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Abstract: In this study, we looked at the viability of utilizing serum to differentiate between gall-
bladder (GB) stones and GB polyps using Surface-enhanced Raman spectroscopy (SERS), which
has the potential to be a quick and accurate means of diagnosing benign GB diseases. Rapid and
label-free SERS was used to conduct the tests on 148 serum samples, which included those from
51 patients with GB stones, 25 patients with GB polyps and 72 healthy persons. We used an Ag
colloid as a Raman spectrum enhancement substrate. In addition, we employed orthogonal partial
least squares discriminant analysis (OPLS-DA) and principal component linear discriminant analysis
(PCA-LDA) to compare and diagnose the serum SERS spectra of GB stones and GB polyps. The
diagnostic results showed that the sensitivity, specificity, and area under curve (AUC) values of the
GB stones and GB polyps based on OPLS-DA algorithm reached 90.2%, 97.2%, 0.995 and 92.0%, 100%,
0.995, respectively. This study demonstrated an accurate and rapid means of combining serum SERS
spectra with OPLS-DA to identify GB stones and GB polyps.

Keywords: surface-enhanced raman spectroscopy (SERS); gallbladder (GB) stone; gallbladder (GB)
polyp; serum; orthogonal partial least squares discriminant analysis (OPLS-DA); diagnosis

1. Introduction

Benign gallbladder (GB) disease usually presents as luminal lesions and localized or
diffuse thickening of the GB wall. GB stones and GB polyps are the two most prevalent
benign disorders and have a 5–10% probability of becoming cancerous (malignant) [1].
These benign diseases include adenomyomatosis, acute cholecystitis and others [2], which
exhibit a range of clinical signs and symptoms. Patients may be asymptomatic or may
suffer from acute biliary colic, jaundice and fever. Required treatment and management
strategies differ accordingly. In addition, benign GB diseases can resemble GB cancers
and present with a variety of imaging appearances [3,4]. Therefore, differentiating these
diseases for the purposes of therapy and prognosis is essential.

Currently, abdominal B ultrasound, computed tomography (CT) and other imaging
technologies are commonly used to identify GB stones and GB polyps, but they all require
expensive software and hardware as well as visual observation of imaging physicians
to determine results. They also have the problem of low sensitivity [5–7]. Laboratory
results have revealed the leukocytosis with a left shift and minimal increase in the levels
of bilirubin and alkaline phosphatase. Overall, GB stones and GB polyps can be neither
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confirmed nor ruled out by a single clinical finding or laboratory test [3]. Therefore, finding
a rapid and accurate diagnostic method to identify benign GB disease is necessary.

Surface-enhanced Raman spectroscopy (SERS) is a method of boosting the Raman
signals of biomolecules by utilizing nanometerized metal substrates, including metal col-
loids [8]. SERS makes it easier to identify alterations in the molecular “fingerprint” of
biological fluids related to cancer, including blood [9], urine [10] and saliva [11]. SERS
has become common in the examination of biofluids for diagnosing various illnesses, par-
ticularly cancer [12,13]. Several studies have been conducted on SERS of blood serum or
plasma samples [14–17]. Feng et al. [18] used silver sol as an active substrate for SERS in
conjunction with plasma detection to provide a simple and noninvasive method for plasma
detection of nasopharyngeal cancer. After analyzing the SERS spectra of 43 patients with
nasopharyngeal cancer and those of 33 healthy individuals, the researchers discovered
that when compared to the plasma of normal people, that of patients with nasopharyn-
geal cancer contained higher percentages of nucleic acids, collagen, phospholipids and
phenylalanine but lower percentages of amino acids and carbohydrates. In addition, the
researchers used principal component linear discriminant analysis (PCA-LDA) to iden-
tify a sensitivity and specificity of 90.7% and 100%, respectively, with the two types of
plasma. However, serum SERS technology has yet to be used in diagnosing GB stones and
GB polyps.

Multivariate statistical analysis combined with SERS for data analysis has been widely
used in disease diagnosis [19]. Commonly used algorithms in multivariate statistical
analysis include orthogonal partial least squares discriminant analysis (OPLS-DA), par-
tial least squares discrimination analysis (PLS-DA), and principal component analysis
(PCA). In contrast with PCA, OPLS-DA is a supervised statistical method used for DA,
and its most important feature is that it can remove data variations in the independent
variable X which are not related to those of categorical variable Y. Categorical information
is mainly concentrated in a single principal component. Therefore, the model is simple
and easy to interpret. In addition, its discriminant effect as well as visualization of the
principal component score plot is more obvious [20]. OPLS-DA is used most commonly in
metabolomics analysis [21,22]. Li et al., using SERS and OPLS-DA methods to study serum
after total body irradiation in mice exposed to different radiation doses [23]. Kai et al., used
SERS combined with OPLS-DA to differentiate between benign and malignant pleural
effusions [24]. Driskell et al. studied the SERS spectra of eight rotavirus strains using
PLS-DA and classified each strain at a >96% accuracy [25]. However, SERS combined with
the OPLS-DA algorithm has yet to be applied to the classification diagnosis of GB stones
and GB polyps.

In this study, we used SERS technology combined with multiple statistical analyses to
establish a classification diagnostic model for healthy people and for patients with GB stones
and GB polyps. The model obtained high diagnostic accuracy, revealing the tremendous
potential that SERS technology has in differential diagnosis of benign GB diseases.

2. Materials and Methods
2.1. Serum Sample Collection and Preparation

In this case, 148 serum samples from the First Affiliated Hospital of Xinjiang Medical
University were used in our investigation. Clinical diagnostics identified 51 cases of
GB stone patients and 25 of GB polyp patients, with 72 cases identified as the healthy
control group. Table 1 lists basic information about these participants, including their
ages and gender. The medical ethics committee of the First Affiliated Hospital of Xinjiang
Medical University approved the trial, and each patient completed an informed consent
form (Approval No. K202107-16). Based on the standard operating protocols of clinical
laboratories, blood samples were drawn. The serum was then separated from the blood
samples by centrifuging them at 3000 rpm for 15 min. Finally, the serum samples were
frozen (−80 ◦C) until the SERS measurement time was recorded.
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Table 1. Age and gender information of patients with GB stone, GB polyp, and healthy volunteers.

GB Stone GB Polyp Healthy

Gender
Male 27 11 42

Female 24 14 30
Age

Mean 46.5 43 45.7
Median 44 42 41
Range 32–65 35–59 34–52

2.2. Serum SERS Spectra Measurements

The SERS spectra of the serum samples were examined using a Raman micro-spectrometer
(ATR6500-785, Optosky, China) coupled with a 785-nm laser [26]. The serum samples were
defrosted at room temperature prior to SERS measurements. A 1:1 ratio of 5 µL each of
serum and Ag colloid was then produced. A 10-µL sample was taken from this combination
and placed on an aluminum slide. Following air-drying at room temperature, SERS spectra
were recorded [27]. Ag colloid was purchased from Nanjing Jianzhi Instrument Equipment
Co., Ltd., Nanjing, China. The preparation method of Ag nanoparticles (Ag NPs) was
reported by Leopold and Lendl [28]. Briefly, 200 mL of 1.0 mM silver nitrate solution were
first heated to a boil, and then 5.0 mL of 1% trisodium citrate were added dropwise with
vigorous stirring. The mixture was then allowed to boil for an additional hour until it turned
gray. Add distilled water to the solution after it has cooled so that the volume remains at
200 mL [14]. Prior to each online capture, a wavelength calibration was performed. The
laser power and integration time were 5 mW and 3 s, respectively. The spectral range of
the data was 600–1800 cm−1 and was collected using a 20× objective lens. Each sample
was tested five times, and the average result was then used to determine the sample’s
spectral data.

2.3. Spectral Data Pre-Processing

SERS data were preprocessed using smoothing, baseline correction and normalization
methods. We used the SavitzkyGolay algorithm (order 5.9 points window) to smooth
filter the collected serum spectral data, which not only improved the smoothness of the
spectrum but also reduced the interference of noise [10]. The baseline was removed
using the adaptive iteratively reweighted penalized least squares algorithm [29]. Vector
normalization processing was conducted on each spectrum [30]. This processing was
performed using MATLAB R2020a and Origin 64 software.

2.4. Data Analysis

We used SIMCA 14.0 software (Umetrics, Umea, Sweden) to conduct an analysis of
Raman spectrum data. The principal component scores of the OPLS-DA models were used
to accurately reflect the classification of diseases, and the performance of the OPLS model
was assessed using the goodness-of-fit parameters R2 and Q2 [31] as related to the explained
and predicted variances, respectively. The accurate performances of the diagnostic models
under various illnesses were validated using a receiver operating characteristic (ROC) curve.
The AUC values of these models were used to measure their quantitative performance,
where higher AUC values indicated better model performance. The AUC values typically
range from 0.5 to 1.0 [32]. Additionally, we used MATLAB R2021a software to perform PCA-
LDA analysis and compared the results with the OPLA-DA classification model using three
different metrics: sensitivity, specificity, and accuracy. As assessment criteria for the models,
sensitivity and specificity were also used to gauge how well the models distinguished
between patients with benign GB disease and controls. In this study, sensitivity refers to
the probability that the model correctly diagnoses patients with benign GB disease [33]. In
addition, the classifier and capacity of the OPLS-DA models in categorizing unidentified
samples were assessed using 10-fold cross validation. For validation, the model was
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resampled 100 times under the null hypothesis using random permutations of the Y
matrix [34].

3. Results and Discussion
3.1. Raman Spectral Analysis

Figure S1 displays the spectral preprocessing of a representative serum sample from a
healthy person. Due to instrument noise and outside ambient noise, denoising was first
conducted to enhance the spectral signals in the spectrum collection operations of the
serum samples. Note that the spectrum then had to be adjusted for baseline because the
Raman signal was accompanied by the development of an autofluorescence signal in the
biological material. Finally, each spectrum underwent vector normalization.

In this investigation, the Ag colloid served as an improved substrate. The results
of an Ag nanoparticle (NP) UV absorption spectra and transmission electron microscopy
micrograph with a 50-nm bar are shown in Figure S2. The UV absorption spectra at a high
absorption peak of 417 nm demonstrated the purity of these Ag NPs [35]. Ag NPs used in
this measurement had excellent purity. We obtained the SERS and Raman spectra from the
same GB-stone serum patient to demonstrate the boosting effects of the Ag colloid. SERS
signals were evident, as shown in Figure 1, demonstrating that our Ag colloid considerably
enhanced the serum’s Raman spectra. Therefore, as a substrate, the Ag colloid may be
more effectively used.
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Figure 1. Comparison of SERS, RS and background Raman signal of Ag colloid; The blood serum
patient with GB stone was mixed with Ag colloid in a 1:1 ratio to obtain SERS spectra of the serum
(Red line); Conventional Raman spectra of free Ag colloid in the same sample (Blue line); Background
Raman signal of Ag colloid (Black line).

Datasets from the SRES spectra of 51 patients with GB stones, 25 patients with
GB polyps and 72 healthy control subjects were gathered. A spectral data range of
600–1800 cm−1 was studied and provided the most diagnostically helpful information.
Figure 2a–c shows the mean and difference spectrograms for GB stones and GB polyps,
GB stones and healthy controls, and GB polyps and healthy controls, respectively, where
the shaded areas represent the standard deviations of the means. The characteristic peaks
of the three groups were mainly distributed in 637, 722, 810, 888, 1003, 1134, 1203, 1333,
1432, 1557 and 1652 cm−1. The histogram of the average intensity values of the serum SERS
peaks with corresponding standard deviations is shown in Figure 2d. One-way analysis
of variance was used to identify the significantly different peaks across the three groups
with a p value (i.e., probability) cut-off of 0.05. These variations showed the changes in the
components of serum biomolecules with GB disease progress. The attribution of each spec-
tral peak is shown in Table 2 [13–15,17,36–38]. Based on a comparison of GB stones and GB
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polyps, the main peaks of difference characteristics were found to be 637 cm−1 (L-tyrosine,
lactose), 722 cm−1 (coenzyme A), 1203 cm−1 (phenylalanine), 1432 cm−1 (D-glucosamine)
and 1652 cm−1 (lipids), with all peaks showing statistical significance (p < 0.05). The char-
acteristic peaks of GB stones and healthy controls were mainly distributed in 637 cm−1

(L-tyrosine, lactose), 722 cm−1 (coenzyme A), 1203 cm−1 (phenylalanine) and 1652 cm−1

(lipids), with all peaks showing statistical significance (p < 0.05). The characteristic peaks of
GB polyps and healthy controls were mainly distributed in 637 cm−1 (L-tyrosine, lactose),
722 cm−1 (coenzyme A), 1134 cm−1 (D-mannose), 1203 cm−1 (phenylalanine), 1432 cm−1

(D-glucosamine) and 1652 cm−1 (lipids), with all peaks showing statistical significance
(p < 0.05). At 637 cm−1 (L-tyrosine, lactose) and 1134 cm−1 (D-mannose) characteristic
peaks, a significant upregulation or downregulation between the GB stone and GB polyp
groups was observed, indicating the presence of abnormalities in serum glucose metabolism.
Previous studies have reported that GB polyps have precancerous potential [39] and there-
fore are associated with glucose metabolism, which has been reported in other cancer
research [18]. At 722 cm−1 (coenzyme A), the three groups exhibited significant differ-
ences, where coenzyme was a major factor in regulating sugar and fat as well as protein
metabolism. In addition, at 1652 cm−1 (lipids), significant differences were observed be-
tween the three groups. The occurrence of GB polyps is generally believed to be closely
related to cholesterol metabolism, and abnormal lipid metabolism may promote the forma-
tion of GB polyps [40]. The serum SERS signal of GB stone patients was significantly lower
than that of healthy individuals at 888 cm−1 (Glutathione) peaks, indicating a decrease in
the percentage of amino acids in the serum of GB stone patients, similar phenomena have
been found in other areas of cancer research [41]. The serum SERS signal in the GB polyp
group was higher than that in the healthy group at 1203 cm−1 (phenylalanine). It can be
seen that the content of Phenylalanine in the serum of GB patients was significantly higher
than that of healthy people, this may be because GB polyp was the cause of precancerous
lesions, which was present in cervical cancer and other cancers [42]. Some studies have
reported that due to the specific anatomical location of the gallbladder, when damage to
the gallbladder occurs, obstruction of bile flow can affect the metabolic function of the liver,
resulting in disorders of lipid metabolism and amino acid metabolism [3,43]. In our study,
the differences between the spectral characteristic peaks suggested that the differential
markers of the three groups were likely related to lipid or amino acid metabolism. Al-
though differences were observed in certain SERS characteristic peaks of the three groups of
serum, the three groups had similar spectral profiles. As a powerful classification algorithm,
OPLS-DA and PCA-LDA was used to develop the classification model, to provide accurate
results in measuring SERS performance, and thus to distinguish among the serum of GB
stone and GB polyp patients and that of healthy controls.

3.2. Multivariate Analysis and Classification

The SERS spectral differences of the three types of serum were investigated using the
OPLS-DA multivariate algorithm to evaluate the accuracy of screening utilizing serum SERS
spectra. To create the model, 148 samples were used. We first compared the differences in
serum SERS spectra of GB stones, GB polyps, and healthy controls using the supervised
learning OPLS-DA of the SIMCA software, and we modelled the three types of samples
for comparison. The score plot of the three group comparisons is shown in Figure 3a,
where each point on the plot represents a sample. The horizontal and vertical coordinates
represent the score values of principal components 1 and 2, respectively, and the ellipse
represents the 95% confidence interval of the full sample analytical results. The plot shows
significant differences among the serum SERS spectra of GB stones, GB polyps, and healthy
individuals. The method can thus be used to clearly distinguish the three groups, where a
clear tendency of separation is revealed between groups and aggregation within groups.
Based on the following criteria, the robustness of these models was evaluated. R2X (cum),
R2Y (cum) and Q2 (cum) are cumulative sums of squares (SS) of all x (PC) and y (SS)
variables explained by all extracted components. Q2 (cum) is the proportion of all x (PC)
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and y variables that can be predicted for the extracted component [44]. For the triple
classification model, R2X (cum) = 0.89, R2Y (cum) = 0.714 and Q2 (cum) = 0.609, indicating
that the model has good predictive power. The permutation test was used to check the
validity of the model and overfitting of the algorithm [34]. SIMCA was used to conduct
100 permutation tests on the dataset. The results of the three classification models are
shown in Figure 4a, where the R2 and Q2 intercepts were 0.16 and −0.388, respectively.
In general, when R2 was less than 0.3–0.4 and Q2 was less than 0.05, the model could be
considered well-constructed. The results of this analysis demonstrated that the model
developed by the OPLS-DA method was stable and could be applied to the classification of
the three types of serum SERS spectra.
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Figure 2. (a) Comparison of average SERS spectra of a GB stone and GB polyp patients, (b) GB stone
and Healthy objects, (c) GB polyp and Healthy objects. The shaded areas represent the standard
deviations of the means. In addition shown at the bottom is the difference spectrum. (d) The
corresponding histograms of the average intensities and standard deviations of SERS peaks among
the three groups. * p < 0.05.

Table 2. Tentative assignments of main peaks observed in SERS spectra of serum samples according
to the literature.

Raman Shift (cm−1) Major Assignments

637 L-tyrosine, lactose
722 Coenzyme A
810 L-serine, glutathione
888 Tryptophan, glutathione
1003 Phenylalanine
1134 D-mannose
1203 L-tryptophan, phenylalanine
1333 Guanine, adenine
1432 D-glucosamine
1557 Tryptophan
1652 Lipids



Diagnostics 2023, 13, 619 7 of 13

Diagnostics 2023, 13, x FOR PEER REVIEW 7 of 13 
 

ellipse represents the 95% confidence interval of the full sample analytical results. The 
plot shows significant differences among the serum SERS spectra of GB stones, GB polyps, 
and healthy individuals. The method can thus be used to clearly distinguish the three 
groups, where a clear tendency of separation is revealed between groups and aggregation 
within groups. Based on the following criteria, the robustness of these models was evalu-
ated. R2X (cum), R2Y (cum) and Q2 (cum) are cumulative sums of squares (SS) of all x (PC) 
and y (SS) variables explained by all extracted components. Q2 (cum) is the proportion of 
all x (PC) and y variables that can be predicted for the extracted component [44]. For the 
triple classification model, R2X (cum) = 0.89, R2Y (cum) = 0.714 and Q2 (cum) = 0.609, indi-
cating that the model has good predictive power. The permutation test was used to check 
the validity of the model and overfitting of the algorithm [34]. SIMCA was used to conduct 
100 permutation tests on the dataset. The results of the three classification models are 
shown in Figure 4a, where the R2 and Q2 intercepts were 0.16 and −0.388, respectively. In 
general, when R2 was less than 0.3–0.4 and Q2 was less than 0.05, the model could be con-
sidered well-constructed. The results of this analysis demonstrated that the model devel-
oped by the OPLS-DA method was stable and could be applied to the classification of the 
three types of serum SERS spectra. 

  

  

 
Figure 3. Principal component score plots of the SERS spectra based on OPLS-DA. (a) Score plot for 
Healthy, GB stone, and GB polyp serum samples. (b) Score plot for GB stone, and GB polyp serum 
samples. (c) Score plot for Healthy, and GB stone serum samples. (d) Score plot for Healthy, and GB 
polyp serum samples. (e) Score plot for Healthy, and Case group* serum samples. (*Case group, GB 
stone, and GB polyp Group). 

Figure 3. Principal component score plots of the SERS spectra based on OPLS-DA. (a) Score plot for
Healthy, GB stone, and GB polyp serum samples. (b) Score plot for GB stone, and GB polyp serum
samples. (c) Score plot for Healthy, and GB stone serum samples. (d) Score plot for Healthy, and GB
polyp serum samples. (e) Score plot for Healthy, and Case group* serum samples. (*Case group, GB
stone, and GB polyp Group).

We also established a binary classification model based on OPLS-DA. Figure 3b–e
shows the score plots of GB stones and GB polyps, GB stones and the healthy group, GB
polyps and the healthy group, the case group (GB stones and GB polyps) and healthy group,
respectively. Good quality parameters were shown by the OPLS-DA model, where R2X
(cum), R2Y (cum) and Q2 (cum) for the classification models of GB stones and GB polyps
were 0.82, 0.76 and 0.63, respectively. For the GB stones and healthy group, these same
parameters were 0.84, 0.76 and 0.68, respectively. For the GB polyps and healthy group,
they were 0.82, 0.81 and 0.64, respectively. Finally, for the case and healthy groups, they
were 0.85, 0.76 and 0.69, respectively. Figure 4b–e shows the results of 100 permutation
tests, where the intercepts of R2 and Q2 were 0.282, 0.172, 0.245, 0.171 and −0.562, −0.301,
−0.462, −0.40, respectively. The intercepts of R2 and Q2 were less than 0.30 and 0.05,
respectively, indicating that the model showed good robustness. This indicated that no
overfitting occurs in our model, and the model has good prediction ability. These findings
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further reveal the effectiveness of the OPLS-DA-based serum SERS spectral classification
method in differentiating between the two types of serum samples.
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(a) Healthy, GB stone, and GB polyp classification models. (b) GB stone vs. GB polyp classification
models. (c) Healthy vs. GB stone classification models. (d) Healthy vs. GB polyp classification
models. (e) Healthy vs. Case group classification models.

In addition, we used the PCA-LDA algorithm to classify and diagnose three sets of
SERS data in order to compare with each other with the OPLS-DA algorithm. First, PCA
was performed to reduce the dimensionality of the spectral dataset and extract PC features.
The score plot of the three group comparisons was shown in Figure S3a, and we can see
the classification effect of the PCA-LDA algorithm on the three sets of serum. The loading
plot of the first PC (PC1), which was responsible for 41.4% of the overall variance, was
displayed in Figure S3b. The findings of PC1 loading can be found to be in good accord
with the variations in SERS spectra between the groups depicted in Figure 2a. Figure S4a–d
shows the PCA score plots for groups GB stones and GB polyps, GB stones and the healthy
group, GB polyps and the healthy group, the case group and healthy group, respectively.
It can be found that the PCA-LDA algorithm was significantly worse than the OPLS-DA
algorithm in classifying the two groups of serum.
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The confusion matrix of the triple classification results based on the OPLS-DA and
PCA-LDA algorithm was shown in Table 3. The overall classification accuracy of the OPLS-
DA and PCA-LDA algorithms were 92.6% and 83.8%, and the diagnostic sensitivity for the
healthy, GB stone, and GB polyp groups were 98.60%, 90.20%, 80.00% and 83.30%, 84.30%,
84.00%, respectively. Figure 5 shows the calculated ROC curves using SIMCA software,
where AUC (healthy Group) = 0.993, AUC (GB stone) = 0.989 and AUC (GB polyp) = 0.987,
and the AUCs of all three approximated 1, indicating that the OPLS-DA model exhibited a
good classification effect. Our binary classification results were shown in Table 4, where the
overall classification accuracy of the OPLS-DA algorithms was greater than 93%, and the
AUC values were higher than 0.99 in all four groups. The overall classification accuracy
of the PCA-LDA algorithm ranged from 80–90%, and the AUC values for the four groups
ranged from 0.874–0.905. The table thus shows that the classification model based on
SERS and combined with the OPLS-DA algorithm has good diagnostic efficacy for benign
GB diseases. In a previous study, Tung et al. [45] used bile juices as test specimens and
employed the SERS technique to identify GB stone and GB polyp patients. However, the
model exhibited poor discriminatory ability. In addition, Jin et al. [46] attempted infrared
spectroscopic identification of GB polyps and GB stones using bile juices as specimens,
achieving an overall classification accuracy of 78.6%. In our study, we used serum as
specimens and the SERS technique to classify and diagnose GB stones and GB polyps with
high accuracy. The serum test we employed was a non-invasive test as compared with that
using bile juices. Here, accurate classification and diagnosis of disease could be achieved
with just a single drop of blood serum from a patient. SERS-based technologies are quick,
reliable, and accurate in terms of disease diagnostics and molecular identification. In
addition, label-free SERS can utilize extensive fingerprint data for diagnosis and screening
without having to label participants [47]. This study is a preliminary exploration of serum
SERS technology combined with machine learning algorithms for diagnosing benign GB
disease. A future work will investigate the metabolomics and other studies of serum from
patients with GB disease to identify their specific diagnostic markers.

Table 3. The results of triple classification confusion matrix based on OPLS-DA and PCA-LDA analysis.

Group
OPLS-DA PCA-LDA

Healthy GB Stone GB Polyp Healthy GB Stone GB Polyp

Healthy 71 1 0 60 3 9
GB stone 0 46 5 4 43 4
GB polyp 3 2 20 1 3 21

Sensitivity (%) 98.6 90.2 80 83.3 84.3 84
Specificity (%) 86.8 93.8 95.1 84.2 83.5 83.7
Accuracy (%) 92.6 83.8

AUC 0.993 0.989 0.987 0.842 0.839 0.838

Table 4. The results of binary classification confusion matrix based on OPLS-DA and PCA-LDA analysis.

Group
OPLS-DA PCA-LDA

Sensitivity (%) Specificity (%) Accuracy (%) AUC Sensitivity (%) Specificity (%) Accuracy (%) AUC

GB stone
GB polyp 98 88 94.7 0.995 86.3 88 86.8 0.874

GB stone
90.2 97.2 94.3 0.995 86.3 97.2 92.6 0.917Healthy

GB polyp
92 100 95.9 0.995 92 86.1 87.6 0.891Healthy

Case group *
90.8 97.2 93.9 0.994 88.2 93.1 90.5 0.905Healthy

* Case group, GB stone and GB polyp.
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4. Conclusions

This study demonstrated for the first time the feasibility of SERS in discriminating
between GB stones and GB polyps using serum samples. A portable Raman spectrometer
was employed to obtain the SERS spectra of GB stone and GB polyp patients and healthy
controls with only a small amount of serum, and the changes in biochemical components
in the serum of patients as compared with normal subjects was reflected in the differences
among the spectra. The OPLS-DA and PCA-LDA algorithms were combined with SERS to
classify the SERS spectra of different serum types. The results showed that the sensitivity
and specificity of the OPLS-DA algorithm for classifying GB stones, GB polyps and healthy
groups were better than those of the PCA-LDA algorithm. This preliminary study is
expected to set up a new path in developing a new clinical method for detecting GB stones
and GB polyps. Our next step will be to collect a greater number of serum samples and
conduct a more detailed investigation to evaluate the feasibility of the method.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics13040619/s1, Figure S1: SERS spectral preprocessing
results of a selected Healthy sample; (a) Raw spectrum; (b) The spectrum of the raw spectrum
after denoising; (c) Baseline corrected spectrum; (d) Normalized spectrum; Figure S2: (a) The
UV/visible absorption spectrum of the Ag colloid. The absorption maximum is located at 417 nm;
(b) Transmission electron microscopy (TEM) image of Ag nanoparticles (NPs). Figure S3: (a) Principal
component score plots of the SERS spectra based on PCA-LDA; (b) Loading plot for the first PC.
The first PC accounting for 41.4% of the total variance. Figure S4: Principal component score plots
of the SERS spectra based on PCA-LDA. (a) Score plot for GB stone, and GB polyp serum samples.
(b) Score plot for Healthy, and GB stone serum samples. (c) Score plot for Healthy, and GB polyp
serum samples. (d) Score plot for Healthy, and Case group serum samples.
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