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Abstract: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there have
been multiple peaks of the SARS-CoV-2 (severe acute respiratory syndrome coronavirus virus 2)
infection, mainly due to the emergence of new variants, each with a new set of mutations in the viral
genome, which have led to changes in the pathogenicity, transmissibility, and morbidity. The Omicron
variant is the most recent variant of concern (VOC) to emerge and was recognized by the World
Health Organization (WHO) on 26 November 2021. The Omicron lineage is phylogenetically distinct
from earlier variants, including the previously dominant Delta SARS-CoV-2 variant. The reverse
transcription–polymerase chain reaction (RT–PCR) test, rapid antigen assays, and chest computed
tomography (CT) scans can help diagnose the Omicron variant. Furthermore, many agents are
expected to have therapeutic benefits for those infected with the Omicron variant, including TriSb92,
molnupiravir, nirmatrelvir, and their combination, corticosteroids, and interleukin-6 (IL-6) receptor
blockers. Despite being milder than previous variants, the Omicron variant threatens many lives,
particularly among the unvaccinated, due to its higher transmissibility, pathogenicity, and infectivity.
Mounting evidence has reported the most common clinical manifestations of the Omicron variant to
be fever, runny nose, sore throat, severe headache, and fatigue. This review summarizes the essential
features of the Omicron variant, including its history, genome, transmissibility, clinical manifestations,
diagnosis, management, and the effectiveness of existing vaccines against this VOC.

Keywords: omicron; COVID-19; SARS-CoV-2; variants of concern

1. Introduction

The SARS-CoV-2 virus, which has been prevalent worldwide for almost three years,
has caused the death of more than 6 million people and infected more than 500 million
people with COVID-19. It has a fragile possibility of elimination and is most expected to
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circulate endemically around the world [1–3]. Despite such an expectation, the emergence
of new variants that spread rapidly in countries and geographical regions threatens the
predicted change to endemism for this virus [4,5]. since the beginning of the SARS-CoV-2
pandemic, the WHO has declared 5 variants of concern (VOCs), which are known as Alpha,
Beta, Gamma, Delta, and Omicron [6,7]. Changes in the viral genome can make these
new variants more transmissible, lethal, and harder to treat. The most recent SARS-CoV-
2 variant, Omicron, has raised significant concern worldwide [8]. In the current paper,
we have provided a summary of the Omicron variant and its important features like
history, genome, transmissibility, clinical manifestations, diagnosis, management, and the
effectiveness of the existing vaccines against this VOC.

2. History

The COVID-19 outbreak was identified in December 2019 [9]. Since this time, multiple
peaks of the SARS-CoV-2 infection have emerged, mainly due to the emergence of new
variants, including the Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Epsilon (B.1.427 and
B.1.429), Delta (B.1.617.2), Mu (B.1.621), and Lambda (C.37) variants, each with a new set
of mutations in the viral genome, leading to different pathogenicity, transmissibility, and
morbidity [10]. The Omicron (B.1.1.529) variant is the most recent VOC to emerge and was
recognized by the WHO on 26 November 2021, from a sample collected on 9 November
2021 [11,12]. This variant was first reported in Botswana and South Africa but quickly
spread to other countries [13].

3. Genome

The Omicron lineage has been demonstrated to be phylogenetically distinct from the
previous variants, including the previously dominant Delta SARS-CoV-2 variant [14]. The
Omicron variant has experienced a total of 18,261 mutations in its genome, of which only
588 mutations were in the extragenic region, most of which occurred in the coding region.
Among the mutations in the coding region, 2743 were synonymous single-nucleotide
polymorphisms (SNPs) mutations, and 11,995 were non-synonymous [15,16].

The Omicron variant evolved with 37 amino acid substitutions from SARS-CoV-2 spike
protein, several in the receptor-binding domain (RBD) [17] (Figure 1). According to a recent
study, Omicron-BA.1 has undergone 50 mutations and has 34 changes in its spike protein
gene, 15 of which occurred in the RBD [16,18]. Thirty single-point substitutions (including
A67V, T95I, G142D, L212I, G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N,
T478K, E484A, Q493K, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K,
P681H, N764K, D796Y, N856K, Q954H, N969K, and L981F), three deletions (including
∆69–70, ∆143–145, and ∆211) and one insertion (ins214EPE) have been identified on the
spike protein of the Omicron variant [19]. Several investigations in South Africa have
revealed that D614G, N501Y, K417N, T478K (concerning the mutations), and some new
mutations in this VOC are responsible for its relative resistance to the current vaccines and
the enhancement of its reinfection rate [20]. ins214EPE is also a mutation with the insertion
of three amino acids in Omicron-BA.1, which can be characteristic, but its role has not yet
been determined [21]. D614G, E484K, K417N, T478K, and N501Y are substantial mutations
in the RBD and have also been identified in previous variants of SARS-CoV-2. Based on
previous studies, they can increase the overall risk of reinfection and relative resistance
to existing vaccines [22]. E484K, a glutamic acid to lysine substitution at position 484, is
a significant mutation that has also been detected in both the Beta and Gamma variants [23].
It has been hypothesized that this mutation led to the enhanced reinfection rate found in
the Gamma variant [24].
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However, E484A, as the counterpart mutation, is a glutamic acid to alanine sub-
stitution at position 484, found in the Omicron variant. The mutation of glutamic acid
(a hydrophilic amino acid) to alanine (a hydrophobic amino acid) might have the ability
to change the interaction between the angiotensin-converting enzyme 2 (ACE2) and the
RBD [23]. Interestingly, two of the three RBD mutations in the Omicron variant are shared
with a previous VOC, the Delta variant. The first mutation is a lysine-to-asparagine ex-
change at position 417, which results in structural changes to the S protein and is probably
responsible for the variant’s enhanced ability to escape the immune system. The second
one, a threonine-to-lysine exchange at position 478, has probably ameliorated the residue’s
electrostatic potential and steric interference. Therefore, it has been linked to elevated RBD
binding affinity and improved immunological evasion [25]. However, the mutation in the
Delta type by substituting leucine instead of arginine at position 452 strengthens the affinity
of this variant to ACE2 receptors found in various human cells, including the lung, which is
not present in the omicron variant [25]. The Omicron variant consists of several sublineages,
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including BA.1 (known as the original Omicron), BA.1.1, BA.2, BA.2.12.1, BA.2.3, BA.2.9,
BA.3, BA.4, and BA.5 [26,27]. Besides, several newly-emerging sublineages have been
detected like BQ.1, BQ.1.1, BA.4.6, BF.7, and BA.2.75.2. Importantly, it has been reported
that all new subvariants had enhanced neutralization resistance, especially BA.2.75.2, BQ.1,
and BQ.1.1. The improved neutralization resistance is attributed to the mutations in these
variants, which are explained in the following section [28]. The Omicron variant has the
most significant number of mutations of the known SARS-CoV-2 variants, which has made
this variant more able to avoid the neutralizing antibodies induced by natural infection or
vaccination [29].

Among other mutations that increase the infectivity in the Omicron variant, we can
mention the mutations created in the virus nucleocapsid gene, that the double substitution
mutation R203K + G204R observed in Alpha, Gamma, and Omicron variants is one of the
prominent mutations of this gene. In a study that has investigated the effect of this mutation,
it has been seen that the occurrence of this mutation has increased the proliferation of the
virus by increasing the phosphorylation of the nucleocapsid and based on the observations
they have had in vitro and in vivo, they state that the occurrence of such mutations in genes
outside the spike can increase the compatibility of the virus and its infectivity. Thus, it is
imperative to pay attention to these mutations [30].

4. Sublineages of the Omicron Variant

Globally, a total number of 552,191 confirmed cases and 115 deaths were reported,
by 8 January 2022, in 150 countries. The United States included 62,480 cases and only
1 confirmed death [31]. The Omicron VOC is the variant spreading worldwide, causing
almost all sequences reported to GISAID. Although these sublineages have a wide range of
genetic diversity, causing various mechanisms of immune escape, they share equivalent
clinical outcomes [32]. In addition to sublineages like BA.1 (known as the original Omicron),
BA.1.1, BA.2, BA.2.12.1, BA.2.3, BA.2.9, BA.3, BA.4, and BA.5, several concerning subvariant
have emerged, demonstrating features like enhanced reinfection risk and immune escape.
Currently, no epidemiological data indicate an increase in the disease severity caused by
these variants [32].

Previously, BA.2 displaced the original Omicron BA.1. However, it continued to evolve
to new subvariants like BA.2.12.1, BA.2.75, BA.2.75.2, BA.4, and BA.5. In many countries,
BA.5 is now the dominant subvariant. Notably, the descendants of BA.4 and BA.5, such as
BQ.1.1, BF.7, and BA.4.6, are growing in prevalence. In the United States, BQ.1, BQ.1.1, BF.7,
and BA.4.6 caused 25.5%, 24.2%, 7.8%, and 4.4% of all cases, respectively, by 19 November
2022. XBB is another descendant of the BA.5 subvariant detected in India in August 2022
for the first time. This sublineage is growing in prevalence in Europe and is also identified
in the United States. From 3 October to 9 October 2022, it caused 54% of COVID-19 cases in
Singapore [33].

Descendant Omicron subvariants include various amino acid sequences in the critical
parts of their genome, such as S protein and nucleocapsid proteins. S protein, the most
crucial protein playing a pivotal role in viral entry and pathogenicity, contains 31–37 muta-
tions. Descendant Omicron subvariants share many of these mutations among themselves:
P681H, N679K, H655Y, and D614G in the S1 subunit; N969K, Q954H, D796Y, and N764K in
the S2 subunit; Y505H, N501Y, Q498R, E484A, T478K, S477N, N440K, K417N, S375F, S373P,
S371L/F, and G339D in RBD; and G142D in N-terminal domain (NTD) (Figure 2). Some
of these mutations, especially NTD mutations, could enhance the evasion of viruses from
NTD-targeted neutralizing antibodies [26,34]. Figure 2 provides a better and simpler view
of these mutations and their function in each sublineage.
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Figure 2. Amino acid substitutions within the Omicron variant lineage. Black color represents
shared mutations, red Omicron BA.1, blue BA.2, orange BA.3, and green BA.4/BA.5. BA.4 and BA.5
share a similar spike profile as BA.2, except for additional mutations 69–70del, L452R, F486V (green)
and reversions to wild type Q493 (Q493R in BA.1, BA.2, and BA.3). BA.4 and BA.5 differ from each
other by three amino acid mutations outside Spike. BA.4 additional mutations: ORF7b:L11F, N:P151S.
BA.5 additional mutations: M:D3N [35].

A subvariant of BA.5 is BQ.1 variant. It has been identified in 65 countries and was
responsible for a 6% prevalence. It contains spike mutations like N460K and K444T in some
vital antigenic sites. Moreover, the BQ.1.1 subvariant contains a fundamental mutation
in a vital spot, like R346T. Due to a lack of data, it is impossible to determine these new
variants’ immune escape or severity precisely. However, the enhanced growth advantage
of these variants compared to other subvariants warrants precise and close monitoring
and investigations [32]. Another important sublineage is BA.2.75.2, derived from BA.2
and identified in Singapore and India at first. It contains several mutations, including
D1199N, F486S, and R346T [36]. Notably, it has been reported that the R346T mutation was
associated with enhanced evasion from vaccine-induced and monoclonal antibodies [37].

5. Transmissibility and Infectivity

Binding affinity with ACE2 complex and RBD in SARS-CoV-2 viruses plays a signifi-
cant role in determining their binding affinity, but furin cleavage sites also play an essential
role in this field [38,39]. According to this issue, it is evident that mutations in the viral
genome can increase the affinity of the virus to the host cells and lead to higher transmissi-
bility. This has been experienced previously, as the Alpha, Beta, and Delta variants have
had 7-, 19-, and 11-times higher transmissibility than the original SARS-CoV-2 virus [40–42].
As some of the mutations of the Omicron variant are mapped on the receptor-binding
motif, its spike protein affinity towards the ACE2 receptor is much higher than the previous
variants [43]. Also, based on the studies conducted, Omicron shows a significant change
in its infectivity due to three mutations in the cutting site of furin and 15 mutations in
RBD [38,39,44]. The ACE, coded on the RBD, is the main gate of viral entry into human
cells. Therefore, 2- to 3-times increased transmissibility than the Delta variant would be
expected [45,46]. In a study that examined the infectivity of Omicron, they observed that
most of the RBD mutations, except for the G339D, S371L, S373P, and S375F mutations,
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were created close to the ACE2 and RBD binding interface. As a result of these mutations,
changes in binding free energy are significantly increased, making Omicron more infectious
due to the increased binding affinity of the ACE2-RBD complex [44].

Furthermore, the shorter doubling time of the Omicron variant and the higher viral
load induced in the nasopharyngeal and respiratory cells, compared with previous VOCs,
also confirm its higher infectivity [47,48]. It has been demonstrated that the infectivity of the
Omicron variant is approximately ten times higher than the wild-type strain [49]. It should
be stated that, among all the possible factors, mutations have one of the most significant
impacts on the high transmissibility of this VOC. The N501Y is one of the most critical
mutations that can enhance the binding affinity with the ACE2 receptor, thus increasing
transmission. In association with Q498R, the N501Y mutation can strengthen the binding
affinity and make it easier for the Omicron variant to enter the host cells [20]. A recent
study detected two subclades within the Omicron lineage, with K417N or K440N mutations
and S446K. Subsequently, it has been mentioned that the K417N mutation, found in the
Beta variant, can also moderately enhance the surface expression of the RBD and increase
resistance to the neutralizing monoclonal antibodies [50].

Furthermore, several studies have suggested that the furin cleavage site (FCS), located
in the SARS-CoV-2 spike protein, boosts RBD exposure and its binding to the ACE2 recep-
tor [51,52]. Mutations like H655Y and N679K, located close to the FCS, can enhance spike
cleavage and make the Omicron variant more transmissible [20]. According to recent stud-
ies, the H655Y mutation, detected in the Gamma and Omicron variants, was accompanied
by antigenicity alterations, which enhanced monoclonal antibodies’ evasion [53].

6. Clinical Manifestations

It is believed that the incubation period of the Omicron variant is shorter than previous
SARS-CoV-2 variants, with a median of three days, compared with at least four days for
previous strains [54,55]. The presentations of the Omicron variant were expected to be the
same as with other variants. However, reviewing the available literature has revealed that
fever, runny nose, sore throat, severe headache, and fatigue are the predominant clinical
manifestations of this variant [56–58]. Among the two types of Omicron, based on the
available evidence, the severity of the disease in subtype BA2 is higher than its severity
in B.1 [59]. Most reported Omicron cases have been mildly affected, especially those
previously infected or vaccinated [60,61]. Moreover, young and middle-aged individuals
are more commonly infected with this variant than previous variants [62], as reflected in
the rapid increase of pediatric admissions, due to SARS-CoV-2 infection, during the early
days of the Omicron wave in South Africa [63]. Fortunately, most cases of Omicron do not
require hospitalization or intensive care unit (ICU) admission [64].

It is not yet understood whether the mild features of this variant are due to the
attenuated nature of the virus or the existing immunity among those infected. However,
some studies have concluded that the lower severity of the Omicron-induced infection could
be due to its slower replication in the transmembrane serine protease 2 (TMPRSS2) than
in previous variants [65]. The underlying reason might be that the TMPRSS2, a necessary
component for activating the spike protein during membrane fusion, plays a less critical
role in the Omicron variant [66]. Therefore, despite faster replication in the bronchus, it
is believed that omicron replication is slower in the lung parenchyma compared with the
previous strains, such as the Delta variant [67].

7. Disease Severity

The available data in this area is incomplete. However, based on preliminary results in
South Africa, this virus shows a lower hospitalization rate than previous infections caused
by the Delta variant. Also, according to the announcement of the insurance company
Discovery Health, people with Omicron have a 29% lower risk of hospitalization compared
to the previous variant. Although this information can indicate that the severity of omicron
infection is milder than in previous variants, it is still too early to conclude. Various factors
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can cause disturbances in these statistics, including the patient’s previous exposure to the
coronavirus and their age. It has also been confirmed that in South Africa, more than 70%
of the population of Omicron-infected areas have already been exposed to SARS-CoV-2,
and this point, along with the 40% statistics of injecting at least one dose of the COVID-19
vaccine in This population can affect the severity of the disease in them. These results
are in contrast to the results of the Imperial College of London, which did not show any
reduction in the hospitalization rate of Omicron patients compared to the Delta variant,
and such a result was also seen in a study conducted in Denmark. However, both of
these studies are not very reliable since they did not examine a large number of people.
However, some studies have shown that, unlike the previous types, the severity of the
disease was less for patients with the Omicron variant. This has been demonstrated in
shorter hospitalization, lower supplemental oxygen requirements, fewer ICU admissions,
and lower mortality [68–73].

8. Diagnosis

Molecular tests, namely the reverse transcription-polymerase chain reaction (RT-PCR),
have been the main laboratory-based diagnostic tests for detecting SARS-CoV-2 throughout
the pandemic [74]. Nevertheless, as RT-PCR assays target the spike gene, and because
the available RT-PCR assays cannot detect all target genes, it is possible that their failure
rate in detecting the new variants, including Omicron, will be higher than for previous
strains [75]. The sensitivity of the RT-PCR tests for diagnosing the original SARS-CoV-2 has
been estimated to be up to 60–70%, depending upon the stage and severity of the infection
and the accuracy of the nucleic acid detection technique [76]. Nonetheless, it is reasonable
to assume that new mutations in the viral spike protein and RBD can lead to decreased
sensitivity of the molecular diagnostic methods. Moreover, serology assays may also have
lower sensitivity based on the SNPs of the early strain S protein [77]. However, despite
the mutations mentioned above, using highly conserved domains of the SARS-CoV-2
genome as the RT-PCR targets, and performing variant-specific RT-PCR tests, can add to
the sensitivity and reduce test failure [78,79].

Furthermore, specific rapid antigen assays have been shown to detect Omicron more
accurately [80]. In addition, collecting saliva swab specimens instead of mid-turbinate
swabs might further increase the sensitivity of these assays [81]. The abovementioned
strategies could improve the timely diagnosis of patients and, as a result, the effective
interruption of the transmission chain. Moreover, CT chest scans are highly sensitive in
detecting SARS-CoV-2 infection in previous variants [82], and the imaging findings of
Omicron-induced pneumonia are no different. It is believed that the CT scan findings of
those infected with Omicron are consistent with minimal to mild pneumonia [83].

9. Management

The main route SARS-CoV-2 uses to enter the host cells is via spike glycoprotein
attachment to the ACE2 receptors, so any variation in the virus’s genome can reduce thera-
peutics’ effectiveness, which aims to inhibit viral attachment. Therefore, the resistance of
this variant to current therapeutics, including monoclonal antibodies (mABs), has been pre-
dicted [84]. In other words, as reported by a recent study, 7 out of 9 monoclonal antibodies
(including bamlanvimab, etesevimab, casirivimab (REGN10933), imdevimab (REGN10987),
sotrovimab (S309), DZIF-10c, P2B-2F6, C102, and Fab2-36) could not demonstrate efficient
neutralizing activity against the Omicron variant. However, these effectively neutralized
the Wu01 strain and the Alpha variant. Interestingly, the Delta and Beta variants showed
partial resistance to these monoclonal antibodies, with 7 of 9 and 5 of 9 demonstrating
sufficient neutralizing activity against the Delta and Beta variants, respectively [85]. How-
ever, many agents are predicted to have therapeutic benefits on the Omicron variant. For
example, TriSb92, a trimeric human nephrocystin SH3 domain-derived antibody, is believed
to inhibit the new variant if administered intranasally [86].
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Furthermore, a group of recent studies has reported that some antivirals, including
molnupiravir, nirmatrelvir, and their combination, could significantly prevent infection
with Omicron and previous VOCs [87–90]. According to an update on the Omicron variant
by WHO, corticosteroids and IL6 receptor blockers can still manage severe COVID-19
cases [91]. Also, one of the treatment options that doctors welcomed was the use of
convalescent plasma for the treatment of COVID-19 disease, which means the use of
antibodies in the plasma of convalescing patients to fight infection in patients receiving
plasma [92]. The clinical trial conducted on patients with COVID-19, SARS, MERS and
influenza showed positive results, but a study that examined the clinical trials and cohort
studies did not report many relationships between this treatment and the improvement of
results [93,94]. Finally, a clinical trial study that examined the progress of the disease in
patients treated with plasma during convalescence did not show any effect on the results of
the patients. As a result, after the investigations carried out by the WHO, due to the lack of
convincing evidence based on the therapeutic results of convalescent plasma on COVID-19,
it is not recommended to use this method to treat hospitalized patients except for a clinical
trial framework [95,96]. Given the above, considering the novelty of the Omicron variant,
more research is needed to better understand the management options for this variant.

10. Effectiveness of Neutralizing Antibodies and Vaccines

Previous studies have shown that the Beta and Delta variants could evade convalescent
serum and neutralizing antibodies, leading to a higher risk of reinfection than the wild-type
and Alpha variants [97,98]. Nonetheless, this issue is not well understood for the Omicron
variant, with laboratory-based neutralization studies currently underway. However, clinical
experiences confirm the immune evasion of this variant, as reinfections are being reported
in individuals previously infected with other variants [8]. Moreover, due to the increased
mutations in the RBD, and since the spike’s RBD is the principal target for neutralizing
antibodies, the Omicron variant is expected to be neutralized less effectively by antibodies
and vaccination than the previous variants, including the Delta variant [99]. Therefore, as
some mABs are being used as therapeutics for those infected with SARS-CoV-2, it would
seem likely that the Omicron variant will be resistant to some of the current treatment
strategies, including most mABs [100]. Studies have demonstrated that a combination
treatment of casirivimab/imdevimab (sold under the brand name REGEN-COV) cannot
effectively neutralize the Omicron variant [101]. Nevertheless, despite their less beneficial
effect, broadly neutralizing mABs with more conserved genome targets may be helpful
against the Omicron strain [84].

Vaccination is considered the most effective means of preventing and controlling
COVID-19, and four types of vaccines have been introduced for this disease, which include
viral vaccines, viral vector vaccines, DNA/RNA vaccines, and protein-based vaccines. Since
the target of the current COVID-19 vaccines is the S protein of these viruses and due to the
changes that have occurred in the spike protein of the Omicron variant, the ability of the
variant to escape from the current vaccines may have significantly increased [102–104]. Similar
to the Beta and Delta variants, the neutralization efficiency of the COVID-19 vaccines
against the omicron variant is considerably lower than for the wild-type [105,106]. The
plasma of individuals who had received two mRNA vaccine doses had several times less
potency against the Omicron variant than for the original strain [99]. It is predicted that
the vaccine-escape ability of the Omicron variant is twice that of the Delta variant [107].
All these hypotheses have been confirmed because many of the Omicron variant-infected
patients had already been fully vaccinated, proving the immune evasion of the Omicron
variant [108].

Nonetheless, despite the reduced efficacy of current COVID-19 vaccines against the
new variant, they have decreased severe disease, hospitalization, and mortality [69]. Pre-
viously vaccinated individuals are expected to develop less severe illnesses if infected
with Omicron [109]. Moreover, it has been demonstrated that those with a history of
SARS-CoV-2 infection and two vaccine doses or without a history of infection but who
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have received three vaccine doses have comparable immunity against these new variants
and the wild-type virus [110–112].

A study has observed that even though Omicron has reduced the effectiveness of
the Pfizer-BioNTech vaccine, it can still reduce the risk of hospitalization. Also, Pfizer-
BioNTech has stated that despite the mutations in the spike protein of this variant, two
doses of these vaccines still protect the patient against severe disease because the T cells
created after vaccination are not affected by these Omicron mutations [113,114]. This
reflects the synergistic effect of elevated antibody levels after being repeatedly exposed to
the antigen, and the impact of affinity maturation [85,115], further justifying the importance
of the third vaccine dose. This is while the results of computer modeling show the ability
of B.1.1.529 to prevent the development of immunity by T cells [116]. Meanwhile, none
of the recipients of the Coronavac vaccine had detectable antibodies [20]. Also, in a study
conducted by the most significant private health insurance company in South Africa,
the vaccine’s effectiveness against Omicron was reported to be 33%, while for the Delta
variant, the vaccine’s effectiveness was estimated to be 80% [113]. Also, based on another
study conducted in South Africa, the serum levels of people who had injected the Pfizer-
BioNTech vaccine showed 40 times less resistance to the Omicron variant than to the
Delta variant [117]. Considering that the ability to neutralize the omicron type in the
recipients of the mRNA type vaccine was reduced 4–6 times compared to the wild type, the
received vaccine may protect people from contracting the severe type of the disease [20,21].
Therefore, various companies producing COVID-19 vaccines have started studying the
production of vaccines focused on the Omicron type.

11. Mortality and Prognosis

Even though the previous VOCs, including Alpha, Beta, Gamma, and Delta variants,
resulted in a high rate of mortality worldwide [118], this has not been true for the Omicron
variant [119]. In the cohort comparison between the Delta variant and Omicron, it has been
observed that the omicron variant has caused less mortality than the Delta, and also the
hospitalization rate and other factors related to the poor prognosis of the disease have also
been seen less in the omicron variant [120]. However, it is essential to note the forthcoming
triple respiratory virus threat, which consists of seasonal influenza and the Delta and
Omicron variants, which might increase the mortality rate [121].

12. Prevention

As Omicron can transmit more readily and rapidly, and since current therapeutics
are expected to be less effective against this new variant, it is vital to take strict measures
to prevent the spread of the virus. Since the beginning of the spread of the coronavirus,
safety instructions have been specified by the WHO, which include measures such as
wearing a face mask, improving ventilation, maintaining social distancing, washing hands
frequently, avoiding shake-hands, avoiding touching the face with unwashed hands, travel
restrictions, and appropriate isolation and quarantine [122]. Since people’s preventive
behavior is closely related to their attitude and perception of risk, and every behavior in
a person is based on personal experience, people’s awareness of the impact of preventive
behavior in preventing the spread of infection is fundamental [123,124]. For example, hand
washing, one of the most cost-effective ways to prevent the infection of COVID-19 and
according to the instructions, should be done for at least 40 s with soap or 20 s with alcohol
gel when returning home [125,126]. According to the evaluation done in a study, 14%
of the participants disinfected their hands less than the prescribed time. Also, 7% of the
participants stated that they did not wash their hands when entering the house or did not
follow the mentioned method [127].

For this reason, advertisements and public health promotion activities should consider
programs to increase public awareness of preventive behaviors and their effectiveness.
Considering the higher death rate of people at older ages (people over 50 years old) and
especially the elderly who are at greater risk, it is better to stay at home as much as
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possible and limit your contact with other people outside the family [128,129]. Also, the
government should consider processes to increase the protection of the elderly and reduce
their risk of infection. Infants and children are infected with COVID-19 like other ages,
but the protective rules seem sufficient for them due to the milder symptoms [129]. In
the conducted studies, women’s adherence to preventive behaviors has been higher than
men’s, and the level of education has also been found to be highly related to the average
score of people [124,130,131]. Among other issues that have increased preventive behavior
in people is their income level, so governments must determine measures to improve the
economic status of weak people [124]. Among other preventive measures that have been
implemented, there are measures following the international travel of people. For this
purpose, many airports set up screening stations. The purpose of such measures is to
identify infected cases and prevent the spread of COVID-19 infection at the regional and
global levels [129,132].

Moreover, improving diagnostic methods to detect and treat infected individuals
quickly can further diminish the transmission chain, all of which are the cornerstones of
infection control [11,47,133]. In addition, considering the relatively long time since the start
of the two-dose vaccination program in most countries, adding a booster dose can help
to reduce the risk of spreading the new variant [134,135]. Accordingly, some countries
have planned more vigilant vaccination programs for their populations to prevent another
outbreak. For example, the United States has mandated that all individuals aged 5 years
and above receive at least two vaccine doses and that high-risk people should get a third
vaccine dose [11]. Since the Omicron variant is expected to be the dominant SARS-CoV-2
strain worldwide, developing vaccines tailored explicitly to the Omicron variant, such as
multivalent vaccine strategies, is mandated. Moreover, prioritizing vaccinating individuals
at higher risk of severe disease and complications is highly recommended [136].

13. Conclusions

Despite being milder than previous types and having a shorter incubation period,
Omicron threatens many lives, especially among previously unvaccinated individuals, due
to its higher transmissibility, pathogenicity, and infectivity. The clinical manifestations of
this disease generally include fever, runny nose, sore throat, severe headache, and fatigue,
and these manifestations are primarily mild in people who have been infected or vaccinated.
The remarkable thing about this variant is that more young and middle-aged people are
affected than the previous types. Although the incidence of this variant is high, most cases
do not require hospitalization or admission to the ICU. However, specific strategies, such
as using Omicron-targeted drugs and vaccines, are needed to prevent the spread of this
type. In addition, implementing preventive measures other than vaccination should also
be considered.
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