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Abstract: Subclinical alterations in myocardial structure and function occur early during the natural
disease course. In contrast, clinically overt signs and symptoms occur during late phases, being
associated with worse outcomes. Identification of such subclinical changes is critical for timely
diagnosis and accurate management. Hence, implementing cost-effective imaging techniques with
accuracy and reproducibility may improve long-term prognosis. A growing body of evidence
supports using cardiac magnetic resonance (CMR) to quantify deformation parameters. Tissue-
tagging (TT-CMR) and feature-tracking CMR (FT-CMR) can measure longitudinal, circumferential,
and radial strains and recent research emphasize their diagnostic and prognostic roles in ischemic
heart disease and primary myocardial illnesses. Additionally, these methods can accurately determine
LV wringing and functional dynamic geometry parameters, such as LV torsion, twist/untwist, LV
sphericity index, and long-axis strain, and several studies have proved their utility in prognostic
prediction in various cardiovascular patients. More recently, few yet important studies have suggested
the superiority of fast strain-encoded imaging CMR-derived myocardial strain in terms of accuracy
and significantly reduced acquisition time, however, more studies need to be carried out to establish
its clinical impact. Herein, the current review aims to provide an overview of currently available data
regarding the role of CMR in evaluating myocardial strain and biomechanics.

Keywords: left ventricle active biomechanics; cardiac magnetic resonance imaging; left ventricle
torsion; left ventricle twist and untwist; left ventricle strain

1. Background

Myocardial strain and biomechanics are the results of intrinsic normal functioning
of the heart, expressing the dynamic interdependency between cardiac structure and its
physiology. Usually, in the early stages, heart diseases are clinically silent, often resulting
in a delayed diagnosis and poor prognosis. Recent technological advances have developed
cardiovascular imaging modalities which are able to thoroughly characterize myocardial
tissue and function. Nevertheless, studies evaluating their clinical utility in the diagnosis
and prognosis of cardiovascular patients are still sparse. Their close description could
provide valuable insights into myocardial functional performance [1]. Briefly, by non-
invasively assessing myocardial deformation, one can provide supplementary information
regarding disease diagnosis, risk stratification, and prognosis [2].

Cardiac magnetic resonance imaging (CMR) is the gold-standard imaging method
used for characterizing heart function and tissue structure, thus providing important
information about cardiomyocytes, interstitium, microvasculature, and metabolic abnor-
malities [3]. Furthermore, MRI has been shown to be useful in post-mortem morphological
studies for the study of sudden cardiac death [4]. Increasing evidence is now proving
the clinical utility of various CMR methods to determine left ventricle (LV) myocardial
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strain, torsion, twist, untwist, sphericity index, and long-axis strain determining myocar-
dial strain and biomechanics using various methods [5–8]. Moreover, several studies have
shown good agreement between CMR-based strain and speckle-tracking echocardiography
(STE) [6], even though the two methods are still not interchangeable.

LV myocardial contraction and relaxation are complex phenomena that involve vari-
ous yet synergistic contractions of all three myocardial layers, thus ensuring hemodynamic
stability and optimal LV systolic function. At a glance, there are two ways in which
myocardial strain can be outlined: the Lagrangian strain, which provides contractility
changes using the own myocardium as a benchmark, and the Eulerian strain, which as-
sesses changes of specific tissue zones with fixed baselines, while the material points differ
over time [6]. The disposition of myocardial fibers in the LV is as follows: (1). longitudinal;
(2). transversal, with a central distribution and systolic thickening; (3). circumferential,
with a circular distribution as viewed from the transversal view of the myocardial [9,10].
The main purpose of these different orientations is to ensure efficient cardiac revolution
and maintain global hemodynamics within its normal ranges. In the subendocardial layer,
the fibers are longitudinally oriented, from the LV’s base to its apex, while those from the
subepicardial layer are inversely directed, from the LV’s apex to its base, and, addition-
ally, the fibers within the middle layer of the myocardium are circumferentially disposed
of. All these particularities form a complex multi-layered helical layout, thus guaran-
teeing adequate longitudinal and circumferential myocardial strain and optimal LV wall
shear stress [11].

The main advantage of CMR-determined myocardial strain is in patients with a poor
acoustic window in which STE-based ones are not determinable. Additionally, the intra-
and inter-observer biases are significantly reduced [6]. Another benefit could be in patients
with arrhythmias for whom CMR might provide useful data, especially if single-heartbeat
acquisition techniques are used [7]. Nonetheless, there are several disadvantages, such as
prolonged evaluation time and extended dorsal decubitus, which in patients with heart
failure is often not possible [6].

Until now, invasive heart catheterization has been considered the gold-standard
method to evaluate cardiac function by using pressure-volume loops, which are valuable
markers of myocardial contractility and stroke work, especially by determining cardiac
output, end-systolic (ESPVR) and end-diastolic (EDPVR) pressure-volume relationships,
or cardiac elastance [12]. Recently, CMR with or without inferior vena cava (IVC) tempo-
rary closure has been able to determine ESPVR and EDPVR-derived measurements with
comparable accuracy [12,13].

The purpose of this review is to provide an overview of currently available data
regarding the clinical role of CMR in evaluating myocardial strain and biomechanics.

2. Basics of Myocardial Deformation and Biomechanics

The concept of continuum mechanics in a completely isolated media, along with
the properties of cardiac tissue governates the functioning of the cardiovascular system.
Thus, myocardial deformation and spatial dynamic geometry are strongly related to these
phenomena [14,15]. Moreover, the physical dependency of strain and biomechanics relies
on intracellular, extracellular and molecular components of the myocardium. Passive
biomechanical properties are ensured by titin, which is an intracellular protein with a high
molecular weight that ensures the elastic properties of the myocardial fibers by linking
the sarcomeres’ Z lines with the M lines and, thus, preventing the overelongation of these
fibers. In this sense, mutations in the titin’s gene have been significantly associated with LV
diastolic dysfunction and heart failure [16,17]. On the other hand, active processes, such as
deformation, torsion, twist, untwist, and shear stress, are mainly determined by actin and
myosin [18]. Other relevant cellular components which are linked to diseased myocardium
and heart failure are collagen, which forms complex reticular structures, elastin with its
microfibrils of fibulin, and fibrillin, fibronectin, proteoglycans, and glycosaminoglycans [19].
Nonetheless, usually, the myocardium is a soft, heterogenous, anisotropic tissue, which
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is subject to significant deformations [20], that is based on equation models from the
mechanical physics of continuum mechanics. Moreover, several mathematical models,
such as the Cauchy stress tensor, the deformation gradient and its Jacobian determiner, and
the strain energy density function, have been used to characterize the relation between the
LV wall shear stress and myocardial deformation [12,21].

Moreover, myocardial strain and dynamic spatial geometry rely on myocardial con-
traction forces, which can be assessed using a specific mathematical model that includes the
cardiomyocytes’ active tension and calcium ions concentration [22]. LV wall shear stress
generates the required forces that strain the cardiomyocytes, and given the situation, they
are responsible for the myocardial oxygen mismatch, being easily explained by the law of
Laplace [23]. Nevertheless, when it comes to characterizing active biomechanics, there is
significant variation depending on the region of interest. When the mid-myocardial layer
and the LV’s base are considered, it is recommended to apply different equations to assess
the longitudinal and circumferential fibers, while for the LV’s apex, one can use similar
mathematical models for both types of myofibers [12].

The primary task of the LV is to ensure continuous blood flow through the vessels
during the cardiac cycle. LV function is majorly conditioned by myocardial contraction,
end-diastolic filling pressures, and its dynamic geometry, but also by the integrity and
correct functioning of heart valves [24,25]. Initially, invasive catheterization was used to
accurately describe the heart’s biomechanical physiology, especially by using the curves
of ESPVR and EDPVR. Additionally, it has been shown that volume overload increases
LV wall shear stress and tension [25]. Furthermore, as postulated in Frank-Starling’s law,
increased diastolic filling leads to a higher LV stroke volume due to better functioning of the
sarcomeres [26]. Moreover, the maximum elastance, which is the slope between the direct
relation between the end-systolic blood volume and the aortic pressure, can accurately
assess the contractile ability of the LV, and changes within its inotropy will automatically
modify the LV stroke volume [27].

Accordingly, using imaging methods, such as STE and, lately, CMR, deformations of
all three myocardial fibers can be globally and regionally assessed, resulting in parameters
with important diagnostic and prognostic values: global longitudinal (GLS), circumferential
(GCS) and radial (GRS) strains. Various studies have confirmed their paramount roles in
diagnosis, risk stratification, and prognosis prediction in many cardiovascular diseases [2].
To identify subclinical LV dysfunction and to subdue the main limitations of standard LV
systolic function measurements, international guidelines recommend the comprehensive
evaluation of LV strain parameters by echocardiography. These parameters are useful in
approaching myocardial ischemia and viability, infraclinical dysfunction in patients with
dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic cardiomyopathy,
cardiac amyloidosis, chemotherapy-induced cardiotoxicity, heart failure, valvular heart
diseases, and also in improving the selection of patients who might benefit from cardiac
resynchronization therapy [28]. Several studies regarding the importance of LV myocardial
strain using STE in various cardiovascular diseases are presented in Table 1 [29–45].

Table 1. Speckle-tracking echocardiography studies in evaluating LV GLS.

Authors Year Ref n Illness Endpoint GLS LVEF

Janwanishstaporn et al. 2022 [32] 289 HFimprEF CVD, HFH −12.7% 53%
Thellier et al. 2020 [33] 332 AS ACM −15% 55%

Goedemans et al. 2018 [34] 143 AMI ACM, HFH −14.4% N/A
Iacoviello et al. 2013 [35] 308 HF ACM, HFH, CVD, VT −10.2% 33%

Ersboll et al. 2013 [36] 849 AMI ACM, CVD, HFH −14.6% 53.5%
Yingchoncharoen et al. 2012 [37] 79 AS CVD −15.2% 63.4%
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Table 1. Cont.

Authors Year Ref n Illness Endpoint GLS LVEF

Munk et al. 2012 [38] 576 AMI ACM, CVD, HFH, AMI −14.3% 49.2%

Kearney et al. 2012 [39] 146 AS ACM, AMI, CVD, HFH,
VT −15% 59%

Dahl et al. 2012 [40] 125 HT ACM, CVD, HFH −15.5% 34.1%
Buss et al. 2012 [41] 206 AL ACM, CVD −13.1% 51.7%

Bertini et al. 2012 [42] 1060 IHD CVD, HFH −11.5% 34%
Woo et al. 2011 [43] 98 AMI CVD, HFH −15.8% 56%

Nahum et al. 2010 [44] 125 HF ACM, CVD, HFH −8% 31%
Antoni et al. 2010 [45] 659 AMI ACM, AMI, HFH −15.3% 46%
Stanton et al. 2009 [46] 546 Various ACM −16.6% 58%

Cho et al. 2009 [47] 201 HF CVD, HFH −10.5% 34.1%
Lancellotti et al. 2008 [48] 163 AS CVD, HF −15.7% 66%

Abbreviations: ACM, all-cause mortality; AMI, acute myocardial infarction; AS, aortic stenosis; CVD, cardiovas-
cular death; GLS, global longitudinal strain; HF, heart failure; HFH, heart failure hospitalization; HFimpEF, heart
failure with improved ejection fraction; IHD, ischemic heart disease; LVEF, left ventricle ejection fraction; LVEF,
left ventricle; N, number of patients; VT, ventricular tachyarrhythmias.

3. CMR Methods for Assessing Myocardial Strain and Biomechanics

Although echocardiography is considered the gold-standard imaging technique in
assessing LV strain and strain rates, recently, increasing evidence has shown that some CMR
techniques are able to appraise myocardial deformation using either specific acquisition
variants or post-processing software [6]. Growing evidence has shown their usefulness in
patients with ischemic heart disease, various cardiomyopathies, pulmonary hypertension,
and congenital heart disease [46].

From a technical point of view, the first and foremost magnetic resonance system that
has allowed a usable approach to assessing myocardial strain, functioning geometry, and ac-
tive biomechanics is tissue-tagging CMR (TT-CMR), despite its poor spatial resolution [47].
Subsequently, this shortcoming was overcome by complementary spatial modulation of
magnetization, which improved the spatial resolution of the myocardium and the grids [5].
Briefly, in the pre-acquisition phase, tags and lines need to be positioned over the my-
ocardium to track myocardial spatial deformation, angulations, torsion, twist and untwist,
and, further, specific sequences are recorded during the LV systole [47]. Nonetheless, to
provide an objective and clear upshot, post-acquisition analysis software has been created:
FINDTAGS, which quantifies the pixels’ motion during the cardiac cycle, and a more
improved one called harmonic phase (HARP), which is fully automated, being the most
used for TT-CMR [48]. Still, the main shortcomings of this method comprise prolonged
acquisition time and questionable ability to evaluate thin myocardial layers. Likewise, it
has been shown that phase-velocity mapping CMR, the method of choice in approaching
trans-valvular flows, could become another option for myocardial deformation and biome-
chanics assessment. By evaluating the spatial differences between each myocardial pixel,
phase-velocity mapping CMR can provide all three deformation parameters, through a
single breath-hold, by measuring the dynamic differences between pixels [49]. Moreover,
fast cine displacement encoding with stimulated echoes (DENSE) uses balanced standard
steady-state free precession (b-SSFP) CMR to encode myocardial tissue displacements
with intrinsic phase correction to evaluate myocardial deformation. Nonetheless, its main
limitation is that it cannot completely assess during the full cardiac cycle [50].

Furthermore, fast Strain-Encoding (fast-SENC) is a valuable CMR technique that
uses myocardial magnetization tags, but the main difference from TT-CMR is that the
tags are parallelly overlaid on the myocardium, allowing the evaluation of longitudinal
and circumferential strain, while radial deformation remains unfortunately unquantifi-
able [6]. Fast-SENC has increased accuracy and significantly lowered acquisition time
due to single-heartbeat free breathing, thus providing increased spatial resolution, as com-
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pared to other CMR methods, having also increased ability in detecting a wide range of
cardiovascular illnesses [51].

On the other hand, a post-processing software package that could be applied to
standard b-SSFP-CMR would hypothetically be the most convenient option to assess LV
strain and biomechanics. FT-CMR is an optical flow magnetic resonance method, being
derived from the technique which evaluates the motion of fluids. With proper optimization
and adjustments, FT-CMR images are comparable to those obtained using speckle-tracking
echocardiography and being applicable to standard cine-CMR, it might become highly
usable soon [7], but optimization studies need to be further conducted.

4. Clinical Utility of CMR in Assessing LV Myocardial Strain
4.1. LV Myocardial Strain by CMR in Normal Individuals

Increasing evidence supports the role of CMR in assessing LV myocardial strain in
different categories of patients. FT-CMR can determine LV strain measurements in both
2-dimensional and 3-dimensional approaches, with the latter requiring more studies for
appropriate validation [7]. It has been reported that the normal values for FT-CMR were
−21.3 ± 4.8% for GLS, −26.1 ± 3.8% for GCS, and 39.8 ± 8.3% for GRS [52], while the global
rather than regional strain parameters, performed better in terms of reproducibility [53,54].
With a view to validate LV strain analysis by CMR, substantiation research using STE has
recently been conducted. In a research paper that compared FT-CMR and strain-encoding
(SENC)-CMR with STE, GLS, and GCS determined by both CMR methods had good perfor-
mances in terms of inter-modality agreement [55]. By comparing FT-CMR with fast-SENC
in healthy individuals, it was shown that all three strains had lower values in males than in
females, with age being a minor but slightly notable determinant for their variation. In addi-
tion, fast-SENC reported a significantly higher value for GLS (−20.3 ± 1.8%) than FT-CMR
(−16.9 ± 1.8%), whereas those of GCS were similar (−19.2 ± 2.1% vs. −19.2 ± 1.8%) [56].
Therefore, normal myocardial strain values determined by CMR vary widely depending on
various clinical and technical parameters. In the study conducted by Pierpaolo et al., which
compared the agreement between manually traced strain and FT-CMR, they have shown poor
agreement between the two methods, especially for GLS and GRS [57]. Other variabilities in
terms of normal strain values and CMR techniques are presented in Table 2 [58–61].

Recently, an interesting article sought to assay the capacity and accuracy of fast-SENC
to evaluate LV volumes, function, and mass. Almost all the following measurements were
precisely determined using fast-SENC, requiring under two minutes of the total study time
and being way faster than standard cine-CMR. Nevertheless, LV end-diastolic mass was
underestimated by 7% [62]. Furthermore, in another study that aimed to test the accuracy of
fast-SENC-based LV myocardial strain, it has been shown that the intra- and inter-observer
reproducibility of this CMR method was excellent in terms of LV myocardial functioning
assessment [63]. Further studies that could expand the examination in acquiring LV
myocardial strain as well might be further conducted, being a very rapid CMR technique.

Table 2. LV myocardial strain variations in normal individuals (miscellaneous).

Authors Year n Method Findings

Mangion et al. 2019 88 healthy individuals FT-CMR with 3 T MR

GLS different significantly between genders:
−18.48 ± 3.65% (m) vs. −21.91 ± 3.01% (f)

GCS did not differ considerably
Aging did not influence GLS or GCS
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Table 2. Cont.

Authors Year n Method Findings

Andre et al. 2015 150 healthy individuals FT-CMR with 1.5 T MR

All the following varied significantly:
GLS endocardial: −22.2 ± 3.4% (m) vs.

−24.6 ± 2.9% (f)
GLS myocardial: −20.4 ± 3.1% (m) vs.

−22.9 ± 2.7% (f)
GRS: 37.9 ± 8.2% (m) vs. 34.8 ± 8.9% (f)
GCS endocardial: −26.5 ± 4.2% (m) vs.

−27.9 ± 3.7% (f)
GCS myocardial: −22.2 ± 3.4% (m) vs.

−24.6 ± 2.9% (f)

Aurich et al. 2016 47 healthy individuals FT-CMR vs. FT-Echo vs.
STE

STE:
GLS: −15.7 ± 5.0%
GCS: −14.6 ± 4.5%
GRS: 21.6 ± 13.3%

FT-Echo
GLS: −13.1 ± 4.0,
GCS: −13.6 ± 4.0,
GRS: 20.3 ± 9.5,

FT-CMR
GLS: −15.0 ± 4.0,
GCS: −16.9 ± 5.4
GRS: 35.0 ± 10.8

Best agreement was between FT-Echo and
FT-CMR for GLS

Bucius et al. 2019 11 healthy individuals
+ 7 with heart failure

FT-CMRvs. TT-CMRvs.
fast-SENC

FT-CMR
GLS: −23.5% (−22.0–−25.9)
GCS: −26.1% (−21.8–−27.8)

TT-CMR
GLS: −14.9% (−11.8–−16.9)
GCS: −17.8% (−16.4–−19.5)

Fast-SENC
GLS: −19.4% (17.1–20.7)
GCS: −20.3% (16.5–22.3)

Abbreviations: f, female subjects; Fast-SENC, fast Strain-encoding cardiac magnetic resonance; FT-CMR, feature-
tracking cardiac magnetic resonance; GCS, global circumferential strain; GLS, global longitudinal strain; GRS,
global radial strain; m, male subjects; n, number of subjects; TT-CMR, tissue-tagging cardiac magnetic resonance.

4.2. LV Myocardial Strain by CMR in Various Cardiovascular Diseases

In a recently published systematic review that evaluated the impact of GLS by both
echocardiography and CMR in patients with acute myocardial infarction, it was shown
that the latter technique exhibited major advantages in matters of tissue characterization
and resolution, regardless of the acoustic window. Nonetheless, larger cohort studies
are needed to objectify the real incremental prognostic value that might be deployed
by CMR in terms of LV strain characterization [64]. Moreover, a clinical-based study
conducted on 232 patients with ST-elevated myocardial infarction searched to appraise the
ability of LV myocardial strain determined by FT-CMR in predicting LV post-infarction
remodeling. All three global deformation measurements were associated with adverse
myocardial remodeling, although only GLS was an independent predictor for it after the
adjustment for imaging covariates. Furthermore, a GLS of over −14% increased the risk of
adverse remodeling 4 times, with an odds ratio of 4.16, p = 0.005, and provided significant
incremental predicting value for it [65]. Similarly, the same findings in terms of GLS were
also reported by Cha [66]. Likewise, the role of GCS as an independent predictor for late
LV myocardial remodeling after myocardial infarction has been proved in the study of
Holmes et al. [67].
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Latterly, fast-SENC is gaining more and more ground even in patients with ischemic
heart disease, due to its rapidity and reproducibility. In a recently published study, which
sought to compare fast-SENC and FT-CMR with STE in patients with acute myocardial
infarction, El-Saadi et al., have shown that in terms of GLS, fast-SENC provided higher
values than FT-CMR, but without any statistical significance as compared to STE. Moreover,
for GCS, the parameters determined by fast-SENC were almost equal to FT-CMR, while
as concerns the regional strain in the infarct-related artery, fast-SENC had a significantly
higher area under the curve in properly identifying the injured myocardial segments, in
contrast with FT-CMR [68]. Furthermore, Fong et al., conducted a systematic review and
meta-analysis in which they compared the utility of GLS in patients with both ischemic
and non-ischemic dilated cardiomyopathy. They found GLS as a prognostic predictor for
mortality in both groups of patients, however, its predictive ability was lower in those with
LVEF of under 30% [69].

In patients with dilated cardiomyopathy, TT-CMR was able to accurately determine
impaired LV strain parameters, even within the early stage of the disease [70]. Moreover, LV
deformation measurements by FT-CMR were related to the severity of basal dysfunction,
whereas GCS alone predicted the recovery of LV ejection fraction [71]. In another cohort
of 210 patients with dilated cardiomyopathy, GLS by FT-CMR was also an independent
predictor for cardiac death, heart transplant, and ventricular tachyarrhythmias, overcoming
GCS, GRS, LVEF, and biomarkers of heart failure [72]. In the study of Korosoglu et al.,
conducted on 1169 patients with various cardiovascular diseases, the authors sought to
evaluate the ability of a fast-SENC-derived strain to diagnose and stratify heart failure. They
have shown that the percentage of myocardial segments with impaired strain was able to
better identify patients with subclinical heart failure and to improve their risk stratification
than standard LV functional parameters [73]. Additionally, in the FT-CMR-based study
conducted on 740 patients with myocarditis, GLS was significantly associated with the
occurrence of major adverse cardiovascular events, including ventricular tachyarrhythmias,
heart failure hospitalization, and all-cause mortality, and proved to be an independent
predictor for them [74].

Moreover, in patients suffering from hypertrophic cardiomyopathy, impaired GCS
determined by FT-CMR along with LGE were found as independent predictors of ven-
tricular tachyarrhythmias [75]. In addition, a recently published study that sought to
evaluate the ability of LV deformation parameters to differentiate between hypertrophic
cardiomyopathy and hypertensive heart disease showed that GLS by FT-CMR signifi-
cantly discriminated between these two illnesses and was also strongly correlated to LGE,
T1-mapping, and LV mass [76]. Similarly, LV deformation parameters determined by
fast-SENC-CMR were also able to differentiate between athletes’ hearts, hypertrophic
cardiomyopathy, and hypertensive heart disease, respectively [77].

Lastly, the role of the LV strain by CMR to identify subclinical myocardial impairment
has been recently appraised. In paediatric patients with end-stage renal disease, GLS,
GCS, and GRS by TT-CMR, along with LV ejection fraction and mass, were significantly
inflicted, whereas GCS and GRS were associated with poor outcomes [78]. Furthermore,
more recently, it was shown that LV strain parameters by FT-CMR significantly improved
in pediatric patients with end-stage renal disease 1 year after renal transplantation [79].
Similarly, GLS and GCS by FT-CMR were significantly impaired in patients with rheuma-
toid arthritis, even though standard LV systolic function parameters remained unmodified.
In Table 3 [55,56,65–68,70–73,75,77,80–86] are summarized various CMR-based studies on
LV myocardial strain.
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Table 3. LV myocardial strain assessed by various CMR techniques.

Authors Ref Year n Method Diagnose Strain Findings

El-Saadi et al. [13] 2022 30 Fast-SENC vs.
FT-CMR AMI GLS, GCS Fast-SENC was superior

to FT-CMR

Reindl et al. [60] 2021 232 FT-CMR AMI GLS, GCS, GRS
GLS >

−14%—independent
predictor LV remodeling

Cha et al. [61] 2019 82 FT-CMR AMI GLS Independent predictor
for LV remodeling

Holmes et al. [62] 2017 141 FT-CMR AMI GCS Independent predictor
for LV remodeling

Singh et al. [73] 2015 18 FT-CMR AS GLS, GCS Higher values
Pozo

Osinalde
et al.

[64] 2021 N/A FT-CMR DCM GCS Predictor for LV systolic
function recovery

Yu et al. [63] 2017 48 TT-CMR DCM GLS, GCS Impaired parameters
Moody et al. [74] 2015 45 FT-CMR DCM GLS, GCS Good agreement

Buss et al. [65] 2015 210 FT-CMR DCM GLS Independent predictor
for outcome

Hor et al. [78] 2010 233 FT-CMR DMD GLS −13.3%

Pu et al. [68] 2021 93 FT-CMR HCM GCS Independent predictor
for VT

Harrild et al. [77] 2012 24 FT-CMR HCM GLS Good agreement

Giusca et al. [70] 2021 214 Fast-SENC HCM, Athletes’
hearts, AHT GLS Disease discrimination

Weise Valdes
et al. [57] 2021 181 fast-SENC Healthy GLS, GCS −20.3%, −19.2%

Erley et al. [79] 2019 50 fast-SENC Healthy GLS, GCS Good agreement
Taylor et al. [53] 2015 100 FT-CMR Healthy GLS, GCS, GRS −21.3%, −26.1%, 39.8%
Korosoglu

et al. [66] 2021 1169 Fast-SENC Heart failure GLS, GCS Independent prognostic
predictors for outcome

Wu et al. [75] 2014 30 FT-CMR LBBB, HCM GCS Good agreement
Augustine

et al. [76] 2013 145 FT-CMR normal GLS, GCS, GRS Good agreement

Abbreviations: AHT, arterial hypertension; AMI, acute myocardial infarction; AS, aortic stenosis; DCM, dilated
cardiomyopathy; DMD, Duchenne muscular dystrophy; Fast-SENC, fast Strain-encoding cardiac magnetic
resonance imaging; FT-CMR, feature-tracking cardiac magnetic resonance imaging; GCS, global circumferential
strain; GLS, global longitudinal strain; GRS, global radial strain; HCM, hypertrophic cardiomyopathy; LBBB,
left bundle branch block; LV, left ventricle;. N, number of patients; TT-CMR, tissue-tagging cardiac magnetic
resonance imaging; VT, ventricular tachyarrhythmias.

5. Clinical Utility of CMR in Evaluating LV Biomechanics
5.1. LV Wringing Parameters

Thus far, the association between LV torsion (Figure 1), twist and untwist, and cardiac
diseases has been supported by several experimental and clinical CMR studies. At a glance,
myocardial fibers strain following base-to-apex and endo-to-epicardium patterns ensure
a constant LV circumferential-to-longitudinal shear angle. In this regard, LV torsion is
molded during systole when the base and the apex rotate in opposite directions, clockwise
and counterclockwise, respectively. This phenomenon results from the normal physiology
of the myocardial fibers [87], which is significantly altered in pathological states. In patients
with ischemic heart disease, basal rotation was impaired at exertion leading to afflicted
LV torsion, while the apical spin remained unchanged, presumably as a compensatory
mechanism [88,89]. Conversely, in patients with dilated cardiomyopathy, inverted apical
rotation was the main reason for abnormal LV torsion [90].
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As previously stated by Rosen et al., when TT-CMR is used to determine LV torsion, the
peak systolic LV twist is divided by the inter-slice distance to ensure standardization [91].
Regarding FT-CMR, Kowallick et al., suggested that the best accuracy and feasibility are
guaranteed when apical and basal rotations are measured at 25% and 75% of the total
LV’s tip-to-base distance [92]. Additionally, if reference values are provided, various
post-processing software for CMR can be used to assess LV torsion [93]. Furthermore,
this parameter has promising results in risk stratification and prognosis prediction of
cardiovascular patients, although studies are just at the beginning. In both apparently
healthy elder subjects and diabetics, advanced age and hypertension were associated with
higher LV torsion, probably as a result of a balancing mechanism. In addition, it was
inversely correlated to the LV sphericity index [94,95]. In contrast, patients with myocardial
infarction showed considerably lower LV torsion and the severity of its impairment was
significantly associated with an increased risk of cardiovascular death, re-infarction, heart
failure hospitalization, and stroke [96]. Withal the standardization of LV torsion to LV
long-axis size and radius has led to the development of LV torsion shear angle as a more
precise parameter for myocardial remodeling and diastolic function [97]. By normalizing
its change rate to analogous variation in LV volume, the LV torsion shear angle was able
to accurately identify LV diastolic dysfunction invasively defined as elevated LV end-
diastolic pressure and prolonged time of LV relaxation in patients with heart failure and
preserved LVEF [98].
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LV torsion-to-shortening ratio, which is defined as the ratio between inner wall short-
ening and torsion at ejection, was developed to accurately characterize endocardial strain
and wringing. Essentially, this parameter is a precise marker of subendocardial myocardial
impairment, especially in subjects with LV hypertrophy [98]. In patients with aortic valve
stenosis (AS), LV torsion-to-shortening ratio determined by TT-CMR was considerably
higher when compared to controls, and, in addition, it significantly decreased at three
months after aortic valve replacement procedures [99]. FT-CMR has been recently proved
to be equally useful in determining impaired LV torsion-to-shortening ratio in patients
with AS [100]. Correspondingly, impaired LV torsion-to-shortening ratio and LV torsion
have been found even in patients with hypertrophy cardiomyopathy mutation and without
clinically overt disease, presumably due to subendocardial malfunction [101].

Over and above, a co-dependency between LV wringing and myocardial scarring has
been latterly reported. Intriguingly, reduced LV torsion, along with other abnormal LV
systolic parameters, was strongly related to the magnitude of myocardial fibrosis evidenced
by Masson’s staining [102]. Due to clinical availability, specific CMR techniques use late
gadolinium enhancement (LGE) and native and post-contrast T1-mapping techniques
to quantify irreversible replacement and diffuse interstitial fibrosis, respectively [103].
In dilated cardiomyopathy, the presence of LGE was associated with increased basal
rotation and decreased apical rotation, which led to defective LV torsion. Additionally, the
load of myocardial fibrosis was even higher in those with inverted apical rotation [104].
The presence of LV mid-wall fibrosis, a scarring pattern that is particular for dilated
cardiomyopathy, was also closely related to impaired LV torsion and rotation [84]. In
contrast, Csecs et al., have failed to prove a significant correlation between the presence and
extent of myocardial fibrosis and LV torsion and twist parameters in a well-defined cohort
of 239 patients with nonischemic dilated cardiomyopathy, thus suggesting that merely the
LV dilation and dysfunction themselves are responsible for impaired LV wringing [105,106].
Therefore, further research is required to correctly ascertain these findings.

As for LV twist, certain evidence concerning the impact of cardiac dysfunction on
LV twisting is beginning to emerge to expand the clinical utility of CMR [106]. FT-CMR
has been recently shown to have high feasibility and reproducibility in the evaluation of
ventricular twist and untwist [54,92]. Therefore, afflicted LV twist was associated with LV
enlargement and systolic dysfunction [107]. A recently published systematic review has
endorsed the utility of CMR to accurately determine LV untwist [108]. Moreover, Paetsch
et al., first demonstrated that in a low-dose dobutamine stress-CMR, LV untwist accurately
distinguished patients with ischemic heart disease from controls [109].

5.2. LV Functional Dynamic Geometry Measurements

Compelling evidence renders the utility of CMR-derived LV sphericity index in var-
ious cardiovascular diseases. Some reports have shown that LV sphericity is inversely
associated with LVEF, LV torsion, and mass-to-volume ratio, as well as with both global
and regional LV trabeculation indexes [95,110]. Likewise, it was able to correctly identify
dilated cardiomyopathy, since it is closely related to increased LV end-systolic volume
and decreased LVEF [111]. Correspondingly, by being directly related to sera levels of
N-terminal prohormone of brain natriuretic peptide, it may be used for the risk stratification
of patients with heart failure [110,112].

Furthermore, the LV sphericity index (Figure 2) is emerging as a novel tool to predict
the cardiovascular outcome. In patients with dilated cardiomyopathy, the LV sphericity
index significantly predicted major adverse cardiovascular events, including heart failure
hospitalization, ventricular tachyarrhythmias, and cardiac death, independent of decreased
LVEF and LGE [113,114]. Additionally, in the study of Nakamori et al., the LV sphericity
index was an effective marker of appropriate implantable cardioverter defibrillator therapy,
thus rightly forecasting ventricular tachyarrhythmias in patients with heart failure and
reduced LVEF [115]. Nonetheless, the LV sphericity index might also be useful to predict
the occurrence of cardiovascular disease in healthy subjects. In the MESA cohort, the
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LV sphericity index was found as a strong predictor for the occurrence of ischemic heart
disease, heart failure, and atrial fibrillation in initially healthy subjects after 10 years
of follow-up [116]. Conclusively, the LV sphericity index is a simple and reproducible
parameter, and larger cohort studies should be further conducted to correctly establish its
clinical utility.
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LV long-axis strain (Figure 2) is a novel indicator of LV systolic function, which can be
easily determined by FT-CMR, having high reproducibility and considerable predictive
ability [117]. Recently, Leng et al. have shown that standard cine-CMR can also deploy
effective and reproducible LV systolic parameters, including LV long-axis strain [118].
Cine-CMR-derived LV long-axis strain has proven non-inferior to FT-CMR-derived one in
identifying patients with various cardiomyopathies, being also more time-efficient [119].
Moreover, it was significantly impaired in diabetic patients without clinically overt cardiac
disease, even after adjustment for clinical and biological covariates [92]. In the MESA
cohort population, impaired LV long-axis strain significantly predicted congestive heart
failure, cardiovascular death, stroke, and myocardial infarction, even in subjects without
clinically overt cardiovascular illnesses [120]. Likewise, the utility of LV long-axis strain
for the prediction of cardiac outcome has also been shown in cardiac amyloidosis, aortic
stenosis, and dilated cardiomyopathy [113,117,121]. In addition, it may also improve risk
stratification in patients with non-ischemic dilated cardiomyopathy [122]. As for patients
with myocardial infarction, impaired LV long-axis strain independently predicted major
adverse cardiovascular events at the one-year follow-up [12].
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5.3. Cardiac Pressure-Volume Loops by CMR

The basic principle of cardiac active biomechanics can be summed up by the relation-
ship between the pressure and volume gradients that develop throughout every cardiac
cycle. The close connections between these two physical phenomena have deployed specific
pressure-volume curves, which can be used to accurately assess cardiac function. Moreover,
specific surrogates of cardiac biodynamics which can precisely estimate myocardial con-
tractility, ventricular-arterial coupling, end-systolic (ESPVR), and end-diastolic (EDPVR)
pressure-volume relations can be derived from such measurements. However, the main
disadvantage of these measurements is that, until now, they could have been accurately
determined only by invasive conductance catheterization [12,123].

Recent studies have begun to deploy hybrid methods that may assess these parameters
by combining cine- and velocity-encoded CMR with transient closure of IVC with venous
catheters, thus mimicking the preload reduction in cardiac volumes. It was shown that CMR
can evaluate the topmost right ventricular pressure during isovolumic normal heartbeats.
This may be used to determine ESPVR (Figure 3), yielding it as a potential reliable option
to accurately estimate myocardial contractility and ventricular-arterial coupling [124].
Subsequently, Kuehne et al., revealed that venous catheters can be positioned into the
pulmonary artery under real-time CMR guidance and, by combining with CMR-determined
ventricular volumes and mass, right ventricular pressure-volume loops and ESPVR can be
determined. In murine models, they matched these measurements with those determined
invasively and found excellent inter-agreements. Moreover, in human subjects, they tested
the method on patients with pulmonary hypertension and healthy controls. They found
that in the diseased group, cardiac index and ventricular-arterial coupling were significantly
afflicted, while ESPVR was increased [125].
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Likewise, using a similar principle, few pilot studies rendered the utility of CMR
to determine EDPVR. In the study of Schmitt et al., pressure-volume curves were ini-
tially determined invasively by conductance catheterization. Afterward, using cine- and
velocity-encoded CMR along with cardiac pre-load decrease by temporary inferior vena
cava occlusion, the authors deployed a hybrid method to estimate EDPVR as a marker
of LV stiffness. Not only did they succeed to demonstrate excellent agreement between
the two methods, but these measurements were dynamically influenced by pharmaco-
logical stress, thus improving diastolic function parameters in a similar manner to those
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determined strictly by conductance catheterization. Nevertheless, these promising findings
require larger studies to validate their clinical utility [126]. Additionally, a murine study
proposed a novel method that uses real-time CMR with shorter acquisition timing for car-
diac pressure-volume assessment which can be used to continuously determine ventricular
volumes, ESPVR, and preload recruitable stroke work as well as eliminate several existing
shortcomings. Nonetheless, these methods require larger cohort validation [127]. By the
same token, Giao et al., demonstrated the use of real-time CMR in the estimation of ESPVR
during inferior vena cava obstruction. They showed that this method provides relevant
data regarding LV geometry and regional function and, thus, emphasized the importance
of LV shape and segmental biomechanics in maintaining cardiac performance [128].

Moreover, the clinical efficacy of these was first evaluated in murine models by Faragli
et al., who sought to assess the relationship between determined LV strain parameters
and hemodynamical parameters such as cardiac index, cardiac power output, and ESPVR
determined by FT-CMR in various stress conditions. Despite several technical and an-
alytical drawbacks that relatively lowered the statistical power, LV global longitudinal
and circular strain were closely related to all LV hemodynamic measurements, regardless
of the inotropic state, while LV global longitudinal performed best in assessing LV con-
tractility, similar to LVEF. Therefore, FT-CMR might become a promising technique for
evaluating LV hemodynamics; however, future studies are required for the optimization of
this method [129].

Last but not least, by creating a time-variance elastance mode, Seeman et al., were
the first to develop a completely non-invasive method that uses solely CMR and brachial
pressure to assess LV pressure-volume loops, thus overcoming the need for IVC occlusion.
Firstly, they tested and validated this method in murine models and further confirmed it in
human subjects by comparing patients with heart failure with healthy controls [13].

6. Future Perspectives

Even though the role of CMR in determining myocardial strain and biomechanical
parameters is gaining serious ground, there are still many uncertainties that need to be
unraveled. FT-CMR has been proven to be a useful CMR method in assessing myocardial
strain, but there is still insufficient evidence in terms of various cardiovascular diseases.
Further studies should be conducted in patients with valvular heart disease, such as aortic
stenosis or mitral regurgitation, in order to test the predictive ability of myocardial strain
parameters in prognosis prediction. Moreover, there are not any available data regarding
the role of FT-CMR-derived myocardial strain in patients with cardiac amyloidosis or other
infiltrative heart diseases, which might provide information of tremendous importance in
risk stratification and prognosis prediction. Further studies could also aim to test the ability
of FT-CMR in creating multi-parametric predictive models based on LV wringing parame-
ters in various cardiomyopathies or myocarditis. Additionally, there is little evidence of the
role of FT-CMR-derived strain and biomechanics in patients with acute myocarditis.

As for fast-SENC, it is a promising valuable CMR imaging technique that might enter
day-to-day practice in the future, but more studies still need to be conducted. Although few
studies have shown the superior ability of fast-SENC-derived myocardial strain parameters
in risk stratification and prognosis prediction of patients with acute myocardial infarction,
there are no studies conducted in patients with various primary myocardial diseases, thus,
this could represent a valuable research direction. Moreover, the ability of fast-SENC to
deploy LV wringing and functional dynamic geometry parameters represents another
uncharted territory.

As for routine clinical applicability, things are still in their infancy. FT-CMR might
become a promising option in daily medical practice because it uses standard cine-CMR
acquisitions. Additionally, semi-automated or automated software might aid the evaluation.
Furthermore, fast-SENC is another promising technique that might significantly reduce the
acquisition time for CMR examinations. Nonetheless, due to great disparities in results,
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which depend on the method of acquisition and data processing, further studies still need
to be conducted.

7. Conclusions

The role of CMR in assessing LV myocardial strain and biomechanics is beginning to
take shape. Recent technological advancements in the field of CMR, such as fast-SENC
and FT-CMR, are able to ensure increased accuracy in evaluating myocardial strain, LV
wringing, and active geometry parameters and, along with these developments, increasing
evidence endorses their future clinical ability. Even though things are just at the beginning,
few yet important studies have shown the tremendous potential which lies behind LV
strain and biomechanics.
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