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Abstract: Purpose: Manual interpretation of chest radiographs is a challenging task and is prone to
errors. An automated system capable of categorizing chest radiographs based on the pathologies
identified could aid in the timely and efficient diagnosis of chest pathologies. Method: For this
retrospective study, 4476 chest radiographs were collected between January and April 2021 from two
tertiary care hospitals. Three expert radiologists established the ground truth, and all radiographs
were analyzed using a deep-learning AI model to detect suspicious ROIs in the lungs, pleura, and
cardiac regions. Three test readers (different from the radiologists who established the ground
truth) independently reviewed all radiographs in two sessions (unaided and AI-aided mode) with
a washout period of one month. Results: The model demonstrated an aggregate AUROC of 91.2%
and a sensitivity of 88.4% in detecting suspicious ROIs in the lungs, pleura, and cardiac regions.
These results outperform unaided human readers, who achieved an aggregate AUROC of 84.2%
and sensitivity of 74.5% for the same task. When using AI, the aided readers obtained an aggregate
AUROC of 87.9% and a sensitivity of 85.1%. The average time taken by the test readers to read a
chest radiograph decreased by 21% (p < 0.01) when using AI. Conclusion: The model outperformed
all three human readers and demonstrated high AUROC and sensitivity across two independent
datasets. When compared to unaided interpretations, AI-aided interpretations were associated with
significant improvements in reader performance and chest radiograph interpretation time.

Keywords: chest X-ray; AI; multi reader multi case (MRMC); AUROC; region of interest (ROI); lungs;
pleura; cardiac

1. Introduction

Pulmonary and cardiothoracic disorders are among the leading causes of morbidity
and mortality worldwide [1]. Chest radiography is an economical and widely used diag-
nostic tool for assessing the lungs, airways, pulmonary vessels, chest wall, heart, pleura,
and mediastinum [2]. Since modern digital radiography (DR) machines are quite afford-
able, chest radiography is widely used in the detection and diagnosis of multiple chest
abnormalities such as consolidations, opacities, cavitations, blunted costophrenic angles,
infiltrates, cardiomegaly, nodules, etc. [3]. Each chest X-ray (CXR) image contains a huge
amount of anatomical and pathological information packed into a single projection, poten-
tially making disease detection and interpretation difficult [4]. The correct interpretation
of information is always a major challenge for medical practitioners. Pathologies such as
lung nodules or consolidation may be obscured by superimposed dense structures (for
example, bones) or by poor tissue contrast between adjacent anatomical structures [4].
Moreover, low contrast between the lesion and the surrounding tissue, and an overlap of
the lesion with ribs or large pulmonary vessels make the detection of the disease even more
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challenging [3]. As a result, examination of chest pathologies from a CXR may result in
some missed detection. The difficulty of missed radiological findings is exacerbated by
the increase in the number of examinations, which in turn is happening much faster than
the rise in the number of qualified radiologists [5]. Due to heavy workloads in healthcare
facilities and a scarcity of experienced radiologists in developing nations, timely reporting
of every image is not always possible [6]. Therefore, computer-aided detection (CAD)
systems are gaining popularity and acceptance because they can assist radiologists in
detecting suspicious lesions that would otherwise be easily missed, thereby improving
detection accuracy [7]. An automated system can also help control the variability among
radiologists and advise them on further interpretation of abnormal cases [8].

The phenomenal success of deep learning techniques such as convolutional neural net-
works (CNNs) for image classification tasks renders these algorithms a potential candidate
for automated CXR analysis [9]. Several studies have been conducted for the diagno-
sis of chest diseases using artificial intelligence methodologies. Deep learning models
have been employed for the diagnosis of specific chest abnormalities such as lung nod-
ules [10,11], COVID-19 [12,13], pulmonary tuberculosis classification [14], cardiomegaly
detection [15,16], etc. However, these algorithms are disease/condition specific. Most of
the algorithms tested in clinical settings have limited utility, as a relatively large number of
diseases and anomalies exist in real-world clinical practice.

For a CAD system to have better clinical utility, it should be able to detect a variety of
abnormalities from a chest radiograph. These include thoracic diseases, which constitute
most of the abnormalities found on chest radiographs. Recent research studies utilized
different AI models to detect multiple abnormalities from chest radiographs. Most of
these studies, however, validated the performance of their standalone AI models rather
than comparing them to human readers. Table 1 provides an overview of the literature
by detailing the validation dataset, problem statement, methodology, results, advantages,
and limitations for each referenced article. Out of all the studies listed in Table 1, only
Hwang et al. compared the performance of their model with human readers. However,
the abnormal chest radiographs in their study were indicative of only one target disease,
which does not represent the real-world clinical situation. In this article, we evaluate
an AI system for the detection of multiple chest pathologies seen on chest radiographs
and compare its performance with experienced human readers on clinical data from two
different hospitals. We also aim to compare the performance of radiologists assisted by
the CAD system to that of radiologists without assistance. The results indicate that the AI
model outperformed experienced human readers in accurately identifying abnormal chest
radiographs and classifying them into one or more of the three different categories: lungs,
pleura, and cardiac. Readers aided by the AI system showed improvement in AUROCs and
sensitivities, and took less time analyzing the radiograph and identifying the abnormality.

Table 1. A literature review of research articles investigating the role of AI in detecting pathologies
from chest radiographs.

Study Size of Test/Validation
Dataset Problem Statement Method Results Advantages Limitations

Annarumma et al., 2019 [17] 3229 institutional adult
chest radiographs

Developed and tested an AI
model, based on deep
CNNs, for automated
triaging of adult chest
radiographs based on the
urgency of imaging
appearances

Ensemble of two
deep CNNs

Sensitivity of 71%,
specificity of 95%, PPV of
73%, and NPV of 94%

The AI model was able to
interpret and prioritize
chest radiographs based on
critical or urgent findings

1. False Negatives could
result in misinterpretation
of urgent cases as
non-urgent, delaying
timely clinical attention

2. Same radiology label
could correspond to
different levels of urgency.
The spectrum of urgency
was not addressed in the
study

Dunnmon et al., 2019 [18] 533 frontal chest
radiographs

Assessed the ability of
CNNs to enable automated
binary classification of chest
radiographs

Variety of
classification CNNs AUC of 0.96

Demonstrated the
automated classification of
chest radiographs as normal
or abnormal

1. Only predicted the
presence or absence of
abnormality in the
thoracic region

2. Did not provide
explainability



Diagnostics 2023, 13, 557 3 of 13

Table 1. Cont.

Study Size of Test/Validation
Dataset Problem Statement Method Results Advantages Limitations

Nguyen et al., 2022 [19] 6285 frontal chest
radiographs

Deployed and validated an
AI-based system for
detecting abnormalities on
chest X-ray scans in
real-world clinical settings

EfficientNet

F1 score of 0.653, accuracy
of 79.6%, sensitivity of
68.6%, and specificity of
83.9%

Examined the AI
performance on a clinical
dataset different from the
training dataset

1. Classified radiographs
into normal or abnormal
due to lack of detailed
ground truth

2. Did not check the effect of
AI on radiologist
diagnostic performance

Saleh et al., [20] 18,265 frontal-view chest
X-ray images

Developed CNN-based DL
models and compared their
feasibility and performance
to classify 14 chest
pathologies found on chest
X-rays

Variety of
classification CNNs
with DC-GANs

Accuracy of 67% and 62%
for the best-performing
model with and without
augmentation, respectively

Used GAN-based
techniques for data
augmentation to address the
lack of data for some
pathologies

1. A different test set was
used for the AI model
with augmentation

2. Test sets included images
from the NIH database
only

Hwang et al., [21] 1089 frontal chest X-ray
images

Developed a deep
learning–based algorithm
that classified chest
radiographs into normal
and abnormal for various
thoracic diseases

Variety of
classification CNNs

AUC of 0.979, sensitivity of
0.979, and specificity of
0.880

AI model outperformed
physicians, including
thoracic radiologists.
Radiologists aided with
DLAD performed better
than radiologists without
the aid of DLAD

1. Validation was performed
using experimentally
designed data sets and
included chest
radiographs with only 1
target disease

2. DLAD covered only 4
major thoracic disease
categories

2. Materials and Methods

This study was approved by the institutional review boards (IRBs) of both the partic-
ipating hospitals (Hospital A and Hospital B). Because of the retrospective nature of the
study, the need for separate patient consent was waived by the IRB of both institutions.
The external validation of the AI model was performed using data collected between
January 2021 to April 2021 from these two hospitals. A total of 4763 chest radiographs were
used for external evaluation.

2.1. Data Collection

To acquire data, the chest radiographs were downloaded from Picture and Archival
Communication System (PACS) in a Digital Imaging and Communication in Medicine
(DICOM) format. The data were downloaded in an anonymized format and in compliance
with the Health Information Portability and Accountability Act (HIPAA).

Chest radiographs with both PA and AP views were included in the study. Radio-
graphs acquired in an oblique orientation or processed with significant artifacts were
excluded from the study. The inclusion and exclusion criteria used for the selection of
chest radiographs are presented in Figure 1. The chest radiographs were acquired on
multiple machines of different milliamperes (mAs). These included multiple computed
radiography (CR) systems, such as Siemens 500 mA Heliophos-D, Siemens 100 mA Genius-
100R, Siemens 300 mA Multiphos-15R; and a 600 mA digital radiography (DR) system, the
Siemens Multiselect DR. Some of the radiographs were acquired on the Siemens 100 mA
and Allengers 100 mA portable devices. The plate sizes used for the CR system were the
standard 14 × 17 inch for adults. For the DR system, a Siemens detector plate was used.
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Figure 1. Flowchart illustrating inclusion and exclusion criteria used to select chest radiographs for
standalone model performance and multi-reader multi-case (MRMC) study.

2.2. Establishing Ground Truth

To establish the ground truth, chest radiographs were classified into lungs, pleura,
and cardiac categories by three board-certified radiologists with a combined experience
of 21+ years. ‘Lungs’ included pathologies such as tuberculosis, atelectasis, fibrosis,
COVID-19, mass, nodules, opacity, opaque hemithorax, etc.; ‘pleura’ included pathologies
such as pneumothorax, pleural thickening, pleural effusion, etc.; and ‘cardiac’ included
pathologies that result in enlargement in the size of heart, such as cardiomegaly, pericardial
effusion, etc. Normal radiographs and radiographs with medical devices (e.g., chest tubes,
endotracheal tubes, lines, pacemakers, etc.) or chest abnormalities with ROIs in none of
the above categories were binned in a separate category. The ground truth label for the
presence or absence of ROI for each category was defined as the majority opinion of 2 out
of the 3 readers.

2.3. AI Model

All 4476 chest radiographs were de-identified and processed with DeepTek Augmento,
a cloud-based AI-powered PACS platform. Augmento [22] can identify multiple abnormali-
ties from different categories and is currently used by more than 150 hospitals and imaging
centers worldwide. It examines adult digital chest radiographs for various abnormalities
and identifies, categorizes, and highlights suspicious regions of interest (ROIs) using the
deployed AI models. The AI models were trained on over 1.5 million chest radiographs
manually annotated by expert board-certified radiologists. The models use a series of
convolutional neural networks (CNNs) to identify different pathologies on adult frontal
chest radiographs. The processing of chest radiographs involves the following steps. Each
radiograph is resized to a fixed resolution and normalized to standardize the acquisition
process. The CNN parameters are optimized using appropriate loss functions and opti-
mizers. Optimal thresholds are determined using a proprietary DeepTek algorithm. These
thresholds were assessed using a validation set that had not been used for training the
models. The radiographs used in this study were not augmented or processed further.
Augmento is an ensemble of more than 16 models, each of which is used to detect spe-
cific abnormalities in the adult chest radiograph. It takes less than 30 s to process and
report each radiograph. Readers can read and annotate scans on the Augmento platform.
The platform also provides AI predictions for assistance and generates the report based on
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the annotations made and accepted by the readers. Figure 2 presents a screenshot of the
Augmento platform.
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predictions in the (b) outline or (c) heatmap view and annotate the scans using (d) bounding boxes.
Once the annotations are complete, a radiology report is generated.

2.4. Multi Reader Multi Case (MRMC) Study

An MRMC study was conducted to evaluate whether the AI aid can improve readers’
diagnostic performance in identifying chest abnormalities. A panel of three readers (R1, R2,
and R3) with 2, 11, and 3 years of experience, respectively was established. For the MRMC
study, external validation datasets from two hospitals were used. The radiologists who
established the ground truth for the entire dataset were excluded from participating in the
study. The study was conducted in two sessions. In session 1 (unaided session), readers
independently assessed every CXR without the assistance of the AI to categorize the suspi-
cious ROIs present in the chest radiographs into three classifications: lungs, pleura, and
cardiac. After a washout period of one month to avoid memory bias, readers reevaluated
each CXR with the assistance of AI in session 2 (aided session). The evaluation workflow for
the unaided and aided readings was identical except that, during the aided reading session,
readers could see the AI-suggested labels and bounding boxes over suspicious ROIs.

2.5. Statistical Analysis

To compare the AUROCs of readers between session 1 and session 2, the fixed readers
random cases (FRRC) paradigm of the OR [23] method was used. The analysis was
conducted in R (version 4.2.1, Vienna, Austria) using the RJafroc library (version 2.1.1). To
compare the sensitivity and specificity of readers, a one-tailed Wilcoxon test was performed
on ten independent samples of reader annotations. To compare the average time taken by
the readers to read one radiograph between two sessions, a one-tailed Wilcoxon test was
performed. A p-value of less than 0.05 was considered statistically significant.
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3. Results
3.1. Data Characteristics

A total of 4476 chest radiographs were used to evaluate the performance of the model
on two independent test sets. The average age of the patients was 41.1 ± 19.6 years in
the dataset from hospital A and 36.6 ± 18.6 years in the dataset from hospital B. Out
of 4476 frontal chest radiographs, 59.5% were from male patients and 40.4% were from
female patients. The distribution of scans across lungs, pleura, and cardiac categories is
represented in Table 2.

Table 2. Category-wise distribution of chest radiographs in the external test datasets.

Data Characteristics
No. of Chest Radiographs

Hospital A Hospital B Total

Total no. of chest radiographs 3843 633 4476
No. of radiographs with ROI in lungs 641 137 778

No. of radiographs with ROI in cardiac 114 28 142
No. of radiographs with ROI in pleura 275 50 325

No. of radiographs with at least one ROI from any category 844 163 1007
No. of radiographs with ROI in none of the above categories 2999 470 3469

3.2. Standalone Performance of the AI Model

The performance of the AI model on the external dataset revealed an aggregate
AUROC of 91% and 91.9% on data from Hospital A and Hospital B, respectively. The model
achieved an aggregate sensitivity of 87.6% and 92%, and a specificity of 88.5% and 88.7%
on data from hospitals A and B, respectively. The performance of the model on the dataset
from hospital A demonstrated an AUROC of 88.6% for lungs, 86.7% for pleura, and 91.9%
for cardiac. On the dataset from hospital B, the model demonstrated an AUROC of 90.2%
for lungs, 87.1%, for pleura, and 85.5% for cardiac (Figure 3). Over the entire dataset, the
model achieved an aggregate sensitivity of 85.5%, 77.9%, and 85.2% in detecting suspicious
ROIs in the lungs, pleura, and cardiac, respectively. Similarly, the aggregate specificity
in detecting suspicious ROIs in the lungs, pleura, and cardiac was 87.8%, 93.8%, and
92.7%, respectively.
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Figure 3. AUROC curves depicting the performance of the standalone AI model in detecting sus-
picious ROIs in the lungs, cardiac, and pleura categories on (a) the entire hospital dataset, (b) the
dataset from Hospital A, and (c) the dataset from Hospital B.

The category-wise AUC, sensitivity, specificity, accuracy, F1 score, and NPV of the AI
model on both datasets are presented in Table 3. The outputs of the model were visualized
as bounding boxes enclosing the suspicious ROIs (Figure 4).
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Table 3. Performance of the standalone AI model on 2 external validation datasets.

Hospital Category AUC
[95% CI]

Sensitivity
[95% CI]

F1 Score
[95% CI]

Specificity
[95% CI]

Accuracy
[95% CI]

NPV
[95% CI]

A

Lungs 0.886
[0.854, 0.915]

0.846
[0.788, 0.899]

0.690
[0.636, 0.740]

0.878
[0.856, 0.900]

0.873
[0.851,0.893]

0.966
[0.952, 0.978]

Pleura 0.867
[0.812, 0.917]

0.779
[0.672, 0.873]

0.598
[0.510, 0.677]

0.936
[0.920, 0.952]

0.925
[0.907,0.941]

0.982
[0.972, 0.991]

Cardiac 0.919
[0.846, 0.979]

0.877
[0.739, 1.000]

0.404
[0.288, 0.508]

0.925
[0.907, 0.941]

0.923
[0.905,0.940]

0.996
[0.992, 1.000]

Aggregate 0.910
[0.883, 0.934]

0.876
[0.829, 0.918]

0.767
[0.722, 0.807]

0.885
[0.862, 0.906]

0.883
[0.862,0.902]

0.962
[0.946, 0.975]

B

Lungs 0.902
[0.835, 0.959]

0.898
[0.781, 1.000]

0.762
[0.641, 0.857]

0.873
[0.811, 0.926]

0.878
[0.823,0.924]

0.969
[0.932, 1.000]

Pleura 0.871
[0.734, 0.989]

0.780
[0.529, 1.000]

0.650
[0.400, 0.833]

0.947
[0.907, 0.980]

0.934
[0.892,0.975]

0.980
[0.956, 1.000]

Cardiac 0.855
[0.641, 0.996]

0.750
[0.333, 1.000]

0.488
[0.154, 0.741]

0.939
[0.899, 0.974]

0.930
[0.886,0.968]

0.988
[0.966, 1.000]

Aggregate 0.919
[0.864, 0.968]

0.920
[0.828, 1.000]

0.820
[0.723, 0.898]

0.887
[0.828, 0.941]

0.896
[0.848,0.943]

0.970
[0.934, 1.000]

A + B (Entire
dataset)

Lungs 0.889
[0.860, 0.917]

0.855
[0.802, 0.903]

0.702
[0.651, 0.746]

0.878
[0.856, 0.899]

0.874
[0.853,0.892]

0.966
[0.953, 0.978]

Pleura 0.867
[0.818, 0.913]

0.779
[0.686, 0.869]

0.605
[0.525, 0.682]

0.938
[0.923, 0.952]

0.926
[0.911,0.941]

0.982
[0.973, 0.990]

Cardiac 0.906
[0.836, 0.965]

0.852
[0.720, 0.967]

0.417
[0.312, 0.514]

0.927
[0.911, 0.942]

0.924
[0.909,0.940]

0.995
[0.990, 0.999]

Aggregate 0.912
[0.888, 0.934]

0.883
[0.840, 0.920]

0.775
[0.736, 0.811]

0.885
[0.863, 0.906]

0.885
[0.865,0.903]
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3.3. Comparison between the AI Model and Human Readers

The standalone AI model had an aggregate AUROC of 91.2% and a sensitivity of 88.4%
across both hospitals. In session 1 (unaided session) of the MRMC study, the aggregate
AUROC and sensitivity for human readers across both hospitals were 84.2% and 74.5%,
respectively. The aggregate AUROC and sensitivity of the AI model were significantly
higher (** p < 0.01) than the aggregate sensitivity and specificity of all 3 readers across the
two hospital datasets. However, the aggregate specificity of the model was lower than the
specificity of the human readers.

3.4. Comparison between Human Readers in Unaided and Aided Sessions

In session 2 of the MRMC study, the aggregate AUROC of test readers improved
from 84.2% in the unaided session to 87.9% in the aided session across both hospitals.
AI assistance significantly improved the aggregate sensitivity of test readers from 74.5%
to 85.1% across both hospitals. While there was a significant improvement (** p < 0.01)
in the aggregate AUROC and sensitivity of all three readers across different hospitals,
there was no significant improvement in aggregate specificity values, as they remained
consistently high for the readers in both sessions. Table 4 compares the AUROC, sensitivity,
and specificity of the unaided and aided readers in the individual hospital datasets.

Table 4. Category-wise performance of the human readers in session 1 (unaided session) and session
2 (aided session) in 2 external validation datasets.

Hospital A

Reader Category

AUC [95% CI] Sensitivity [95% CI] Specificity [95% CI]

Unaided
Session

Aided
Session

Unaided
Session

Aided
Session

Unaided
Session

Aided
Session

R1

Lungs 0.776
[0.738,0.815]

0.762
[0.723, 0.802]

0.573
[0.497, 0.651]

0.537
[0.460, 0.616]

0.979
[0.969, 0.989]

0.987
[0.979, 0.994]

Pleura 0.869
[0.819,0.917]

0.873
[0.823, 0.921]

0.767
[0.671, 0.863]

0.786
[0.685, 0.882]

0.971
[0.959, 0.981]

0.9602
[0.946, 0.973]

Cardiac 0.809
[0.713,0.897]

0.916
[0.858, 0.956]

0.640
[0.444, 0.815]

0.929
[0.813, 1.000]

0.978
[0.968, 0.987]

0.9019
[0.884, 0.921]

Aggregate 0.843
[0.812, 0.874]

0.861
[0.831, 0.888]

0.723
[0.662, 0.785]

0.821
[0.767, 0.871]

0.963
[0.949, 0.975]

0.900
[0.878, 0.921]

R2

Lungs 0.804
[0.766,0.842]

0.863
[0.830, 0.895]

0.632
[0.557, 0.707]

0.793
[0.731, 0.856]

0.976
[0.965, 0.986]

0.933
[0.914, 0.949]

Pleura 0.839
[0.784,0.892]

0.872
[0.819,0.919]

0.687
[0.579, 0.795]

0.786
[0.682, 0.881]

0.989
[0.982, 0.996]

0.959
[0.945, 0.971]

Cardiac 0.889
[0.813,0.959]

0.922
[0.867, 0.962]

0.807
[0.655, 0.950]

0.929
[0.821, 1.000]

0.971
[0.959, 0.982]

0.915
[0.897, 0.932]

Aggregate 0.881
[0.854, 0.908]

0.901
[0.879, 0.923]

0.802
[0.749, 0.855]

0.915
[0.876, 0.950]

0.959
[0.945, 0.973]

0.888
[0.864, 0.909]

R3

Lungs 0.755
[0.714,0.794]

0.809
[0.771, 0.846]

0.589
[0.510, 0.669]

0.669
[0.593, 0.741]

0.920
[0.901, 0.938]

0.949
[0.934, 0.964]

Pleura 0.815
[0.760,0.868]

0.874
[0.824, 0.921]

0.644
[0.535, 0.750]

0.786
[0.687, 0.878]

0.986
[0.979, 0.993]

0.962
[0.949, 0.975]

Cardiac 0.912
[0.844,0.967]

0.8994
[0.831, 0.958]

0.886
[0.750, 1.000]

0.859
[0.722, 0.969]

0.939
[0.923, 0.954]

0.939
[0.923, 0.953]

Aggregate 0.8352
[0.806, 0.867]

0.869
[0.839, 0.896]

0.786
[0.732, 0.844]

0.815
[0.759, 0.866]

0.884
[0.859, 0.906]

0.923
[0.905, 0.941]
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Table 4. Cont.

Hospital B

Reader Category

AUC [95% CI] Sensitivity [95% CI] Specificity [95% CI]

Unaided
Session

Aided
Session

Unaided
Session

Aided
Session

Unaided
Session

Aided
Session

R1

Lungs 0.844
[0.762,0.919]

0.789
[0.705, 0.870]

0.723
[0.567, 0.871]

0.613
[0.447, 0.776]

0.966
[0.932, 0.992]

0.966
[0.932, 0.992]

Pleura 0.859
[0.724,0.987]

0.901
[0.783, 0.987]

0.740
[0.467, 1.000]

0.840
[0.600, 1.00]

0.979
[0.953, 1.000]

0.962
[0.928, 0.987]

Cardiac 0.678
[0.500,0.875]

0.929
[0.779,0.994]

0.357
[0.000, 0.750]

0.893
[0.600, 1.000]

0.998
[0.993, 1.000]

0.965
[0.933, 0.993]

Aggregate 0.884
[0.819, 0.942]

0.885
[0.818, 0.944]

0.791
[0.667, 0.903]

0.816
[0.688, 0.927]

0.976
[0.948, 1.000]

0.953
[0.912,0.991]

R2

Lungs 0.783
[0.697,0.867]

0.835
[0.751, 0.910]

0.591
[0.419, 0.757]

0.715
[0.556, 0.862]

0.974
[0.942, 1.000]

0.954
[0.915, 0.985]

Pleura 0.749
[0.600,0.897]

0.895
[0.764, 0.989]

0.500
[0.200, 0.800]

0.820
[0.571, 1.000]

0.998
[0.987, 1.000]

0.969
[0.938, 0.993]

Cardiac 0.875
[0.684,0.990]

0.926
[0.773, 0.993]

0.786
[0.400, 1.000]

0.893
[0.600, 1.000]

0.964
[0.932, 0.987]

0.959
[0.924, 0.987]

Aggregate 0.881
[0.813, 0.942]

0.923
[0.870, 0.969]

0.798
[0.667, 0.915]

0.902
[0.806, 0.977]

0.964
[0.926, 0.992]

0.945
[0.902, 0.983]

R3

Lungs 0.563
[0.499,0.632]

0.816
[0.733, 0.892]

0.183
[0.063, 0.314]

0.729
[0.571, 0.871]

0.944
[0.901, 0.977]

0.901
[0.849, 0.951]

Pleura 0.627
[0.500,0.769]

0.894
[0.771, 0.996]

0.260
[0.000, 0.546]

0.800
[0.556, 1.000]

0.995
[0.979, 1.000]

0.988
[0.966, 1.000]

Cardiac 0.670
[0.490,0.875]

0.923
[0.769, 0.990]

0.357
[0.000, 0.750]

0.893
[0.600, 1.000]

0.984
[0.960, 1.000]

0.954
[0.918, 0.982]

Aggregate 0.600
[0.532, 0.676]

0.872
[0.807, 0.928]

0.258
[0.128, 0.395]

0.853
[0.738, 0.949]

0.943
[0.901, 0.982]

0.892
[0.835, 0.945]

The aggregate performances of the unaided and aided readers (RI, R2, and R3) across
all categories and hospital datasets are tabulated in Supplementary Materials Table S1.
The aggregate sensitivity and specificity of different readers (R1, R2, and R3) in unaided
and aided reading sessions, using the consensus of three board-certified radiologists as a
ground truth reference standard, are shown in Figure 5.
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3.5. Reduction in False-Negative Findings

AI assistance helped the test readers identify true positive cases and reduce false-
negative findings. In some cases, unaided readers missed the pathology, but AI detected it.
In such cases, readers could identify pathologies only with the assistance of AI. Figure 6
depicts the representative images from the MRMC study.
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Figure 6. Examples of chest radiographs with suspicious ROIs in the (a) lungs, (b) pleura, and (c)
cardiac categories. All three test readers missed these suspicious ROIs in the unaided session. The AI
model and ground truth readers, however, predicted the suspicious ROIs as shown with bounding
boxes. All three test readers identified suspicious ROIs in each category correctly when aided by AI.

3.6. Interpretation Time for Each Radiograph

To test the effect of AI aid on the interpretation time of chest radiographs, the time spent
by each reader on each radiograph in both the unaided and aided reading sessions was
recorded. The mean chest radiograph interpretation time of the three readers decreased in
the AI-aided reading session compared with the unaided reading session (time per chest ra-
diograph: 13.43 ± 24.92 s vs. 10.61 ± 33.66 s; p < 0.001) (Supplementary Materials Table S2).

4. Discussion

In this study, we validated an AI model to classify chest radiographs with abnormal
findings indicative of pathologies pertaining to the lungs, pleura, and cardiac regions on two
different hospital datasets. The standalone performance of the AI model was significantly
better than the performance recorded by the human readers in both unaided and AI-aided
sessions. We also demonstrated significant improvement in reader performance (AUC and
sensitivity) and productivity (reduction in time to report a radiograph) with AI assistance.

Recent studies have demonstrated the use of deep convolutional neural networks
to identify abnormal CXRs for automated prioritization of studies for quick review and
reporting [19,20]. Annaruma et al. used their AI system for automated triaging of adult
chest radiographs based on the urgency of imaging appearances. Although their AI system
was able to interpret and group the chest radiographs based on the prioritization categories,
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the AI performance could appear exaggerated if the scan was added to the correct priority
class for the wrong reasons. Dunnmon et al. demonstrated the high diagnostic performance
of CNNs trained with a modestly sized collection of CXRs in identifying normal and
abnormal radiographs [20]. Although their training set was large (containing 216,431
frontal chest radiographs), they evaluated their CNNs on a held-out dataset of 533 images.
Nguyen et al. measured the performance of their AI system on 6285 chest radiographs
extracted from the Hospital Information System (HIS) in a prospective study [21]. Their
system achieved an accuracy of 79.6%, a sensitivity of 68.6%, and a specificity of 83.9% on
the prospective hospital dataset. However, the study did not assess the effect of the AI
system on reader performance, and only provided a broad evaluation of the system for
classifying a chest radiograph into normal or abnormal. Albahli et al. used ResNet-152
architecture trained on six disease classes and obtained an accuracy of 83% [22]. The model
used in our study obtained an accuracy of 88.5% in classifying diseases into four categories
suggestive of multiple disease conditions. Hwang et al. validated their AI algorithm on five
external test sets containing a total of 1015 chest radiographs [23]. Although their model
outperformed human readers and demonstrated consistent and excellent performance on
all five external datasets, it covered only 4 major thoracic disease categories (pulmonary
malignant neoplasm, active tuberculosis, pneumonia, and pneumothorax). Additionally,
each abnormal chest radiograph in their external validation data sets represented only
1 target disease, which does not replicate a real-world situation.

The chest radiographs used in our study were closely representative of real-world
clinical practice, as we did not segregate the chest radiographs based on the presence of
only a single target condition. The chest radiographs were obtained from two different
hospital settings and each abnormal radiograph was representative of one or multiple
chest conditions. The AI model utilized in our study classified chest radiographs into three
categories, i.e., lungs, pleura, and cardiac. The strength of this approach is that the identified
ROIs could be suggestive of different conditions/pathologies pertaining to these categories.
This can help human readers identify the categories of the suspected abnormality and
define the appropriate prognosis. According to our study, the AI model showed promising
results in identifying and categorizing chest abnormalities. The model was highly specific
(with an aggregate specificity on the entire dataset of 88.5%) in identifying suspicious
ROIs in the lungs, pleura, and cardiac regions. The model demonstrated an aggregate
AUC of 91.2% and a sensitivity of 88.4% and outperformed unaided human readers, who
achieved an aggregate AUC of 84.2% and a sensitivity of 74.5% across all datasets. The high
aggregate NPV (96.3%) of the model demonstrates its utility in finding and localizing
multiple abnormalities in CXRs. The consistently high performance of the model on both
datasets without the interference of human readers suggests that it has the potential to be
used as a standalone tool in clinical settings. Additionally, the AI assistance significantly
improved the aggregate AUROC (from 84.2% to 87.9%) and sensitivity (from 74.5% to
85.1%) of test readers across both hospital datasets. The improvement in reader sensitivity
implies a reduction in false negative findings and fewer disease cases missed. This is
clinically important because false negative findings lead to missed diagnoses, thereby
increasing the disease burden. The AI aid used in our study demonstrated a positive effect
on CXR reporting time. When using the AI aid, the average time taken by human readers
to read a chest radiograph decreased significantly by 21%. The significant reduction in
the time required to read a chest radiograph signifies the utility of the AI aid in reducing
delays in reporting. AI also assisted readers in identifying pathologies that they would
have otherwise missed. This helps radiologists detect complex pathologies and prioritize
images with positive findings in the read queue.

Our study had some limitations. First, the specificity of the AI model was low when
compared to human readers. However, in an actual clinical setting, sensitivity is a more
meaningful metric to measure model performance. Although identifying both true positives
and false negatives is important, missing a true positive case may have greater consequences
for patients’ health. Second, we reported only the image-level performance of the model
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and readers and did not evaluate the location-level performance. Future work will include
the evaluation of localization performance for more accurate results. Third, we designed
the study to include suspicious ROIs present only in the lungs, pleura, and cardiac regions.
The suspicious ROIs present in categories other than lungs, pleura, and cardiac were binned
in one separate category. Including abnormalities of other regions (such as mediastinum,
hardware, bones, etc.) in different categories might not be beneficial at this point as it
may result in many false positive classifications, thus hampering the clinical utility of the
model. We believe that the AI model used in this study can detect substantial proportions
of lung and cardiothoracic diseases in clinical practice. Fourth, the time taken by readers to
report a chest radiograph was measured using the difference between the study opening
time and the study submission time in both the unaided and aided sessions. This is not
representative of turnaround times in clinical settings, which include more steps. However,
the average turnaround times measured in this study provide a general idea of the utility
of the model in reducing delays in reporting. Fifth, this was a dual-centered retrospective
study. Although the AI model used in the study is generalizable on both hospital datasets,
further research would be required to establish the generalizability of the model across
different geographies.

5. Conclusions

In conclusion, we demonstrated the feasibility of an AI model in classifying radio-
graphs into different categories of chest abnormalities. The high performance of the deep
learning model in classifying abnormal chest radiographs, outperforming even human
readers, suggests its potential for standalone use in clinical settings. It may also improve
radiology workflow by aiding human readers in faster and more efficient diagnoses of
chest conditions. The study showed promising results for future clinical implementation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics13030557/s1, Table S1: Aggregate performance of the
human readers in session 1 (Unaided Session) and session 2 (Aided Session) across all categories in
external validation tests; Table S2: Analysis of chest radiograph interpretation time by readers during
unaided and aided reading sessions.
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