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Abstract: Several studies have demonstrated the difficulties in distinguishing malignant lesions of the
breast from benign lesions owing to overlapping morphological features on ultrasound. Consequently,
we aimed to develop a nomogram based on shear wave elastography (SWE), Angio Planewave
Ultrasensitive imaging (Angio PLUS (AP)), and conventional ultrasound imaging biomarkers to
predict malignancy in patients with breast lesions. This prospective study included 117 female
patients with suspicious lesions of the breast. Features of lesions were extracted from SWE, AP,
and conventional ultrasound images. The least absolute shrinkage and selection operator (Lasso)
algorithms were used to select breast cancer-related imaging biomarkers, and a nomogram was
developed based on six of the 16 imaging biomarkers. This model exhibited good discrimination
(area under the receiver operating characteristic curve (AUC): 0.969; 95% confidence interval (CI):
0.928, 0.989) between malignant and benign breast lesions. Moreover, the nomogram also showed
demonstrated good calibration and clinical usefulness. In conclusion, our nomogram can be a
potentially useful tool for individually-tailored diagnosis of breast tumors in clinical practice.

Keywords: breast neoplasms; shear wave elastography; diagnosis; nomogram; ultrasonography

1. Introduction

Breast cancer is the most common neoplasm and leading cause of cancer-related deaths
among the female population worldwide [1]. In addition, early and accurate diagnosis is of
great significance in improving the prognosis of breast cancer patients [2]. Conventional
ultrasound (US) is an important screening modality for early detection of breast lesions
owing to its cost-effectiveness and the advantage of being radiation-free [3]. However,
several studies have demonstrated the difficulties in distinguishing malignant lesions of the
breast from benign lesions with overlapping morphological features on ultrasound [4–6].
In the era of precision medicine, multimodal ultrasound diagnosis of breast tumors has
become the general trend. Moreover, shear wave elastography (SWE) and Angio Planewave
ultrasensitive imaging (Angio PLUS (AP)) are new ultrasound techniques that have recently
been used in the diagnosis of breast tumors [7–9].

SWE is an imaging technique that excites the lesional tissue by pushing ultrasound
radiation force to generate shear waves. The ultrasound imaging system then captures
these waves and encodes them to a color map overlying the grey-scale B-mode image [10].
The properties of malignant lesions tend to be heterogeneous and stiffer than benign
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ones on the color map. Another advantage of SWE is that it can evaluate the stiffness of
lesions quantitatively by measuring elasticity parameters in region of interest (ROI), such
as Elasticity maximum (E-max), Elasticity mean (E-mean), Elasticity minimum (E-min),
and Elasticity standard deviation (E-sd), etc. [11]. Previous studies have demonstrated
that regardless of whether the stiffness of lesions is assessed qualitatively or quantitatively,
SWE can be used as a supplementary examination method to improve the diagnostic
performance of a breast tumor [12–14].

Color Doppler Flowing Imaging (CDFI) and power Doppler Imaging (PDI) are widely
used to display the number and characteristics of blood vessels within breast lesions. How-
ever, several studies have shown that it may be difficult for CDFI and PDI to differentiate
the microvasculature within breast lesions [15,16]. AP is a novel doppler technique that
can obtain improved microvascular blood flow signals compared to CDFI, by transmitting
plane waves rather than a focused ultrasound pulse. Furthermore, it can significantly
enhance the spatial resolution of the microvasculature through the three-dimensional wall
filter system [17].

Stiffness and vascularity are two important and complementary features of breast
lesions. Therefore, we hypothesized that additional tools used in adjunct with conven-
tional ultrasound—i.e., SWE and AP—might help improve the diagnostic accuracy for
the differentiation of benign and malignant breast tumors. In addition, the nomograms
provide clinicians with a quantitative way to determine the probability of disease based
on individual characteristics. However, to the best of our knowledge, there is no previ-
ous model for differentiating between malignant and benign breast tumors by combining
conventional ultrasound, SWE, and AP. Therefore, the aim of our study is to develop a
nomogram based on SWE, AP, and conventional ultrasound imaging biomarkers to predict
malignancy in patients with breast lesions, which would provide a visible way to quickly
obtain a patient’s individual chances of having breast cancer.

2. Materials and Methods
2.1. Patient Selection

This prospective study was approved by the Ethics Committee of The First Affiliated
Hospital of Shenzhen University (20220901004). We recruited female patients with sus-
picious breast lesions between December 2021 and August 2022. The inclusion criteria
were as follows: (i) female patients aged 18 years or older; (ii) patients with solid masses
in the breast that had undergone complete US, SWE, and AP examinations; (iii) patients
scheduled for surgery or ultrasound-guided needle biopsy, and (iv) those with multiple
suspicious masses of the breast (in such an event, the most suspicious lesion was selected
for further analysis). The exclusion criteria were as follows: (i) pregnant or lactating
patients; (ii) patients that had undergone breast surgery, chemotherapy or radiotherapy
before the examination; (iii) patients whose radiographic imaging quality did not meet the
requirements, and (iv) patients with breast lesions with a maximum diameter greater than
30 mm (as this maximum diameter of breast lesions exceeds the maximum diameter of the
sampling frame of SWE). A schematic diagram of the inclusion and exclusion criteria is
shown in Figure 1.

2.2. Ultrasound Image Acquisition

Conventional ultrasound, AP, and SWE examinations were conducted with a Super-
sonic Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France) using a 15–4 probe.
All examinations were performed by a single sonographer with 6 years of experience in
breast imaging.

Initially, patients were positioned in a supine position with their ipsilateral arm raised,
and conventional ultrasound including grey-scale ultrasound and CDFI was performed.
Then, when a target lesion was detected, the features of the lesion were clearly depicted
according to the fifth edition of Breast Imaging Reporting and Data System (BI-RADS).
Regarding AP examination, we applied the abundant gel and minimal pressure with the
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transducer to avoid obliterating the microvasculature within the lesions. More importantly,
we obtained static images and video clips from the layer with the most abundant blood
vessels and no noise. In addition, the following were the details of the applied settings:
color velocity scale, 2 cm/s; wall filter, medium; frame rate, medium; dynamic range,
medium, and turn on flash suppression mode.

Diagnostics 2023, 13, x FOR PEER REVIEW 3 of 15 
 

 

 

Figure 1. Flow diagram for the patient selection process. AP: Angio Planewave Ultrasensitive Im-

aging; SWE: Shear Wave Elastography. 

2.2. Ultrasound Image Acquisition 

Conventional ultrasound, AP, and SWE examinations were conducted with a Super-

sonic Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France) using a 15–4 

probe. All examinations were performed by a single sonographer with 6 years of experi-

ence in breast imaging.  

Initially, patients were positioned in a supine position with their ipsilateral arm 

raised, and conventional ultrasound including grey-scale ultrasound and CDFI was per-

formed. Then, when a target lesion was detected, the features of the lesion were clearly 

depicted according to the fifth edition of Breast Imaging Reporting and Data System (BI-

RADS). Regarding AP examination, we applied the abundant gel and minimal pressure 

with the transducer to avoid obliterating the microvasculature within the lesions. More 

importantly, we obtained static images and video clips from the layer with the most abun-

dant blood vessels and no noise. In addition, the following were the details of the applied 

settings: color velocity scale, 2 cm/s; wall filter, medium; frame rate, medium; dynamic 

range, medium, and turn on flash suppression mode.  

SWE examination was carried out at the largest diameter of the target mass after the 

US and AP examinations. A large amount of gel and minimal precompression were ap-

plied to reduce artifactual stiffness. First, patients were asked to hold their breath for a 

few seconds to obtain a stable color map. The stiffness range of the color map was 0–180 

kPa, which was indicated by a gradient of blue to red colors. Next, we traced the target 

lesion to measure its stiffness parameters, such as E-max, E-mean, E-min, and E-sd. Lastly, 

we measured the stiffness ratio (E-ratio) of the lesion compared to the surrounding adi-

pose tissue by placing two ROIs, each of 2 mm diameter, at the same depth as that of the 

lesion. In addition, all measurements were repeated at least three times, and details about 

individual parameter definitions are presented in Appendix A. 

2.3. Ultrasound Image Evaluation  

Two experienced sonographers independently analyzed DICOM-formatted images 

exported from the Supersonic Explorer system. Additionally, two experienced sonog-

raphers were blinded to the pathological examination results.  

Figure 1. Flow diagram for the patient selection process. AP: Angio Planewave Ultrasensitive
Imaging; SWE: Shear Wave Elastography.

SWE examination was carried out at the largest diameter of the target mass after the US
and AP examinations. A large amount of gel and minimal precompression were applied to
reduce artifactual stiffness. First, patients were asked to hold their breath for a few seconds
to obtain a stable color map. The stiffness range of the color map was 0–180 kPa, which was
indicated by a gradient of blue to red colors. Next, we traced the target lesion to measure
its stiffness parameters, such as E-max, E-mean, E-min, and E-sd. Lastly, we measured the
stiffness ratio (E-ratio) of the lesion compared to the surrounding adipose tissue by placing
two ROIs, each of 2 mm diameter, at the same depth as that of the lesion. In addition, all
measurements were repeated at least three times, and details about individual parameter
definitions are presented in Appendix A.

2.3. Ultrasound Image Evaluation

Two experienced sonographers independently analyzed DICOM-formatted images ex-
ported from the Supersonic Explorer system. Additionally, two experienced sonographers
were blinded to the pathological examination results.

The imaging biomarkers of conventional ultrasound were defined as follows: (i) tu-
mor size, maximum; (ii) shape, regular or irregular; (iii) margin, circumscribed or not
circumscribed; (iv) depth-width ratio (DWR) > 0.7, present or absent [18]; (v) echo pattern,
hypoechoic, isoechoic, hyperechoic, or heterogeneous; (vi) microcalcifications, breast mi-
crocalcifications which are tiny calcium deposits that can be seen on ultrasound imaging
and range in size from 0.1 to 1.0 mm [19], present or absent; (vii) halo, present or absent,
and (viii) posterior features, no posterior acoustic features, enhancement, shadowing, or
combined pattern (Figure 2).

Two methods were used to analyze the microvascularity of breast lesions on AP
examination: Adler classification and microvascular distribution pattern (MVDP). Adler
classification is a widely used method to evaluate the blood flow abundance of the tumor.
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The blood flow signal of the lesion was classified as follows: grade 0 refers to no vascular
signal; grade 1, the detection of 1 or 2 small blood vessels with a diameter of <1 mm;
grade 2, the detection of 3 or 4 small blood vessels, and grade 3, the detection of more
than four blood vessels, or the detection of blood vessels intertwined into a network [20].
MVDP is a method to evaluate the microvascular architecture of lesions and it was used
to differentiate between benign and malignant breast lesions in previous studies [21–23].
Based on the morphological characteristics of microvessels, MVDP can be classified into
five patterns: (i) non-vascular pattern, lack of vessel signals; (ii) linear or curvilinear pattern,
single or a few dot-like or linear vessel signals seen in target lesion; (iii) tree-like pattern,
vessels which branch proportionally within the lesion; (iv) root hair-like pattern, disordered
arrangement of blood vessel signals and less than two dilated and distorted blood vessels
around, and (v) crab claw-like pattern, characterized by radial vessels, with many branch
vessels in the surrounding area of the lesions (Figure 3).
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Figure 2. Conventional ultrasound evaluation of breast lesions. (a) An irregular-shaped, circum-
scribed, hypoechoic mass with depth-width ratio < 1, with microcalcifications, absent halo, and
no posterior acoustic features. US-guided core needle biopsy revealed this lesion to be an adeno-
myoepithelioma. (b) An irregular-shaped, non-circumscribed, hypoechoic mass with depth-width
ratio < 1, with no microcalcifications, presence of halo, and posterior acoustic enhancement features.
Surgical pathology revealed this lesion to be an invasive ductal carcinoma.
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Figure 3. Microvascular distribution pattern of AP. (a) Non-vascular pattern; (b) Linear or curvilinear
pattern; (c) Tree-like pattern; (d) Root hair-like pattern; (e) Crab claw-like pattern.

The “stiff rim” sign is a color pattern on the SWE image and is of great help for
differential diagnosis of breast tumors [24]. The “stiff rim” sign appears locally at the
margin of the lesion and forms a closed circle (Figure 4a). As for quantitative evaluation
of stiffness of lesions, we recorded the average measurements of E-max, E-mean, E-min,
E-sd and E-ratio of breast lesions (Figure 4b,c). Their cut-off values were determined using
receiver operating characteristic (ROC) curves analysis.
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Figure 4. SWE evaluation of breast lesions. (a) A breast lesion with “stiff rim” sign on SWE image;
(b) E-max, E-mean, E-min, and E-sd is automatically calculated by the system after we traced the
entire target lesion. (c) E-ratio is automatically calculated by the system after two ROIs with a
diameter of 2 mm were identified at the same depth as that of the lesion.

2.4. Histopathological Evaluation

The pathological findings of US-guided core needle biopsy or surgery were inter-
preted. Accordingly, a pathologist with more than ten years of experience, blinded to the
ultrasonographic findings, gave a diagnosis.

2.5. Development of the Nomogram

The least absolute shrinkage and selection operator (Lasso) penalty is a regression
analysis method that performs both variable selection and regularization [25]. In our study,
Lasso penalty was performed to select the most significant features from conventional ultra-
sound, SWE, and AP imaging biomarkers. Afterward, the nomogram was developed using
the independent predictors selected by Lasso to generate a combined imaging biomarker
for estimating the probability of breast cancer.

2.6. Validation of the Nomogram

Our nomogram was internally validated by using 500 bootstrap samples. Additionally,
three main aspects of validation of the nomogram are: discrimination, calibration, and
clinical usefulness.

Area under the receiver operator characteristic (ROC) curve (AUC) analysis was
conducted to assess the discriminative performance of the nomogram. In addition, the
calibration curve was also plotted to evaluate the deviation between the estimated and
actual probability [26]. Lastly, decision curve analysis (DCA) was performed to mani-
fest the clinical usefulness of the nomogram by quantifying the net benefit at different
probability thresholds [27].

2.7. Statistical Analysis

All statistical analyses were conducted using EmpowerStats (R) (X&Y Solutions, Inc.,
Boston, MA, USA) and R software, version 4.2.1 (http://www.r-project.org accessed on
31 October 2022).

Medians and interquartile ranges described continuous variables that do not conform
to the normal distribution, while frequencies and percentages described categorical vari-
ables. Next, chi-squared, and Kruskal–Wallis tests were used to assess group differences in
categorical and continuous variables, respectively. In addition, Lasso logistic regression was
conducted to select the most associated imaging biomarkers of breast cancer; ROC curve
analyses were employed to evaluate the diagnostic accuracy of the candidate ultrasound
imaging biomarkers. Lastly, the detailed packages of the development and validation of
the nomogram in this study are presented in Appendix B.

All statistical tests were two-sided with statistical significance set at a p value of <0.05.

http://www.r-project.org
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3. Results
3.1. Patient Characteristics

According to pathological diagnosis, 117 patients with 117 lesions were included in
the study: 72 patients (61.5%) with benign breast tumors and 45 patients (38.5%) with
malignant tumors. The median age of the malignant group was significantly higher than
that of the benign group. In addition, the size of lesions in the malignant group was
significantly larger than in the benign group (17.5 mm versus 11.4 mm, respectively).

Conventional ultrasound findings depicting shape, DWR, margin, echo pattern, mi-
crocalcification, and posterior features are shown in Table 1.

Table 1. Baseline characteristics of enrolled patients.

Benign Group Malignant Group p Value

72 45

Sex

Male 0 0 NA

Female 72 45 NA

Age (y) 39.0 (32.0–46.0) 43.0 (37.0–54.0) 0.008

Tumor Size (mm) 11.4 (8.9–15.9) 17.6 (12.1–23.2) 0.001

Shape <0.001

Regular 31 0

Irregular 41 45

DWR > 0.7 0.005

Absent 55 23

Present 17 22

Margin <0.001

Circumscribed 36 5

Not circumscribed 36 40

Echo pattern 0.021

Hypoechoic 46 29

Isoechoic or hyperechoic 18 4

Heterogeneous 8 12

Microcalcification <0.001

Present 18 26

Absent 54 19

halo

Present 4 17 <0.001

Absent 68 28

Posterior features 0.007

Enhancement 22 16

Shadowing 7 11

None 42 14

Combined pattern 1 4

AG

Grade 0 10 1 <0.001

Grade 1 32 5

Grade 2 14 14

Grade 3 16 25
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Table 1. Cont.

Benign Group Malignant Group p Value

MVDP

Non-vascular 10 1 <0.001

Linear or curvilinear 31 3

Tree-like 25 0

Root hair-like 5 12

Crab claw-like 6 29

Stiff rim sign

Present 6 34 <0.001

Absent 66 11

E-max (kPa) 38.2 (28.6–46.5) 139.3 (92.3–205.1) <0.001

E-max > cut-off (76.2)

Yes 7 36 <0.001

No 65 9

E-mean (kPa) 18.3 (13.7–22.8) 40.8 (26.4–60.5) <0.001

E-mean > cut-off (25.4)

Yes 10 35 <0.001

No 62 10

E-min (kPa) 3.6 (0.5–8.5) 0.1 (0.1–0.9) 0.944

E-min > cut-off (12.9)

Yes 3 4 0.295

No 69 41

E-sd (kPa) 6.9 (5.2–8.3) 27.2 (15.7–42.2) <0.001

E-sd > cut-off (14.6)

Yes 7 34 <0.001

No 65 11

E-ratio 1.8 (1.4–3.3) 7.2 (4.8–10.2) <0.001

E-ratio > cut-off (5.3)

Yes 5 33 <0.001

No 67 12

Continuous variables that do not conform to the normal distribution were described by medians (inter-quartile
range). AG: Adler Grade; DWR: depth-width ratio; MVDP: microvascular distribution pattern; E-max: Elasticity
maximum; E-mean: Elasticity mean; E-min: Elasticity minimum; E-sd: Elasticity standard deviation; E-ratio: the
stiffness ratio of the lesion compared to the surrounding adipose tissue calculated by placing two ROIs of 2 mm
diameter at the same depth as that of the lesion.

According to SWE findings, E-max in the malignant group was significantly higher
than that in the benign group (139.3 kPa versus 38.2 kPa, respectively). Additionally,
the medians of E-mean and E-sd in the malignant group were 40.8 kPa and 27.2 kPa,
respectively, which were significantly higher than that in the benign group (18.3 kPa and
6.9 kPa, respectively). However, the E-min showed no significant difference between
malignant and benign groups (p = 0.944). In the malignant group, there were 34 lesions
with “stiff rim” sign (34/45), while in the benign group, there were only 6 lesions (6/72). In
terms of AP findings, the blood flow signal of the tumor in the benign group was mainly
graded as 0 and 1 (42/72), while the tumor blood flow signal in the malignant group was
mainly graded as grade 2 and 3 (39/45). In addition, non-vascular patterns, linear or
curvilinear patterns, and tree-like patterns were mainly present in the benign group (61/72).
In contrast, root hair-like patterns and crab claw-like patterns were mostly observed in the
malignant group (41/45).

Comparisons of multi-imaging biomarkers of ultrasonography between the benign
and malignant groups are presented in Table 1.
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3.2. Pathological Findings

The histopathologic diagnoses of the 117 breast lesions (72 benign and 45 malignant)
are shown in Table 2.

Table 2. Pathological Findings of lesions.

Pathology Result Number of Lesions (%)

Benign 72 (61.5%)
Adenosis 34 (29.1%)

Fibroadenoma 24 (20.5%)
Intraductal papilloma 7 (6.0%)

Chronic mammary inflammation 3 (2.6%)
Ductal epithelial hyperplasia 3 (2.6%)

Adeno-myoepithelioma 1 (0.8%)
Malignant 45 (38.5%)

Ductal carcinoma in situ 9 (7.7%)
Invasive ductal carcinoma grade 1 6 (5.1%)
Invasive ductal carcinoma grade 2 12 (10.3%)
Invasive ductal carcinoma grade 3 8 (6.8%)
Invasive lobular carcinoma grade 1 3 (2.6%)
Invasive lobular carcinoma grade 2 3 (2.6%)
Invasive lobular carcinoma grade 3 2 (1.7%)

Neuroendocrine carcinoma 2 (1.7%)
Data are presented as numbers (percentages).

3.3. Feature Selection and Nomogram Construction

Among the 16 multiparametric ultrasound features, six predictors were associated
with breast malignant tumors according to the Lasso regression. The candidate imaging
biomarkers were “tumor shape”, “tumorDWR”, “tumor margin”, “tumor E-max”, “tu-
mor E-ratio”, and “tumor MVDP” (Figure 5a,b). The formula to calculate the score was
as follows:

−22.95803 + [1.67276 ∗ DWR] + [19.06989 ∗ Shape] + [1.05506 ∗ Margin] + [1.01657 ∗ E-max]+
[1.95513 ∗ E-ratio] + [2.35704 ∗ MVDP].
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Afterward, the nomogram was developed based on the above six risk factors of breast
cancer (Figure 6). According to this study, the nomogram’s sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV) are 95.6%, 90.3%, 86.0%,
97.0%, respectively.
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Figure 6. A nomogram to predict the risk of breast cancer for patients with breast lesions. DWR:
depth-width ratio; E-max: Elasticity maximum; E-ratio: Ratio of Elasticity of lesion to normal tissue;
MVDP: microvascular distribution pattern; *, non-vascular pattern, linear or curvilinear pattern and
tree-like pattern; **, root hair-like pattern and crab claw-like pattern.

3.4. Validation of the Nomogram

The nomogram was internally validated by 500 bootstrap samples to decrease the
overfit bias. In addition, the nomogram for malignancy prediction exhibited an ideal AUC
of 0.965, with −91.6% sensitivity, 91.1% specificity, 94.2% PPV, and 87.2% NPV (Figure 7). In
addition, the calibration curve of our model showed a relatively satisfying result consistency
between the predicted probability and the actual probability (Figure 8). As a final note,
the result of DCA demonstrated that patients with breast lesions across a considerable
threshold range can benefit from our model (Figure 9).
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Figure 8. The calibration curve of our model. The y-axis represents the actual probability of breast
malignancy, and the x-axis represents the observed probability. The red line represents the perfect
prediction of an ideal model. The black line represents the predictive performance of our model, and
the yellow shaded area represents our model’s 95% CI. Our model demonstrates good consistency
between predicted and actual probabilities.
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Figure 9. DCA of the nomogram. The y-axis represents the net benefit, and the x-axis represents the
threshold probability. The red line represents the assumption that all patients tested positive and
were all tested. The green line represents the assumption that all patients tested negative and all were
not tested. The blue line represents the net benefit of our model as the threshold probability changes.
It shows that our model can benefit patients with breast lesions across a considerable threshold range.
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4. Discussion

In our current study, we first developed and validated a novel nomogram combining
conventional ultrasound, AP, and SWE imaging biomarkers to predict malignancy in
patients with breast lesions. Furthermore, the discrimination performance of our model
was found to be relatively encouraging, and there was good agreement between the
predicted and actual probability of breast malignancy according to the calibration curve. In
addition, the nomogram was found to be clinically useful as per DCA.

Two-dimensional gray-scale ultrasound can obtain real-time morphological informa-
tion of breast masses, which helps to distinguish between benign and malignant breast
masses [28]. However, it suffers from relatively low specificity for detecting malignant
breast lesions [29]. In addition, several studies have shown that the vascularity and stiffness
of breast tumors are also important features in distinguishing malignant from benign breast
tumors [30–32]. Consequently, the rationale for this study was that a nomogram focused
on these aspects would help improve the prediction of malignant breast lesions, and this
may be the reason for the relatively encouraging results.

Compared to a previous similar study using a combination of conventional ultra-
sound, AP, and SWE to differentiate breast tumors, our study achieved better diagnostic
performance, and this may be attributed to the fact that we used both qualitative and
quantitative parameters of SWE, whereas the other study only used qualitative parameters
of SWE. In addition, they used seven color patterns of SWE to distinguish between benign
and malignant breast masses, and these patterns are not easy to distinguish in clinical
practice [33]. A previous study applied qualitative parameters of SWE such as E-max and
E-ratio to distinguish benign from malignant breast masses, i.e., the same parameters as
those used by us. However, they had a slightly lower diagnostic efficiency (AUC = 0.849)
than our model (AUC = 0.973) [34]. It may be because they selected vascular index (VI) to
assess breast tumor vasculature, while we chose to use MVDP, which has been shown to
be a better imaging biomarker of diagnostic efficacy in previous work [35]. Additionally,
they used ROI to measure the SWE parameters of breast lesions. However, in case of
lesions with irregular shapes, covering the whole lesion with a round or rectangular ROI
becomes difficult. On the contrary, we traced the entire breast mass and the machine
automatically calculated the SWE parameters. We propose that this measurement method
can theoretically reflect the SWE parameters of the breast lesions more truthfully.

Contrast Enhanced Ultrasound (CEUS) is a pure blood pool imaging technology that
enhances the ultrasonic backscattering effect of intravascular contrast agents by the injected
contrast agents; CEUS is widely used to assess the microvasculature of breast lesions [36].
The diagnostic performance of our model was similar to that of a previous study combining
SWE and CEUS parameters in the diagnosing of breast tumors [37]. However, CEUS is
a relatively invasive examination, and its extensive clinical application is limited by its
relatively high cost and potential allergic reactions caused by the contrast agents. On the
contrary, AP is a contrast agent-free, microvascular, ultrasound imaging modality. Hence,
compared with this study, cost-effectiveness and non-invasiveness are two important
advantages of our model.

BI-RADS is a classification system widely used to assess the likelihood of malignancy
of breast tumors. According to the degree of suspiciousness of malignancy, lesions are
divided into benign (category 2 and 3), indeterminate (category 4), and malignant (category
5) [28]. A needle biopsy is recommended for masses that are classified as category 4 or
higher to clarify their nature. However, previous research has shown that more than
half of these lesions are proven to be benign on pathological assessment of the biopsy
samples [38]. Therefore, our research is significant because it has the potential to help
sonographers choose the most valuable imaging biomarkers for diagnosis and to improve
the differentiation of benign and malignant breast tumors for each patient based on disease
likelihood and individually tailored assessments via the nomogram. We believe that using
our nomogram will not only assist clinicians and patients in deciding whether needle
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biopsy should be performed or not, but also avoid unnecessary surgery in patients with
benign breast lesions.

Some limitations of our study should be acknowledged. First, our study is a single-
center, prospective cohort with a relatively small sample size, which limits the general-
izability of the findings. Future large-scale, multi-center studies are needed to add to
the database. Second, there are no external validation datasets available, although we
performed the 500 bootstrap samples for internal validation. Hence, this prediction tool
seems to have reasonable clinical utility; however, further validation in external datasets
is necessary. Lastly, limited by the size of the sampling frame of the SWE image, we
only included breast masses with the largest diameter of ≤30 mm, which may have intro-
duced a selection bias. Further comprehensive studies are therefore required to resolve
these issues.

5. Conclusions

In summary, we developed a nomogram based on SWE, AP, and conventional ultra-
sound imaging biomarkers to predict malignancy in patients with breast lesions. Further-
more, our model demonstrated relatively satisfactory discrimination between malignant
and benign lesions as well as good calibration and clinical usefulness. Therefore, our
nomogram can be a potentially useful tool for an individually tailored diagnosis of breast
tumors in clinical practice.
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Appendix A. Detailed Descriptions of Shear Wave Elastography Parameters

In SWE, ultrasound radiation forces are applied, inducing shear waves in tissue. The
propagation of the shear wave (shear wave velocity “v”) correlates with tissue elasticity
represented by Young’s modulus (E). Young’s modulus can be estimated by the following
formula: E = 3ρv2. Therefore, E-max is defined as the maximum value of the Young’s
modulus of the mass. By analogy, E-mean is defined as the mean value of Young’s modulus
of the mass and E-min is defined as the minimum value of Young’s modulus of the mass.
In addition, E-sd was described as the difference between each value of Young’s modulus
of the lesion and the E-mean. E-ratio was defined as the ratio of the value of the Young’s
modulus within the tumor to the value of the Young’s modulus of the normal fat tissue at
the same depth.

Appendix B. Details of the R Software Package Used in Our Study

The “glmnet” packages were used for Lasso logistic regression. The “glm” packages were
used for univariate and multivariate logistic regression. In addition, to construct nomogram
and plot calibration curve, the “rms” package was used. ROC curves were plotted with the
“pROC” package, and the decision curves analysis with the “rmda” package.
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