 AUPR, and 0.936 accuracies. In comparison,
the Inc-LGBM obtains 0.935 AUC, 0.822 sensitivity, 0.885 specificities, 0.895 precision,
0.875 F1-score, 0.902 AUPR, and 0.945 accuracies for EDH. It is seen that the Inc-LGBM has
high AUC, sensitivity, precision, F1-score, AUPR, and accuracy results than the Res-LGBM
due to the significance of spatial features and Inception-V4 architecture. Afterwards, for
SDH subtype detection, Res-LGBM scores 0.951 AUC, 0.924 sensitivity, 0.986 specificities,
0.905 precision, 0.892 F1-score, 0.931 AUPR, and 0.992 accuracies, whereas Inc-LGBM gains
0.957 AUC, 0.931 sensitivity, 0.963 specificities, 0.962 precision, 0.893 F1-score, 0.945 AUPR,
and 0.996 accuracies.

The Inc-LGBM has results superior to those of the Res-LGBM for AUC, sensitivity, F1-
score, AUPR, and accuracy in terms of SDH. Specifically, the Inc-LGBM has more excellent
results for ICH detection and subtype categorization than the Res-LGBM, as stated in
Table 2, although it is clear that the spatial features have more impact on ICH detection
performance than the intensity-based features. In the combination of both spatial and
windowed features, the proposed Res-Inc-LGBM achieves more excellent results than its
two variants, as validated by the performance results in Table 2.

The proposed solution’s generalization ability can be seen in Table 3 by testing it on the
CQ500 dataset. The table presents ICH detection and its subcategorization results regarding
recall (sensitivity), specificity, F1-score, and accuracy. The performance results clearly
state the proposed methodology has excellent generalization ability for ICH detection.
Specifically, using the CQ500 dataset, the proposed Res-Inc-LGBM achieves 95.4%, 94.2%,
94.1%, and 95.1% for sensitivity, specificity, F1-score, and accuracy, respectively. Therefore,
the proposed solution efficiently handles the complex task of ICH detection using the
unseen dataset.

Table 3. Evaluation results of Res-Inc-LGBM for ICH detection using CQ500 dataset.

ICH Recall Specificity F1-Score Accuracy

any 0.952 0.962 0.951 0.971

SDH 0.951 0.953 0.950 0.962

SAH 0.943 0.951 0.946 0.960

EDH 0.954 0.942 0.941 0.951

IPH 0.941 0.935 0.942 0.963

IVH 0.934 0.952 0.937 0.961

3.2. Performance Comparison with Benchmarks

Here, we demonstrate the performance of the proposed solution against other state-of-
the-art techniques, Wang et al. [2,8,17,19,26,27] for ICH detection, and subtype classification.
The authors in [2] achieve 0.964 AUC, 0.944 specificities, and 0.887 sensitivity for ICH
detection compared to the proposed model that scores 0.985 AUC, 0.972 specificities, and
0.954 sensitivity. The proposed solution achieves more excellent results due to its efficient
strategy of LGBM with rapid training. Afterwards, the proposed Res-Inc-LGBM compares
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with the approach presented in [8] where the benchmark model covers 0.943 for AUC
and 0.859 for sensitivity in ICH detection, whereas the proposed mechanism achieves
0.985 AUC and 0.954 sensitivity. Furthermore, the approach presented in [8] achieves
0.792 sensitivity, 0.823 F1-score, and 0.986 accuracies for EDH. In contrast, the proposed
Res-Inc-LGBM model obtains 0.972 sensitivity, 0.952 F1-score, and 0.975 accuracy to detect
the EDH, which is quite a complex subtype of ICH due to its similarity with other subtypes
of ICH.

The researchers Keshavamurthy et al. [17] achieve an accuracy level of 0.905, a
sensitivity of 0.936, 0.964 AUC, and 0.882 specificities to detect the brain injury using CNN
and linear SVM model. The proposed technique finds more excellent results, such as an
accuracy level of 0.975, sensitivity of 0.954, 0.985 AUC, and 0.972 specificities. Another
similar mechanism is proposed in [19] that gets a score of 0.902 for AUC, 0.894 for specificity,
0.897 for accuracy, and 0.901 for sensitivity to identify the ICH. On the other hand, the
Res-Inc-LGBM has more excellent results for ICH detection and subtype categorization,
as mentioned in Table 2. For instance, the approach based on [19] achieves 0.727 for
identifying EDH subtype in terms of F1-score, whereas the Res-Inc-LGBM covers 0.952 F1-
score. Bruja et al. [26] present a CNN- and LSTM-based model that achieves a score of
0.865 for sensitivity, 0.957 for specificity, 0.972 for AUC, and 0.96 for accuracy regarding the
ICH detection. In contrast, the proposed model has more excellent results for ICH detection
than the [26], as given in Table 2. Another study [27] also implements the same mechanism
of CNN and LSTM that achieves 0.956 for AUC versus the proposed solution that covers
the AUC score of 0.985 for ICH detection.

The proposed Res-Inc-LGBM overcomes the shortcomings of standard techniques regard-
ing subtype classification and detection of ICH. The main reason behind this is the efficiency
in feature extraction and detection through the LGBM, which is faster and more efficient for
the identification and subtype classification of ICH. Therefore, the proposed mechanism is an
efficient and suitable choice for ICH detection and its subtype categorization.

4. Conclusions

In this paper, ICH detection and its subtype classification are improved by presenting
the new solution, known as Res-Inc-LGBM, using the dataset of IHDC. The proposed Res-Inc-
LGBM mechanism uses two deep learning feature extractors, ResNet101-V2 and Inception-V4,
to find the significant spatial and intensity features. Afterwards, the deep learning feature
extractors are combined with the more efficient machine learning boosting technique, LGBM,
that uses the extracted features as input and performs the subtype categorization and detection
of ICH. The complete methodology is evaluated by extensive experimentation to show its
excellent performance and suitability for real-time ICH detection.

The experiment results of the proposed Res-Inc-LGBM for ICH detection show that the
discriminative capability of the model was excellent in terms of AUC, sensitivity, specificity,
precision, F1-score, AUPR, and accuracy, respectively. Moreover, the proposed Res-Inc-
LGBM is compared against the state-of-the-art techniques regarding ICH detection and
its subtype characterization. The proposed model overcomes the performance of existing
techniques for ICH detection, which shows its excellent detection capability and suitability
for real-world problems. The proposed solution is developed and assessed over the dataset
of IHDC. Therefore, different datasets will be used further to enhance the ICH subtype
classification and detection performance.
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