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Abstract: This study aims to develop an algorithm for the automatic segmentation of the parotid 

gland on CT images of the head and neck using U-Net architecture and to evaluate the model’s 

performance. In this retrospective study, a total of 30 anonymized CT volumes of the head and neck 

were sliced into 931 axial images of the parotid glands. Ground truth labeling was performed with 

the CranioCatch Annotation Tool (CranioCatch, Eskisehir, Turkey) by two oral and maxillofacial 

radiologists. The images were resized to 512 × 512 and split into training (80%), validation (10%), 

and testing (10%) subgroups. A deep convolutional neural network model was developed using U-

net architecture. The automatic segmentation performance was evaluated in terms of the F1-score, 

precision, sensitivity, and the Area Under Curve (AUC) statistics. The threshold for a successful 

segmentation was determined by the intersection of over 50% of the pixels with the ground truth. 

The F1-score, precision, and sensitivity of the AI model in segmenting the parotid glands in the axial 

CT slices were found to be 1. The AUC value was 0.96. This study has shown that it is possible to 

use AI models based on deep learning to automatically segment the parotid gland on axial CT im-

ages. 

Keywords: artificial intelligence; deep convolutional neural network; salivary glands; U-net;  

computed tomography 

 

1. Introduction 

Salivary glands are important exocrine organs of the human body, responsible for 

the production of saliva as well as various digestive enzymes. Human salivary glands are 

divided into major and minor glands according to their size and function. The major sal-

ivary glands are defined as the parotid, submandibular, and sublingual glands [1,2]. The 
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parotid gland is the largest in size, responsible for producing 60 to 65% of the oral cavity’s 

total saliva, and envelops the mandible’s ramus [3,4]. The facial nerve subdivides the pa-

rotid gland into superficial and deep lobes [5]. In 2017, the World Health Organization 

proposed a classification with more than 30 types of salivary gland tumors categorized as 

being either malignant or benign histological subtypes. Benign salivary gland tumors con-

stitute approximately 6% of tumors diagnosed in the head and neck region [1,2]. Salivary 

gland tumors can originate from distinct types of glandular cells, and they exhibit consid-

erable variances in their clinical, pathological, and biological characteristics. The current 

treatment options are multimodality therapy, chemotherapy, radiation therapy, and sur-

gical resection [6]. The malignant or benign characteristics of the salivary gland tumor are 

important in terms of the prognosis and treatment options, since malignant tumors re-

quire a more invasive operation [7,8]. Improvements in salivary gland imaging, consistent 

with the histopathological findings, will contribute to the relevant clinical decision [9,10]. 

Several imaging techniques can be adopted to reveal the status of the parotid glands, 

each with its own advantages and limitations. The magnetic resonance imaging (MRI) and 

computed tomography (CT) techniques are the primary methods for evaluating the pa-

rotid gland anatomically, pathologically, and structurally, by enabling the cross-sectional 

evaluation of the salivary glands [11–13]. CT is proposed for cases where an inflammatory 

condition such as sialectasis, abscess, stone, and acute inflammation is suspected, and 

when MRI is contraindicated. Nevertheless, MRI is the preferred imaging technique in 

patients with a high suspicion of malignancy. In addition, ultrasonic imaging can be ben-

eficial in pediatric and pregnant patients for an initial investigation, particularly in cases 

involving lesions of the parotid gland’s superficial lobe [14]. 

Progress in digital imaging has paved the way for implementing various artificial 

intelligence (AI) tools for segmenting, detecting, and classifying the anatomical and 

pathological structures [15,16]. Currently, the practice of radiology benefits significantly 

from AI applications. Implementing such tools can be highly beneficial in removing the 

burden of performing certain tasks repeatedly including segmenting organs or nerves or 

for extracting the quantitative data that are more beneficial, thus enabling clinicians to 

increase their focus on attempting to solve complicated clinical issues [17,18]. Still, there 

are many problems, such as the need for large datasets and training, regulation issues, 

and medicolegal responsibility, which are suggested as barriers to the efficient application 

of AI in radiologists’ normal practice. For the success of a developed AI model, the use of 

quality data in education and the correct labeling process are both important [19,20]. 

Image segmentation is the subject of various fields such as transportation, architec-

ture, and medical imaging. Traditional segmentation methods, such as boundary extrac-

tion, threshold-based segmentation, and region-based segmentation can be adopted in 

manual segmentation of the medical images [21,22]. However, manual segmentation re-

quires expertise and is a time-consuming process. In the deep learning approach, features 

are extracted by algorithms by establishing multilayered mathematical models. Thus, de-

velopers can benefit from the advantage of using big data in model training [22,23]. Con-

volutional neural network (CNN) algorithms have received attention for their success in 

image processing tasks. U-Net is an architecture developed for image segmentation. The 

basic structure consists of contraction and expansion paths, which are almost symmetrical, 

resulting in a u-like shape [21–23]. Deep learning can be utilized in U-Net algorithms, and 

its better performance than its competitors using a limited dataset makes this architecture 

popular in segmentation tasks in the medical field where data are limited [21]. 

Recently, the deep learning method has been utilized extensively, especially in med-

ical image processing where segmentation is needed [16,24]. Segmentation from head and 

neck CT images has been performed with the deep learning method [25,26]. In 2014, Yang 

et al. proposed a system based on atlas registration and a support vector machine model 

for automated segmentation of the parotid gland using MR images. Fifteen patients with 

head and neck radiotherapy (42 MRI data) were included, and the difference between the 

model and the human tracings was reported as 7.98% and 8.12% for the left and the right 
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parotid, respectively [27]. In 2018, Močnik et al. developed an automatic multimodal 

method for segmentation of the parotid glands from a CT and MRI pair of patient data. 

Elastix and ANTs tools were employed to register the MRI image to the CT, and the CNN 

model was implemented using Microsoft Cognitive Toolkit. The researchers compared 

the results of the proposed multimodal model with the CT-only modality and reported a 

Dice overlapping coefficient of 78.8% for the first and 76.5% for the latter approach [28]. 

Hänsch et al. developed a U-Net based system for segmenting the parotid from CT images 

that were two-dimensional, three-dimensional, and in a two-dimensional ensemble mode, 

in 2019. In total, 254 head and neck CT scans from two different clinical sites were selected, 

and in addition to the models’ performance for segmentation, the number of the training 

samples needed was also investigated. The authors reported a mean Dice similarity of 0.83 for 

all three models, and increasing the training cases to more than 250 did not increase the Dice 

coefficient significantly [29]. 

This study aims to develop a deep convolutional neural network (dCNN) algorithm 

based on U-Net architecture and to evaluate the model’s performance in the automatic 

segmentation of the parotid glands on axial-CT images. 

2. Materials and Methods 

2.1. Study Design 

A U-net based algorithm was developed using the Pytorch library for the automatic 

segmentation of the parotid gland in axial slices of head and neck CT images (Cranio-

Catch, Eskisehir-Turkey). All procedures performed in studies involving human partici-

pants were in accordance with the ethical standards of the institutional and/or national 

research committee and with the 1964 Helsinki declaration and its later amendments or 

comparable ethical standards. The study protocol was approved by the Non-interven-

tional Clinical Research Ethics Board of The University of Campinas (UNICAMP) with 

the decision number 79765917.5.0000.5404 (decision date 18 March 2018, meeting number 

2.553.836). 

2.2. Study Data 

In this retrospective study, 30 anonymized CT datasets were selected from the ar-

chive of the Radiology Department of the Faculty of Medical Sciences, University of Cam-

pinas (UNICAMP). Samples with clearly visible parotid glands bilaterally were included, 

while images with a gross anomaly and artifacts on the parotid gland were excluded. Ra-

diographic data were acquired by a 16-slice CT scanner (Siemens Somatom Sensation 16, 

Forcheim, Germany) with the constant parameters of 0.6 mm detector collimation, 120 

kVp tube voltage, 0.6 s gantry rotation time, 1.5 mm reconstructed section thickness, and 

1 mm reconstruction intervals. The patient data in three-axes (sagittal, coronal, and axial) 

were reconstructed into volumetric data and exported in Digital Imaging and Communi-

cation in Medicine (DICOM) file format. The resulting DICOM files were imported to 

Pydicom (https://pydicom.github.io/datasets (accessed on 1 June 2022)) software, and in 

total, 931 axial-CT images with a unilateral or bilateral appearance of the parotid gland 

were exported in Joint Photographic Experts Group (JPEG) format. 

2.3. Ground Truth Labeling 

The CranioCatch Annotation Tool (CranioCatch, Eskisehir, Turkey) was developed 

with polygonal box segmentation technique for labeling of the parotid glands on the axial 

CT images. The ground truth was determined by the consensus of two experts in oral and 

maxillofacial radiology (I.S.B. with 11 years’ experience and M.O. with 2 years’ experi-

ence). 
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2.4. Data Split 

The 931 axial images were resized to 512 × 512 pixels. The dataset was separated into 

the training (80%), validation (10%), and testing (10%) groups randomly. 

Training group: 745 (1445 labels); 

Validation group: 93 (178 labels); 

Testing group: 93 (184 labels). 

2.5. Development of the U-Net Based dCNN Model 

The U-net based automated parotid segmentation algorithm was developed in the 

Python environment (v.3.6.1; Python Software Foundation, Wilmington, DE, USA) using 

the PyTorch library. The model was trained for 700 epochs with learning rate of 0.00001. 

Mathematical processing in the model’s training was performed with a Dell PowerEdge 

T640 Calculation Server (Dell Inc., Round Rock, TX, USA), Dell PowerEdge T640 GPU 

Calculation Server (Dell Inc., Texas, USA), and a Dell PowerEdge R540 Storage Server 

(Dell Inc., Texas, USA) in the Eskisehir University Dentistry Faculty Dental-AI Labora-

tory. (Appendix A) (Figure 1).  

 

Figure 1. Model pipeline of parotid gland segmentation. 
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2.6. Statistics for the Model’s Performance 

The model’s performance in the automated segmentation of the parotid glands on 

the axial CT images was evaluated with the F1-score, the precision, the sensitivity, and the 

area under curve (AUC) values. The model’s result was considered successful if the pre-

diction and the ground truth intersected by more than 50% in each individual image slice. 

The true positive (TP), false positive (FP), and false negative (FP) results were determined 

for calculating the performance metrics. The definitions and the formulas for calculating 

the model’s performance are described below: 

True positive (TP): At least 50% of the pixels intersect between the automatic segmenta-

tion algorithm and the ground truth; 

False positive (FP): At least 50% of the pixels of the automatic segmentation algorithm do 

not intersect with the ground truth; 

False negative (FN): At least 50% of the pixels of the ground truth do not intersect with 

the results of the automatic segmentation algorithm; 

Sensitivity (Recall,True positive rate (TPR)) = TP⁄((TP + FN)); 

Precision (Positive predictive value (PPV)) = TP⁄((TP + FP)); 

F1-Score = 2TP⁄((2TP + FP + FN)). 

3. Results 

The U-Net based algorithm (CranioCatch, Eskisehir-Turkey) predicted the pixels of 

the parotid glands with more than 50% intersection in all samples (Figure 2). The values 

of the F-measure, precision, and sensitivity were all determined to be 1.0 in terms of seg-

menting the parotid gland axial slices of CT images successfully (Table 1). The Area Under 

Curve (AUC) value was found to be 0.96 (Figures 3 and 4). 

 

Figure 2. The automatic segmentation of the parotid gland utilizing the Artificial Intelligence model 

in axial CT slices. 

Table 1. Results showing the predictive performance utilizing the AI model (CranioCatch, Eskise-

hir-Turkey) in terms of segmenting the parotid gland with the testing data. 

Number TP FP FN Sensitivity Precision F1-Score 

Sample 93 0 0 1.0 1.0 1.0 

Label 184 0 0 1.0 1.0 1.0 
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Figure 3. ROC curve. 

 
Figure 4. Precision–Recall curve. 

4. Discussion 

As new developments occur in terms of deep learning and neural techniques, artifi-

cial intelligence is being increasingly integrated into the field of medicine, and artificial 

intelligence has been used to solve clinical problems. Recently, at the same time as deep 

learning techniques are being used in the medical field, its application in dentistry has 

also increased. In the current study, the technique employed offers a comprehensive train-

ing approach to optimize the usage of datasets that have been partly annotated for the 

purpose of segmenting organs. Segmenting organs with precision and reliability can help 

to improve clinical applications including computer-aided detection, treatment, and sur-

gical procedures. Organ segmentation also has the potential to be a critical factor in edu-

cating dental students [16,30,31]. Our study enables the segmentation of distinct IT images 

using a single network. To take advantage of the data from large scale datasets, previous 

researchers have adopted semi-supervised approaches in which the data were labeled 

weakly or potentially had no labels. This study is supplementary to previous approaches, 
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and it is possible to amalgamate it with semi-supervised learning to assist with overcom-

ing the issue of data need when segmenting organs. The findings of this study show that 

there were minimal differences in terms of the segmentation performance when training 

was performed on a large-scale dataset containing clinical quality references compared to 

a dataset that was smaller in size with curated quality references. In the future, an im-

portant additional step will involve the clinical qualitative assessment of the clinical ad-

mission of the contours that deep learning generates. It has been found the networks that 

are deeper with an increased number of parameters are also capable of consubstantiating 

a greater amount of data and facilitating additional improvements in the segmentation 

performance using additional samples. Furthermore, the performance of the deep learn-

ing techniques was more robust and had less variance compared to methods based on 

model- or atlas-based approaches with regard to the segmentation task. This could be due 

to the fact that the learned attributes could be representative of a broad anatomical diver-

sity with no previous assumptions, and training may also have been conducted on a da-

taset with a larger size compared with the techniques used in the task [29,32]. 

In a study in which segmentations of five different internal organs were evaluated 

using the U-net algorithm in 2020, the accuracy values for these organs were determined 

to be 0.959, 0.813, 0.595, 0.900, and 0.911, respectively [33]. In our study, the accuracy value 

was found to be 1.0 for the parotid gland. A study conducted in 2016 focused on designing 

and training a 3D convolutional neural network for automatic detection of the liver, where 

the training dataset comprised 151 CT images, the validation dataset included 20 images, 

and the testing group included 10 images. In the results of this study, the average accuracy 

value for the liver segmentation was found to be 97.6% [34]. Again, similar to our study, 

in a study using the U-net algorithm, CT images of COVID-19 patients were evaluated 

and the values for the sensitivity, precision, and F1-score were calculated as 0.8, 0.82 and 

0.81, respectively. In the same study, it was shown that the results could be further im-

proved by adding various modules to the U-net algorithm [35]. In another study using a 

fully connected network, which is a somewhat similar method, photographs of skin le-

sions were evaluated, and the F1-score and sensitivity values were found to be 0.912 and 

0.918, respectively [36]. In another study performed with CT images of individuals diag-

nosed with COVID-19, the sensitivity and F1-score values were found to be 0.439 and 

0.534, respectively, unlike our study and other similar studies [37]. In a study conducted 

in 2021 comparing human and CNN-based diagnosis, 855 CT images were used for train-

ing and validation and 256 true-positive, 279 false-positive, and 114 false-negative results 

were obtained. Based on these values, the sensitivity, precision, and F1-score values were 

calculated to be 0.691, 0.478, and 0.565, respectively [38]. In another study using the U-Net 

framework, fully automatic segmentation of the computer-aided planning of orthognathic 

surgery orthognathic surgery planning was performed on CT images. In this research, the 

number of CT images totaled 454, which were separated into cohorts for training/valida-

tion (n = 300) and testing (n = 153). The Mean volumetric Dice Similarity Coefficient 

(vDSC) and surface Dice Similarity Coefficient at 1 mm (sDSC) were calculated for the test 

cohort, with values of 0.96 and 0.97 reported for the upper skull, 0.94 and 0.98 for the 

mandible, 0.95 and 0.99 for the upper teeth, 0.94 and 0.99 for the lower teeth, and 0.82 and 

0.98 for the mandibular canal. Industry expert segmentation approval rates for the man-

dible, mandibular canal, upper skill, upper teeth and lower teeth were determined to be 

93%, 89%, 82%, 69%, and 58%, respectively [39]. In another study that used a deep learning 

model based on a regression neural network to fully automate the process of segmenting 

airways using CBCT, 315 patient images were included. In this study, the analysis focused 

on the distinctions among the data measured using a manual process and data obtained 

via deep learning. Through the application of agreement analysis, the extraction of 61 

samples was performed and then a comparison was made between the value obtained 

from the manual measurements and the value predicted by the deep learning network 

with respect to both coordinates and volumes. The intraclass correlation coefficient (ICC) 

that had the highest correlation was the total volume in the oropharynx (0.986), along with 
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the hypopharynx (0.964), as well as the nasopharynx (0.912). The coordinate CV2(x) had 

the intraclass correlation coefficient (ICC) with the greatest correlation (0.963), whereas 

the lowest correlation was observed at CV4(y) (0.868) [40]. A comparison was made be-

tween the overall volume evaluated via deep learning and the measurements of the vol-

ume conducted utilizing regression analysis manually; the findings mirrored those of the 

current study in that the two measurements had slopes near to 1. In another study of or-

thognathic surgery patients using 160 whole skull CBCT scans (70 scans taken preopera-

tively and 90 taken postoperatively) using the 3D U-net algorithm of artificial intelligence, 

the mandible was segmented semi-automatically and fully automatically. On average, the 

time taken by the semi-automatic (SA) was 1218.4 s, while the time taken by the refined 

artificial intelligence (RAI) decreased significantly (p < 0.0001) to 456.5 s (2.7-fold de-

crease). According to the assessments of both inter- and intraoperator consistency, the 

performance of the RAI was superior to the SA for each of the metrics, suggesting that it 

was more consistent. Where the SA was taken as the ground truth, the intersection over 

union (IoU) score for the AI and RAI was 94.6% and 94.4%, respectively [41]. In our study, 

the automated parotid segmentation model was developed using U-Net architecture and 

deep learning techniques. The results of this study support that implementing such a sys-

tem containing and not containing further user enhancements can maximize the effi-

ciency, reduce human error, and provide more accurate predictions. In another retrospec-

tive study involving the segmentation of organs that utilized the U-Net AI algorithm, 

sample data were taken from individuals who had undergone a prostate MRI and ultra-

sound-MRI fusion transrectal biopsy in the period from September 2014 to December 

2016. Two experts in abdominal radiology segmented axial T2-weighted images manu-

ally, which subsequently acted as the ground truth. Subsequent to the process of manual 

segmentation, the images were employed for training on a customized hybrid 3D-2D U-

Net CNN architecture in a fivefold cross-validation paradigm for neural network training 

and validation. Statistical analysis was performed based on the Dice score, which 

measures the extent to which the segmentations performed manually and those derived 

automatically overlap, as well as the Pearson linear correlation coefficient of the prostate 

volume. A total of 299 MRI exams involving 298 patients were used to train the CNN 

(overall amount of MR images = 7774). The mean Dice score of the customized hybrid 3D-

2D U-Net was 0.898 (range, 0.890–0.908), while the prostate volume had a Pearson corre-

lation coefficient of 0.974 [42]. Similar to our study, this research showed that the 3D-2D 

U-Net CNN performed highly effectively in prostate segmentation and volumetric assess-

ment application. Compared to the abovementioned studies, it can be thought that there 

are two main reasons why the values in our study were more positive. First, it can be 

considered that the parotid gland borders were easier to detect when compared to other 

structures. Secondly, it is possible that the repetitive checks during segmentation helped 

us to obtain more successful training data. 

5. Conclusions 

The findings of this study demonstrated that it is possible to use AI models based on 

deep learning to automatically segment the parotid gland on the axial CT images. Despite 

all these positive results, new studies with a significantly higher amount of training data and 

larger ROIs are required to distinguish the parotid gland from other anatomical structures. 
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Appendix A 

The Eskisehir Osmangazi University Faculty of Dentistry Dental-Artificial Intelli-

gence (AI) Laboratory has advanced technology computer equipment, including a Dell 

PowerEdge T640 Calculation Server (Intel Xeon Gold 5218 2.3G, 16C/32T, 10.4GT/s, 22M 

Cache, Turbo, HT (125W) DDR4-2666, 32GB RDIMM, 3200MT/s, Dual Rank, PERC H330+ 

RAID Controller, 480GB SSD SATA Read Intensive 6Gbps 512 2.5in Hot-plug AG Drive), 

a PowerEdge T640 GPU Calculation Server (Intel Xeon Gold 5218 2.3G, 16C/32T, 10.4GT/s, 

22M Cache, Turbo, HT (125W) DDR4-2666 2, 32GB RDIMM, 3200MT/s, Dual Rank, PERC 

H330+ RAID Controller, 480GB SSD SATA Read Intensive 6Gbps 512 2.5in Hot-plug AG 

Drive, NVIDIA Tesla V100 16G Passive GPU), a PowerEdge R540 Storage Server (Intel 

Xeon Silver 4208 2.1G, 8C/16T, 9.6GT/s, 11M Cache, Turbo, HT (85W) DDR4-2400, 16GB 

RDIMM, 3200MT/s, Dual Rank, PERC H730P+ RAID Controller, 2Gb NV Cache, Adapter, 

Low Profile, 8TB 7.2K RPM SATA 6Gbps 512e 3.5in Hot-plug Hard Drive, 240GB SSD 

SATA Mixed Use 6Gbps 512e 2.5in Hot plug, 3.5in HYB CARR S4610 Drive), a Precision 

3640 Tower CTO BASE workstation (Intel(R) Xeon(R) W-1250P (6 Core, 12M cache, base 

4.1GHz, up to 4.8GHz) DDR4-2666, 64GB DDR4 (4 X16GB) 2666MHz UDIMM ECC 

Memory, 256GB SSD SATA, Nvidia Quadro P620, 2GB), and a Dell EMC Network Switch 

(N1148T-ON, L2, 48 ports RJ45 1GbE, 4 ports SFP+ 10GbE, Stacking). 

References 

1. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. https://doi.org/10.3322/caac.21551. 

2. Stenner, M.; Klussmann, J.P. Current update on established and novel biomarkers in salivary gland carcinoma pathology and 

the molecular pathways involved. Eur. Arch. Otorhinolaryngol. 2009, 266, 333–341. https://doi.org/10.1007/s00405-008-0882-7. 

3. Mortazavi, H.; Baharvand, M.; Movahhedian, A.; Mohammadi, M.; Khodadoustan, A. Xerostomia due to systemic disease: A 

review of 20 conditions and mechanisms. Ann. Med. Health Sci. Res. 2014, 4, 503–510. https://doi.org/10.4103/2141-9248.139284. 

4. Dirix, P.; Nuyts, S. Evidence-based organ-sparing radiotherapy in head and neck cancer. Lancet Oncol. 2010, 11, 85–91. 

https://doi.org/10.1016/S1470-2045(09)70231-1. 

5. Lowe, L.H.; Stokes, L.S.; Johnson, J.E.; Heller, R.M.; Royal, S.A.; Wushensky, C.; Hernanz-Schulman, M. Swelling at the angle 

of the mandible: Imaging of the pediatric parotid gland and periparotid region. Radiographics 2001, 21, 1211–1227. 

https://doi.org/10.1148/radiographics.21.5.g01se171211. 

6. Adelstein, D.J.; Koyfman, S.A.; El-Naggar, A.K.; Hanna, E.Y. Biology and management of salivary gland cancers. Semin. Radiat. 

Oncol. 2012, 22, 245–253. https://doi.org/10.1016/j.semradonc.2012.03.009. 

7. Lewis, A.G.; Tong, T.; Maghami, E. Diagnosis and Management of Malignant Salivary Gland Tumors of the Parotid Gland. 

Otolaryngol. Clin. North Am. 2016, 49, 343–380. https://doi.org/10.1016/j.otc.2015.11.001. 

8. Stenner, M.; Molls, C.; Luers, J.C.; Beutner, D.; Klussmann, J.P.; Huettenbrink, K.B. Occurrence of lymph node metastasis in 

early-stage parotid gland cancer. Eur. Arch. Otorhinolaryngol. 2012, 269, 643–648. https://doi.org/10.1007/s00405-011-1663-2. 

9. Yue, D.; Feng, W.; Ning, C.; Han, L.X.; YaHong, L. Myoepithelial carcinoma of the salivary gland: Pathologic and CT imaging 

characteristics (report of 10 cases and literature review). Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017, 123, e182–e187. 

https://doi.org/10.1016/j.oooo.2016.11.020. 

10. Kim, K.H.; Sung, M.-W.; Yun, J.B.; Han, M.H.; Baek, C.-H.; Chu, K.-C.; Kim, J.H.; Lee, K.-S. The significance of CT scan or MRI 

in the evaluation of salivary gland tumors. Auris Nasus Larynx 1998, 25, 397–402. https://doi.org/10.1016/s0385-8146(98)00012-1. 

https://doi.org/10.1007/s00405-008-0882-7


Diagnostics 2023, 13, 581 10 of 11 
 

 

11. Yousem, D.M.; Kraut, M.A.; Chalian, A.A. Major salivary gland imaging. Radiology 2000, 216, 19–29. https://doi.org/10.1148/ra-

diology.216.1.r00jl4519. 

12. Dong, Y.; Lei, G.W.; Wang, S.W.; Zheng, S.W.; Ge, Y.; Wei, F.C. Diagnostic value of CT perfusion imaging for parotid neoplasms. 

Dentomaxillofac Radiol. 2014, 43, 20130237. https://doi.org/10.1259/dmfr.20130237. 

13. Ginat, D.T.; Christoforidis, G. High-Resolution MRI Microscopy Coil Assessment of Parotid Masses. Ear Nose Throat J. 2019, 98, 

562–565. https://doi.org/10.1177/0145561319839898. 

14. Mikaszewski, B.; Markiet, K.; Smugała, A.; Stodulski, D.; Szurowska, E.; Stankiewicz, C. An algorithm for preoperative differ-

ential diagnostics of parotid tumours on the basis of their dynamic and diffusion-weighted magnetic resonance images: A ret-

rospective analysis of 158 cases. Folia Morphol. 2018, 77, 29–35. https://doi.org/10.5603/FM.a2017.0115. 

15. Syeda-Mahmood, T. Role of Big Data and Machine Learning in Diagnostic Decision Support in Radiology. J. Am. Coll. Radiol. 

2018, 15, 569–576. https://doi.org/10.1016/j.jacr.2018.01.028. 

16. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, 

C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. https://doi.org/10.1016/j.me-

dia.2017.07.005. 

17. Waymel, Q.; Badr, S.; Demondion, X.; Cotten, A.; Jacques, T. Impact of the rise of artificial intelligence in radiology: What do 

radiologists think? Diagn. Interv. Imaging 2019, 100, 327–336. https://doi.org/10.1016/j.diii.2019.03.015. 

18. (ESR) ESoR. What the radiologist should know about artificial intelligence—An ESR white paper. Insights Imaging 2019, 10, 44. 

https://doi.org/10.1186/s13244-019-0738-2. 

19. Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuad-

ros, J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus 

Photographs. JAMA 2016, 316, 2402–2410. https://doi.org/10.1001/jama.2016.17216. 

20. Ravi, D.; Wong, C.; Deligianni, F.; Berthelot, M.; Andreu-Perez, J.; Lo, B.; Yang, G.-Z. Deep Learning for Health Informatics. 

IEEE J. Biomed. Health Inform. 2017, 21, 4–21. https://doi.org/10.1109/JBHI.2016.2636665. 

21. Du, G.; Cao, X.; Liang, J.; Chen, X.; Zhan, Y. Medical image segmentation based on u-net: A review. J. Imaging Sci. Technol. 2020, 

64, 1–12. 

22. Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-net and its variants for medical image segmentation: A review of 

theory and applications. IEEE Access 2021, 9, 82031–82057. 

23. Azad, R.; Aghdam, E.K.; Rauland, A.; Jia, Y.; Avval, A.H.; Bozorgpour, A.; Karimijafarbigloo, S.; Cohen, J.P.; Adeli, E.; Merhof, 

D. Medical image segmentation review: The success of u-net. arXiv 2022, arXiv:221114830. 2022. 

24. Shen, D.; Wu, G.; Suk, H.I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. 

25. Fritscher, K.; Raudaschl, P.; Zaffino, P.; Spadea, M.F.; Sharp, G.C.; Schubert, R. Deep neural networks for fast segmentation of 

3D medical images. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted In-

tervention, Athens, Greece, 17–21 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 158–65. 

https://doi.org/10.1007/978-3-319-46723-8_19. 

26. Ibragimov, B.; Xing, L. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Med. 

Phys. 2017, 44, 547–557. https://doi.org/10.1002/mp.12045. 

27. Yang, X.; Wu, N.; Cheng, G.; Zhou, Z.; Yu, D.S.; Beitler, J.J.; Curran, W.J.; Liu, T. Automated segmentation of the parotid gland 

based on atlas registration and machine learning: A longitudinal MRI study in head-and-neck radiation therapy. Int. J. Radiat. 

Oncol. 2014, 90, 1225–1233. 

28. Močnik, D.; Ibragimov, B.; Xing, L.; Strojan, P.; Likar, B.; Pernuš, F.; Vrtovec, T. Segmentation of parotid glands from registered 

CT and MR images. Phys. Med. 2018, 52, 33–41. 

29. Hänsch, A.; Schwier, M.; Gass, T.; Morgas, T.; Haas, B.; Dicken, V.; Meine, H.; Klein, J.; Hahn, H.K. Evaluation of deep learning 

methods for parotid gland segmentation from CT images. J. Med. Imaging 2019, 6, 011005. 

30. Shan, T.; Tay, F.R.; Gu, L. Application of Artificial Intelligence in Dentistry. J. Dent. Res. 2021, 100, 232–244. 

https://doi.org/10.1177/0022034520969115. 

31. Carrillo‐Perez, F.; Pecho, O.E.; Msc, J.C.M.; Paravina, R.D.; Della Bona, A.; Ghinea, R.; Pulgar, R.; Pérez, M.D.M.; Herrera, L.J.; 

Msc, F.C.-P.; et al. Applications of artificial intelligence in dentistry: A comprehensive review. J. Esthet. Restor. Dent. 2022, 34, 

259–280. https://doi.org/10.1111/jerd.12844. 

32. Raudaschl, P.F.; Zaffino, P.; Sharp, G.C.; Spadea, M.F.; Chen, A.; Dawant, B.M.; Albrecht, T.; Gass, T.; Langguth, C.; Lüthi, M.; 

et al. Evaluation of segmentation methods on head and neck CT: Auto-segmentation challenge 2015. Med. Phys. 2017, 44, 2020–

2036. https://doi.org/10.1002/mp.12197. 

33. Kim, H.; Jung, J.; Kim, J.; Cho, B.; Kwak, J.; Jang, J.Y.; Lee, S.-W.; Lee, J.-G.; Yoon, S.M. Abdominal multi-organ auto-segmenta-

tion using 3D-patch-based deep convolutional neural network. Sci. Rep. 2020, 10, 6204. https://doi.org/10.1038/s41598-020-63285-

0. 

34. Hu, P.; Wu, F.; Peng, J.; Liang, P.; Kong, D. Automatic 3D liver segmentation based on deep learning and globally optimized 

surface evolution. Phys. Med. Biol. 2016, 61, 8676–8698. https://doi.org/10.1088/1361-6560/61/24/8676. 

35. Raj, A.N.J.; Zhu, H.; Khan, A.; Zhuang, Z.; Yang, Z.; Mahesh, V.G.V.; Karthik, G. ADID-UNET-a segmentation model for 

COVID-19 infection from lung CT scans. PeerJ Comput. Sci. 2021, 7, e349. https://doi.org/10.7717/peerj-cs.349. 

36. Yuan, Y.; Chao, M.; Lo, Y. Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks with Jaccard Dis-

tance. IEEE Trans. Med. Imaging 2017, 36, 1876–1886. https://doi.org/10.1109/TMI.2017.2695227. 



Diagnostics 2023, 13, 581 11 of 11 
 

 

37. Elharrouss, O.; Subramanian, N.; Al-Maadeed, S. An Encoder-Decoder-Based Method for Segmentation of COVID-19 Lung 

Infection in CT Images. SN Comput. Sci. 2022, 3, 13. https://doi.org/10.1007/s42979-021-00874-4. 

38. Schultheiss, M.; Schmette, P.; Bodden, J.; Aichele, J.; Müller-Leisse, C.; Gassert, F.G.; Gassert, F.T.; Gawlitza, J.F.; Hofmann, F.C.; 

Sasse, D.; et al. Lung nodule detection in chest X-rays using synthetic ground-truth data comparing CNN-based diagnosis to 

human performance. Sci. Rep. 2021, 11, 15857. https://doi.org/10.1038/s41598-021-94750-z. 

39. Dot, G.; Schouman, T.; Dubois, G.; Rouch, P.; Gajny, L. Fully automatic segmentation of craniomaxillofacial CT scans for com-

puter-assisted orthognathic surgery planning using the nnU-Net framework. Eur. Radiol. 2022, 32, 3639–3648. 

https://doi.org/10.1007/s00330-021-08455-y. 

40. Park, J.; Hwang, J.; Ryu, J.; Nam, I.; Kim, S.-A.; Cho, B.-H.; Shin, S.-H.; Lee, J.-Y. Deep learning based airway segmentation using 

key point prediction. Appl. Sci. 2021, 11, 3501. https://doi.org/10.3390/app11083501. 

41. Verhelst, P.-J.; Smolders, A.; Beznik, T.; Meewis, J.; Vandemeulebroucke, A.; Shaheen, E.; Van Gerven, A.; Willems, H.; Politis, 

C.; Jacobs, R. Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography. J. Dent. 2021, 

114, 103786. https://doi.org/10.1016/j.jdent.2021.103786. 

42. Ushinsky, A.; Bardis, M.; Glavis-Bloom, J.; Uchio, E.; Chantaduly, C.; Nguyentat, M.; Chow, D.; Chang, P.; Houshyar, R. A 3D-

2D Hybrid U-Net Convolutional Neural Network Approach to Prostate Organ Segmentation of Multiparametric MRI. AJR Am. 

J. Roentgenol. 2021, 216, 111–116. https://doi.org/10.2214/AJR.19.22168. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 


