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Abstract: Malaria is a pressing medical issue in tropical and subtropical regions. Currently, the
manual microscopic examination remains the gold standard malaria diagnosis method. Nevertheless,
this procedure required highly skilled lab technicians to prepare and examine the slides. Therefore, a
framework encompassing image processing and machine learning is proposed due to inconsistencies
in manual inspection, counting, and staging. Here, a standardized segmentation framework utilizing
thresholding and clustering is developed to segment parasites’ stages of P. falciparum and P. vivax
species. Moreover, a multi-stage classifier is designed for recognizing parasite species and staging in
both species. Experimental results indicate the effectiveness of segmenting thick smear images based
on Phansalkar thresholding garnered an accuracy of 99.86%. The employment of variance and new
transferring process for the clustered members, enhanced k-means (EKM) clustering has successfully
segmented all malaria stages with accuracy and an F1-score of 99.20% and 0.9033, respectively. In
addition, the accuracies of parasite detection, species recognition, and staging obtained through a
random forest (RF) accounted for 86.89%, 98.82%, and 90.78%, respectively, simultaneously. The
proposed framework enables versatile malaria parasite detection and staging with an interactive
result, paving the path for future improvements by utilizing the proposed framework on all others
malaria species.

Keywords: plasmodium parasite; image segmentation; thresholding; clustering; species and staging;
machine learning

1. Introduction

In this day and age, malaria remains a threat to public health worldwide, especially in
tropical regions, such as Africa. This can be due to the environmental conditions suitable
for the growth of mosquitoes and exacerbated by poor socio-economic conditions. Malaria
is caused by plasmodium parasites transmitted through the infected female Anopheles
mosquito bite. There are five species of malaria, namely P. falciparum, P. vivax, P. malariae,
P. ovale, and P. knowlesi. However, among these species, P. falciparum and P. vivax species
are the two most common species that typically cause malaria infection, while others are
considered to be occasionally seen. As stated in World Health Organization (WHO) report
in 2020, there were an estimated 241 million malaria cases and 627,000 malaria deaths
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worldwide [1]. Additionally, 77% of all malaria deaths occurred in children under five
years old and remained the highest recorded mortality rate in 2020 [1].

Despite advances in rapid point-of-care diagnostics, rapid diagnostic tests (RDTs),
and manual microscopic examination based on thick and thin blood smears remain the
most recommended diagnostic methods for routine malaria diagnosis of suspected malaria
cases. On top of that, microscopic examination is the “gold standard” method for malaria
diagnosis [2]. In this procedure, both thick and thin blood smears are used to identify the
parasites and counted to quantify the level of parasitemia [3]. Here, the analysis of a thick
blood smear is used for parasite detection. This is followed by the analysis of a thin blood
smear to identify malaria parasite species and its life-cycle stages. Thick blood smears
utilize a greater volume of blood and multiple layers of red blood cells (RBCs), which is
about 6 µL of blood, making it more sensitive for parasite detection [3]. Meanwhile, thin
blood smears utilize a single layer of uniformly spread RBCs, which is only about 2–3 µL
of blood, making it unsuitable for parasite detection [3]. However, due to alcohol fixation
prior to staining, the RBCs in the thin blood smear are preserved, which makes it more
sensitive to analyze parasite morphology and parasitic forms that may be present.

Currently, lab technicians will manually count and examine thick and thin blood smear
samples under a microscope. Although the manual microscopic examination is acknowl-
edged for its high sensitivity and being competently specific, the sensitivity and specificity
of microscopy differ based on the quality of the stained slide and the expertise of the lab
technicians. Nevertheless, this manual evaluation may vary amongst slide readers and be
inaccurate [4]. Furthermore, this procedure is labor-intensive. The lab technicians usually
examine 30 to 40 slides per day while being responsible for diagnosing other diseases [5].
In addition, highly skilled lab technicians are needed to prepare and examine the slides,
and distinguish between the parasite species and stages. This is because some parasite
morphologies are almost similar, such as those of P. vivax, P. ovale species, and the early
trophozoite stage of P. falciparum and P. knowlesi species [6]. Moreover, microscopic exami-
nation and RDTs have limitations, which are ineffective when detecting sub-microscopic
infections. Therefore, due to the shortcomings of the currently recommended diagnostic
methods, new diagnostic procedures are compulsory.

Thus, a computerized system for malaria diagnosis consisting of image processing
and machine learning approaches is necessary to examine more blood slides compared to
the manual diagnosis. Yet, several issues arise upon developing a computerized system,
such as the emergence of noise, shadow, random backgrounds, overlapping objects, and
illumination issues, and making segmenting medical images, such as blood images, and
difficult work in image analysis and processing [7]. In addition, the low image quality and
the usage of staining solution significantly impact the parasite’s appearance, contributing
to the false analysis in the computerized system. In addition, the small size of the parasites
is also one of the main factors that make the computerized system difficult to isolate the
parasites from stained blood images on thick blood smear samples. Thus, relevant image-
processing procedures and machine learning algorithms are necessary to provide good
results in analyzing thick and thin blood smear images. Recently, many studies have been
conducted to diagnose malaria based on thick and thin blood smear images with various
transfer learning techniques. Hence, novel network architectures and image-processing
procedures were proposed to improve the performance of malaria diagnosis [8–10].

Azif et al. [11] reported accuracy and sensitivity of 61.53% and 98.04%, respectively, for
parasite detection based on thick blood smear images. Correspondingly, Gitonga et al. [12]
reported 96.2% accuracy in identifying plasmodium species and 99.9% classification of life-
cycle stages on infected RBC images using an artificial neural network (ANN) classifier. On
the other hand, Fatima and Farid [13] reported an accuracy of 91.80% for parasite detection
based on thin blood smear images using a segmentation approach of bilateral filter and
adaptive thresholding technique. Additionally, Parveen et al. [14] proposed a multilayer
perceptron (MLP) neural network to classify malarial parasites into three different species.
The study reported accuracy of 85% was achieved when performing the classification using
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the proposed classifier. Alternatively, Nugroho et al. [15] have identified three malaria
stages of P. falciparum species by utilizing MLP training by the backpropagation algorithm.
The results indicate that the proposed method achieves an accuracy of 87.8%, a sensitivity
of 81.7%, and a specificity of 90.8% for detecting infected RBCs.

Certainly, the segmentation process is important since further steps, such as feature
extraction and classification, depend on the accurate segmentation of the region of interest
(ROI). Therefore, a good image segmentation procedure that can be used for obtaining
segmented malaria parasites in thick and thin blood smear images is required to be analyzed
thoroughly. Furthermore, segmentation quality is important for the success of the image
analysis process. Many researchers have proposed various image segmentation approaches
to improve malaria diagnosis. This includes the application of k-means (KM) clustering [16],
fast k-means (FKM) clustering [17], cascaded EKM [18], fuzzy c-means (FCM) clustering [18],
watershed distance transform [19], Otsu’s thresholding [20], and adaptive thresholding [21].
In addition to segmentation, a good image classification technique is also important in
producing a reliable malaria diagnosis system. It can be used to classify malaria parasites
in thick blood smear images and types of species in thin blood smear images. In addition, it
can also classify stages in thin blood smear images required to diagnose malaria efficiently.

The significance and inspiration for conducting this study have been described in this
paragraph. The recent advances in machine learning have provided an opportunity to
utterly explore automating the detection of parasites from thick and thin smears images.
Nonetheless, the literature lacks proposed works to detect and segment malaria parasites
in thick and thin smears based on one complete standard framework. Most of the work
presented focused on either detecting thick parasite smears for counting or classifying
parasites extracted from thin smear images based on frameworks presented in different
studies. Furthermore, to the best of the authors’ knowledge, most of the existing references
have paid significant attention to processing only the thin blood smear samples compared
to the thick blood smear [22–24]. As for the thick smear, most of the literature has focused
on counting the parasites to estimate the level of parasitemia after the segmentation is
complete, lacking a framework for enhancing the parasite count with machine learning.
Despite significant improvements in model performance in thin smear analysis, there is
currently no widely used tool for the automated detection and staging of malaria parasites.

The main objective of this research work is to develop an intelligent multi-stage
malaria parasite recognition for microscopy diagnosis of both thick and thin smear images.
Additionally, the sub-objective of this research is to find the best image segmentation
technique to segment thick and thin smear images, find the best classifier to classify malaria
parasites in both thick and thin images, and classify species and stages in thin smear images.
Note that this research will focus on processing the most common species responsible for
malaria infection in most cases. They are P. falciparum and P. vivax species of thick and
thin smear samples of the ring, trophozoite, schizont, and gametocyte stages. In the
experimental analysis, eleven relevant image segmentation techniques and three machine
learnings have been compared to select the most suitable approach for malaria parasite
recognition with the purpose to improve the standardization on thick and thin smear
inspection for malaria research and potential field diagnosis. The contributions of this
paper can be explicitly stated below:

• A full framework constituted from image processing and machine learning is designed
to address the problem of detecting parasites in thick smear microscopy, classifying
parasite species, and staging for thin smear microscopy.

• A standard segmentation framework based on thresholding and clustering algorithms
is developed to segment malaria parasites in thick and thin smears of all stages for
both P. falciparum and P. vivax species.

• The proposed segmentation framework is applicable in producing good segmentation
results, though the captured malaria image varies in terms of lighting conditions, and
each stage of the malaria parasite consists of different shapes and sizes.
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• The use of several machine-learning algorithms for classifying parasite species and
life-cycle stages resulted in benchmark results that can be compared with deep-
learning algorithms.

2. Related Literature of Malaria Diagnosis

Various applications of image segmentation procedures and artificial intelligent classi-
fiers have been proposed by previous researchers to improve the network performances to
perform malaria diagnosis, including the classification of malaria parasites, their species,
and life-cycle stages. For instance, Nanoti et al. [25] have proposed malaria detection
of species and life-cycle stages based on thin blood smear images. In this study, several
pre-processes were applied to the input image: geometric mean filter, median filter, and
forward discrete curvelet transform, to improve the image quality. Subsequently, partial
contrast stretching was utilized to enhance the contrast of the parasite region. Here, the
enhanced image was converted into RGB (red, green, blue), HIS (hue, intensity, saturation),
and L*A*B color spaces and applied with KM clustering. Based on this study, the A*B com-
ponent produces a good, segmented image. Thus, it is selected to be extracted by various
texture and shape-based features, such as Gray Level Co-occurrence Matrix (GLCM), Gray
Level Run Length Matrix (GLRLM), perimeter, area, entropy, local binary pattern, Hu’s
seven invariant moments, and histogram features. A total of 300 images were extracted
and d on the k-nearest neighbor and support vector machine (SVM). The finding shows
that classification using k-nearest neighbor produces higher accuracy and sensitivity with
values of 90.17% and 90.23%, respectively, compared to SVM.

Hendrawan et al. [26] have proposed image-processing procedures to identify malaria
infection in four types of plasmodium species and three different life-cycle stages. First,
the input image was enhanced using a color normalization process followed by gamma
correction to improve the quality of the image. Consequently, edge enhancement was
applied to sharpen the parasite’s edge. The image was then converted to grayscale and
green color components before segmenting using fuzzy c-means (FCM) clustering. After
that, erosion and closing morphological operation was conducted to remove unwanted
pixels, and close the holes produced inside the parasite’s region. This proposed analysis was
tested on 574 malaria image datasets. The experimental results present that the proposed
image-processing procedures successfully obtain a good malaria-segmented image. It was
done by applying a green color component with a segmentation performance sensitivity of
97.91%, specificity of 98.61%, and accuracy of 98.26%.

On the other hand, Dave [27] has analyzed several image-processing steps for malaria
parasite detection based on thick blood smear images. At first, the malaria image was
converted into hue, saturation, and value (HSV) color space, and the saturation component
was extracted. Correspondingly, the average filter was applied to the saturation component
to reduce the noise produced in the malaria image. After that, the image was segmented
using adaptive thresholding, and several morphological operations, such as filling holes and
closing operations, were applied to eliminate unwanted pixels. Using the final segmented
images, various features based on shape, texture, color, and frequency domain are extracted
to be fed as input to the SVM classifier. The finding shows that classification using SVM
has produced a good discrepancy in parasite count, sensitivity, and specificity with values
of 7.18%, 86.34%, and 96.60%, respectively.

Aggarwal et al. [28] have proposed image-processing procedures for detecting malaria
parasites using thin blood smear samples. First, the input image was enhanced using
the histogram equalization technique to improve the image’s contrast. Subsequently, a
median filter was applied to discard noises produced on the enhanced image. The image is
then converted to binary using Otsu thresholding. This proposed analysis was tested on
60 malaria image datasets. The average evaluation results demonstrate that the proposed
image-processing procedures successfully obtained a good malaria-segmented image with
an accuracy of 93%.
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Setianingrum et al. [29] have proposed image-processing procedures to identify
malaria parasites in trophozoite and schizont stages based on thin blood smear images of P.
falciparum species. At first, the malaria image was converted into grayscale and enhanced
by contrast stretching. Next, the enhanced image was segmented using Otsu thresholding.
After that, the GLCM and morphological features were extracted from the malaria image to
be fed as input to the SVM classifier. The result shows that SVM classification has achieved
91.67% accuracy in detecting the two stages of P. falciparum species.

Mustafa et al. [30] have analyzed several thresholding methods, such as Wolf,
Bradley, Bernsen, Triangle, Deghost, and FCM algorithms, on the malaria image dataset
to simplify the malaria image into something easier to examine. At first, the malaria
image was converted to a grayscale image before applying the selected thresholding
methods. This proposed analysis has been tested on 30 malaria image datasets. Note
that the average evaluation results present that the FCM algorithm method successfully
obtains a good malaria-segmented image by having a better segmentation performance
compared to other methods with a sensitivity of 95.51% and specificity of 75.1%, and
overall performance of 85.31%.

Alternatively, Nugroho et al. [31] proposed a segmentation procedure to segment
infected red blood cells (RBCs) in thin blood smear images using threshold and morpholog-
ical operation. In this study, the malaria image was enhanced and converted to grayscale
before being applied to a multilevel Otsu threshold. Overall, the proposed procedure
was tested on a total of 30 malaria. The results showed that the proposed segmentation
procedure achieved 96.74% of accuracy, 76.77% of sensitivity, 99.74% of specificity, 97.84%
of prediction value positive, and 96.61% of prediction value negative. They indicate that
this proposed procedure provides a consistent result for segmenting parasites in thin blood
smear images.

Sifat and Islam [32] have proposed identifying the malaria parasite species and life-
cycle stages based on thin blood smear images. The combination of median and geometric
mean filters was utilized in the proposed methodology to improve image quality. After
that, the image was enhanced by applying a partial contrast technique before extracting
the RBC from blood smear images using the U-Net segmentation technique. Subsequently,
a convolutional neural network (CNN) was used to identify infected RBCs. In contrast,
the visual geometry group 16 (VGG16) network was utilized to distinguish between the
various species and the malaria life cycle. This proposed method has been practiced on
5512 malaria images. Using the CNN model, the detection accuracy and specificity of
infected RBC were 100% and 95%, respectively. Meanwhile, an average accuracy of 95.55%,
and specificity of 94.75% was achieved for species identification, while an overall accuracy
of 96.25%, and specificity of 94.82% were achieved in the ring life cycle.

Nugroho et al. [33] proposed the classification of malaria species and the life cycle
stages of P. falciparum, P. vivax, P. malariae, and P. ovale species. In this research, the input
image was converted to a grayscale image. After that, the Otsu thresholding was applied
to the grayscale image to produce a binary image. A morphological operation called
the opening operation was applied to the binary image to remove unwanted regions.
Consequently, a morpho-geometrical feature has been extracted and fed as input to Naïve
Bayes (NB) classifier. The application of the proposed algorithm achieved a sensitivity
value of 84.37%, a positive predictive value of 80.60%, and an F1 score of 80.60%, which
shows that the proposed algorithm is reliable.

Swastika et al. [34] have employed regularization on several CNN architectures. It
was to investigate the impact of regularization on increasing malaria parasite detection
accuracy using thin blood smear images. This study has applied regularization methods,
including data augmentation, dropout layer, and L2 regularization, to ResNet-50, MicroVG-
GNet, and BaselineNet-1 models. The analysis was conducted on a total of 27,588 images,
consisting of 13,779 uninfected blood cells and 13,779 parasite-infected images. It was then
compared between the CNN model with regularization and without regularization. The
findings indicate that 94.92% accuracy was attained when BaselineNet1 was used without
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regularization. Meanwhile, the accuracy of 97.12%, 95.64%, and 96.28% was attained by
applying regularization on ResNet-50, MicroVGGNet, and BaselineNet-1, respectively.

On the other hand, Taha and Liza [35] have utilized two types of deep learning models
to identify malaria from blood smear images based on CNN. In this study, 27,558 thin
blood smear images have been resized into the same size array with a width and height
of 299 × 299 pixels. Two deep learning models were used and compared: basic CNN and
InceptionResNetV2 model. Based on the findings, the InceptionResNetV2 provides much
higher accuracy with a value of 97.10%. This includes high precision, recall, F1-score, and
Matthew’s correlation coefficient, with 96.93%, 97.28%, 97.10%, and 94.20%, respectively.
Compared to the basic CNN with five convolutional layers, it obtained an accuracy of
96.46% with precision, recall, F1-score, and Matthew’s correlation coefficient being 98.30%,
94.56%, 96.39%, and 92.99%.

Widiawati et al. [36] have proposed a malaria detection method based on thick blood
smear images. This study applied several pre-processing techniques, such as color model
conversion, contrast stretching, and median filter, on 38 thick blood smear images. Corre-
spondingly, the images were segmented using Bottom-Hat and Adaptive Entropy Thresh-
olding. After that, several texture features were extracted from the green component image:
mean, standard deviation, skewness, energy, and entropy. Here, three different classifiers
have been compared: NB, SVM, and MLP. The best results in the classification of species
were obtained from the NB classification with an accuracy of 82.05%.

Maqsood et al. [37] have analyzed the efficiency of several current deep-learning
models on malaria detection using blood smear images. Additionally, the author also
proposed an efficient deep-learning method for classifying infected and uninfected malaria
cells utilizing CNN without using a hand-crafted feature. This study employed image
augmentation and bilateral filtering techniques to emphasize the features of RBCs before
training the datasets. Here, the modified CNN model is generalized, and over-fitting can
be prevented because of image augmentation approaches. The analysis has been conducted
on a total of 27,588 malaria datasets obtained from the National Institute of Health (NIH)
website. The results indicate that the proposed algorithm can perform malaria detection
with an accuracy of 96.82%.

Other than that, Setiawan et al. [38] have proposed a computer-aided diagnosis to
detect and count the malaria parasites in thick blood smears. This study utilizes a color-
based segmentation to detect the parasite using three different color spaces: RGB, YCbCr,
and LAB. Initially, the malaria image was converted to several color components. Next,
Otsu thresholding was used to segment the converted malaria image. This proposed study
has been applied to 27,558 images of 13,779 infected malaria images and 13,779 uninfected
malaria images. The best results are achieved by color-based segmentation in RGB color
space with an accuracy of 94.75%, sensitivity of 96.02%, and specificity of 93.47%.

Rameen et al. [39] proposed supervised machine learning techniques for malaria identi-
fication based on samples of blood smears. This study involves several pre-processing, such
as resizing the input images and converting the images into grayscale. Subsequently, Otsu
thresholding was implemented to produce the binary image. Afterwards, the GoogLeNet
was applied to extract features from the segmented blood smear image to be fed as input
to the SVM classifier. Based on the experimental result, the application of the proposed
algorithm achieved an accuracy value of 95.80%, which proves that the proposed algorithm
is reliable.

Aris et al. [40] have analyzed the utilization of several clustering techniques to acquire
fully segmented malaria parasites based on thick blood smear images of P. falciparum and
P. vivax species. At first, the author applied modified global contrast stretching, followed
by gray world techniques, to improve the image quality. Next, the enhanced image was
converted into a blue component of RGB color spaces to ease the segmentation process.
Here, KM, FKM, and EKM clustering techniques were applied to 100 thick blood smear
images. Eventually, the segmentation performances were measured and demonstrated that
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segmentation using the FKM clustering algorithm produced a good segmentation result,
with an accuracy of 99.91%, sensitivity of 75.75%, and specificity of 99.93%.

Apart from that, Shal and Gupta [41] examined the application of different classifier
models to classify uninfected and infected cells for malaria detection. In this study, classifier
models, namely CNN, YOLOv4, YOLOv5, and single shot detector, were applied on
27,560 images consisting of 13,780 infected images and 13,780 uninfected cell images.
Furthermore, these four classifier models were tested on several performance evaluation
techniques, such as accuracy, true positivity rate, and precision. Based on this analysis, the
best results are achieved in YOLOv5 with an accuracy of 94.67%, a true positivity rate of
50.30%, and a precision of 95.25%.

Razin et al. [42] developed a model for malaria parasite detection by implementing
the CNN and YOLOv5 model to detect the malaria parasites and classify the uninfected
and infected malaria images. This research was applied to a total of 27,588 thin blood
smear images obtained from the NIH website, a publicly accessible dataset. In accordance
with the experimental outcomes, the YOLOv5 model obtained an accuracy of 95.37% for
infected and 97.05% for uninfected samples. In addition, the CNN model can obtain the
highest accuracy with a value of 96.21% for both infected and uninfected blood samples.
Additionally, this CNN model also achieved high precision and recall rates of 95.42% and
97.05%, respectively.

On the other hand, Zarima et al. [43] utilize hand-crafted features and deep learning
techniques on blood smear images to diagnose malaria. In this study, a texture feature
known as Local Binary Pattern (LBP) has been extracted from a total of 27,588 images,
consisting of 13,779 uninfected blood cells images and 13,779 parasite’s infected images.
This study analyzed several deep-learning models, namely ResNet-34, VGG16, Inception
V3, and EfficientNet, to determine which model yield the best accuracy. Based on the
experimental result, the EfficientNet model has obtained the highest accuracy, with a value
of 91%, compared to the VGG16, ResNet-34, and InceptionV3 models, with 87%, 81%, and
77%, respectively.

Gummadi, Ghoosh, and Vootla [44] employed a transfer-learning-based CNN architec-
ture to differentiate between uninfected and infected malaria images using global average
pooling (GAP) and heat maps. In this study, a total of 27,588 thin blood smear images
have been used on three transfer learning-based neural network architectures, known as
VGG16, VGG19, and InceptionResNetV2 architecture. These three classifiers were trained
and compared. Based on the study finding, InceptionResNetV2 architecture yielded a
maximum accuracy of 96.88%, with sensitivity, specificity, F1-score, and precision of 97.35%,
96.41%, 96.89%, and 96.44%, respectively. In addition, this study also interfaced with a
newly developed web service that anyone can easily access.

Abdurahman, Fante, and Aliy [45] have proposed an automated malaria parasite
detection based on thick blood smear images using modified YOLOv3 and YOLOv4
models. In this study, these modified models were called YOLOv3-MOD1, YOLOv3-
MOD2, and YOLOv4-MOD. The effectiveness of the modified YOLOv3 and YOLOv4
models was assessed using a total of 1182 blood smear images consisting of 948 malaria-
infected images and 234 normal images. Based on the study verdict, YOLOv3-MOD1,
YOLOv3-MOD2, and YOLOv4-MOD models have superior mean average precision (mAP),
recall, precision, F1-score, and average IOU compared to their original versions, faster
region-based convolutional neural network (FR-CNN), and single shot multi-box detector
(SSD). However, among all the models, YOLOv4-MOD has the highest detection accuracy,
with a mAP of 96.32%, recall of 94%, precision of 95%, F1-score of 94%, and average IOU of
62.12% as compared to YOLOv3-MOD1 and YOLOv3-MOD2 models.

Based on the findings from previous researchers’ work, various segmentation tech-
niques have been proposed and successfully applied for the segmentation of malaria
parasites or infected RBCs. In addition, it can be found that segmentation using thresh-
olding and clustering offers several advantages in segmenting malaria images. Generally,
the thresholding algorithm is suitable to be applied when the objects are not overlapped,
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and the gray levels are distinct from the background level. However, this algorithm is less
suitable to be applied on images blurred at the object boundaries or for the overlapped
ROI area as it will result in over-segmentation. Meanwhile, the clustering algorithm will
segment the image into clusters, having pixels with similar characteristics, such as group-
ing the pixels based on intensity similarity. As a result, both thresholding and pixel-level
segmentation based on clustering will also be added to the framework for segmenting the
malaria parasites. This is an initiative to find suitable segmentation techniques, reducing
the confounding of neighboring cells on parasite detection due to over-segmentation.

Subsequently, based on the review of intelligent classifiers, it is found that several
research has utilized SVM to perform the malaria detection process and classify malaria
parasite species and their life-cycle stages. Although SVM is a popular method utilized
to classify malaria parasites due to its good generalization performance, SVM has some
limitations. The biggest limitation of SVM lies in the selection of the kernel [46]. Therefore,
SVM will not be utilized for classification in this study due to these limitations. Addition-
ally, the performance of the extreme learning machine (ELM) network will be compared
with other types of intelligent classifiers, online sequential-ELM (OS-ELM), and RFs, to
determine the capability of these methods for the classification process. The OS-ELM
has been chosen to be compared because it is an upgraded version of ELM. It has been
proven to be faster than the other well-known sequential algorithms and produces better
generalization performance with lower training time [47]. As for RF, it is an ensemble
classifier that can be used for complex classification tasks.

3. Materials and Methods

In this study, the processes to obtain thick and thin blood smear segmented images
and classify malaria parasites, types of species, and their life-cycle stages consist of three
main phases. The first phase deals with data collection and image acquisition setup, while
the second deals with segmentation. Lastly, the third phase deals with classification. This
section describes various applications of image segmentation and machine learning techniques
applied to thick and thin blood smear images. The full proposed procedures for thick and
thin blood smear images included image enhancement, extraction of color components, image
segmentation, watershed segmentation (only for thick blood smear images), removal of
unwanted pixels, feature extraction, and classification will be explained in next sections.

3.1. Data Collection and Image Acquisition Setup

In this research, the malaria slides of P. falciparum and P. vivax species of both thick and
thin blood smear samples were obtained from the Department of Medical Microbiology and
Parasitology, Hospital Universiti Sains Malaysia (HUSM). The blood slides were examined
under 100× oil immersion using an OLYMPUS BX41 digital microscope to capture the thick
blood smear images, as shown in Figure 1. The images of the slides were captured using an
OLYMPUS XC50 digital camera with a resolution of 1294 × 980 pixels and saved in a jpg
format. The blood slides were examined under the 100× oil immersion objective of the Leica
DLMA 1200 digital microscope for the thin blood smear images. The images of the slides
were captured using a Luminera Infinity-2 digital camera with a resolution of 800 × 600 pixels
and saved in bitmap (*.bmp) format.
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This study captured 500 thick blood smear images from four malaria slides containing
both P. falciparum and P. vivax species. Meanwhile, 4035 thin blood smear images with
various conditions were captured from 34 malaria slides consisting of both P. falciparum
and P. vivax species in the ring, mature trophozoite, schizont, and gametocyte stages.
Additionally, both thick and thin blood smear images were captured under several lighting
conditions, such as underexposed, overexposed, and normal, as seen in Figure 2. Figure 2
represents the samples of the captured blood images from P. falciparum and P. vivax in thick
and thin blood smear samples. As seen in Figure 2, the stain highlights the malaria parasites
and other components inside the blood sample, such as white blood cells (WBCs), platelets,
and artifacts. As a result, the WBCs and platelets also share a similar color property with the
malaria parasites, as seen in Figure 2b,f. Figure 2d,e,i exhibit the samples of the captured
malaria images with the presence of Herring-bone scratches in the glass slide, air bubbles
under the coverslip of the slide, and artifacts, respectively.
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Figure 2. The samples of the captured blood images consisting of (a) P. falciparum of thick smear;
(b–e) P. falciparum of thin smear in the ring, trophozoite, schizont, gametocyte; (f) P. vivax of thick
smear; (g–j) P. vivax of thin smear in the ring, mature trophozoite, schizont, gametocyte.

3.2. Image Segmentation Using Various Local Thresholding and Clustering Techniques on Thick
and Thin Blood Smear Images

Image segmentation separates an image into homogenous segments based on specific
criteria [48]. The basic aim of this separation was to ensure the images were easily analyzed
and interpreted by preserving the image quality. Note that segmentation quality is one
of the important elements for the success of the image analysis process. Segmentation,
such as thresholding and clustering, offers several benefits compared to other methods.
The significant benefit of the thresholding technique was that it could be employed on
non-overlapping objects because their grey levels were easily distinguished from the back-
ground level. Meanwhile, the significant benefit of the clustering technique was ideal
for segmenting the medical image as the number of clusters could be determined from
the image with specific anatomical regions. Therefore, this research used several local
thresholding and clustering techniques to segment malaria images. This local thresholding
technique was superior in segmenting uneven lighting images because this threshold-
ing technique determines the threshold values according to the local area information.
Explanations about the types of thresholding and clustering algorithms were presented
as follows:

Adaptive thresholding: Local adaptive thresholding was a basic and simple algorithm
to separate the foreground from the background with non-uniform illumination. For
each pixel in the image, a threshold had to be calculated. If the pixel value is below the
threshold, it is set to the background value. Otherwise, it assumes the foreground value. The
assumption behind this method is that the smaller image regions were more likely to have
approximately uniform illumination, being more suitable for thresholding. Here, the input
image was partitioned into several intersecting sub-images. After that, the histogram of
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each sub-image was analyzed to discover the ideal threshold for that particular sub-image.
By approximating the outputs of the sub-images, the threshold for each pixel was obtained.
The neighborhood size had to be large enough to cover good foreground and background
pixels; otherwise, a poor threshold was chosen. On the other hand, choosing regions that
are too large could violate the assumption of approximately uniform illumination. In the
adaptive thresholding method, the local threshold was determined as the mean of the local
intensity distribution of each pixel [49]. The threshold for each pixel was computed by:

T =
max + min

2
. (1)

Niblack: Niblack algorithm was one of the most popular local adaptive algorithms.
It determines the threshold value of every pixel by sliding a particular window size
throughout the image pixel location to set the threshold value. It is performed according to
the local standard deviation and local mean [50]. The threshold was obtained based on the
following equation:

T = m + kσ. (2)

Here, k is referred to as a constant value of −0.2 fixed by the Niblack algorithm author,
while the window size could be determined manually. Therefore, both sliding window
size and the k-factor parameter might affect binarization quality. However, this method
had a drawback: It makes excessive noises in the emptied windows [51]. Additionally, the
Niblack algorithm did not suffice to adapt non-uniform illumination images.

Sauvola: Sauvola algorithm was inspired by the Niblack algorithm, which works by
computing the threshold value using a dynamic range of standard deviation in the gray
value image [52]. By implementing various gray-level values in the images, this method
addresses the Niblack weakness of excessive noises based on the standard deviation effect.
In Sauvola, the interpolation was utilized for the remaining pixels after the initial threshold
had been determined. This approach gives a more precise threshold value for each pixel.
Thus, using the following equation, the threshold value was determined:

T = m
(

1 − k
(

1 − σ

R

))
. (3)

Here, k is referred to as a factor that took on positive values and was often set to
0.5, while R was the dynamics of the standard deviation with a fixed value of 128. In
addition, the noise issue was resolved by this algorithm, but it was unable to perform well
on the low-contrast image. In the Sauvola method, the threshold was computed similarly
to the Niblack method. Still, it used the average of an image’s highest and lowest gray
value to modify the local standard deviation to emphasize segmentation on low-contrast
information images.

Bradley: Bradley algorithm utilized adaptive thresholding to adjust the spatial differ-
ences in illumination by employing the integral image of the input data [53]. This method
is effective and easy to use and is more vulnerable to variations in image illumination. To
produce the integral image, I(x, y) should be maintained at each position as the sum of
those f (x, y) terms toward the left being above the pixel (x, y), which can be computed by
the following equation for each pixel:

x2

∑
x=x1

y2

∑
y=y1

f (x, y) = I(x2, y2)− I(x2, y1 − 1)I(x1 − 1, y2) + I(x1 − 1, y1 − 1). (4)

This algorithm computes the average window size of pixels centered on each pixel.
The average calculation was completed in constant time by utilizing an integral image.
This approach computed the integral image using the input image in the first phase. In a
subsequent phase, a comparison analysis was used to determine whether a pixel belonged
to the foreground or background region. This was done by determining the window size
average for each pixel using the integral image in constant time. Moreover, inconsistent
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luminance images could be effectively binarized using this algorithm. Finally, the Bradley
method determines the local threshold based on the mean of the neighboring pixels using
the integral image as the input.

Phansalkar: Phansalkar algorithm is the modification of Sauvola’s method, which
was invented to overcome Sauvola’s weakness, specifically to deal with low-contrast
images [54]. In Sauvola’s method, if the contrast in the local neighborhood were low, then
the local mean values would be lower, and the threshold value would fall below the mean,
causing the dark regions of the background to be removed. The Phansalkar algorithm
functions similarly to Sauvola’s method, which is based on the local mean and employs the
combination of the local standard deviation and parameters to constrain the calculation
in certain conditions. In addition, this method worked similarly to Sauvola’s method for
high values of the local mean. However, in Phansalkar, if the value of the local means is
low, then the threshold value determined should be much higher than the value of the
local mean and the value determined by Sauvola’s method. This method could be done by
computing the threshold value using the following equation:

T(x, y) = m(x, y)
[

1 + pe−q.m(x,y) + k
(

s(x, y)
R

− 1
)]

, (5)

where k, p, and q were constants. Here, the value of q was chosen above the value of the
local mean. On the other hand, the exponential term in the equation becomes negligible as
the equation functions similarly to Sauvola’s method. Subsequently, the constant p decides
the magnitude to which the exponential term affects the threshold. If the p values were low,
such as (0 <= p <= 1), then it would function similarly to Sauvola’s method. However,
if the p value is high, such as (p > 5), the threshold would become high, and too many
background pixels would be classified as foreground.

Feng: Feng’s method was built on the idea of two local windows [55]. This algorithm
functioned locally and calculated the dynamic range of gray-level value standard deviation.
Here, the values of the minimum gray level, standard deviation, and local mean were
calculated in the primary local window to determine the local threshold value. Meanwhile,
to compensate for the negative effect of uneven illumination, the dynamic range standard
deviation was calculated in the secondary window as it could tolerate different degrees
of uneven illumination. Therefore, the respective equation was used to calculate the
threshold value:

T = (1 − a1)m + a2

(
s

Rs

)
(m − M) + a3M, (6)

where a1 is between 0.1–0.2, while a2 = k1

(
s

Rs

)γ
and a3 = k2

(
s

Rs

)γ
. These a1, a2, and a3

were defined as adaptive weighting. The values of other parameters, such as k1 and k2 were
proposed in the ranges between 0.15–0.25 and 0.01–0.05, respectively. In the Feng algorithm,
the local threshold value was bilinearly interpolated to obtain the threshold values for
all pixels to minimize the computational load. In Feng’s method, the local threshold was
determined by considering two local windows, such as primary and secondary. It calculates
the standard deviation of the gray value from the whole image using both windows.

Nick: Nick’s algorithm was a modified version of the Niblack and Sauvola algo-
rithm [51]. This algorithm was created to solve the limitation in the Niblack algorithm
regarding excessive noises in the emptied windows and the problem in the Sauvola al-
gorithm, which is unable to perform well on the low-contrast image. The thresholding
formula of this algorithm was derived based on the basic Niblack algorithm. Apart from
that, this algorithm had been improvised from the Niblack and Sauvola algorithm by shift-
ing the thresholding value downward [51]. The following equation was used to determine
the thresholding value:

T = m + k

√
∑ pi2 − m2

N
. (7)
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Here, k refers to a constant parameter with a value between −0.1 to −0.2, pi refers
to the value of the grayscale pixel levels in the image, and N is the total number of pixels
in the image. The value of the k factor could vary from −0.1 to −0.2 depending on the
application requirement. If the k value is close to −0.2, the noises were almost eliminated
but could rupture the ROI. Meanwhile, with values close to −0.1, some unwanted pixels
might remain still, but the ROI could be extracted unscathed. Additionally, the need to
determine the k factor manually is also considered as this algorithm’s drawback. In the
Nick method, the local threshold was determined based on the mean and square root of
the difference between the sums of the squares of pixel intensities inside a local window.

K-means: KM clustering algorithm was one of the most popular unsupervised and
iterative learning algorithms because of its simplicity. Throughout the process of employing
KM clustering for image segmentation, each pixel in the image was allocated to the closest
cluster center. Note that the distance between the pixel and the center was computed based
on the Euclidean distance [56]. Due to its simplicity, KM clustering has become popular for
many clustering tasks. However, the KM clustering algorithm had some limitations that
normally arise, such as the possibility of converging to local minima, dead centers problem,
and being sensitive to initialization of cluster centers.

Fuzzy c-means: FCM clustering was conducted by designating a membership function
towards each data point according to every cluster center on the justification of distance
measures between the data point and cluster center. Instead of allocating each data to a
single center as in the KM algorithm, each data in the FCM clustering algorithm were given
a membership grade representing the amount it belongs to each center [57]. However, due
to the fuzzification in the FCM algorithm, certain data points could fall to more than one
cluster. Yet, FCM performs effectively for overlapping data sets in comparison to KM.

Fast k-means: FKM clustering was developed to get through the drawbacks of the KM
clustering algorithm. According to the traditional KM clustering algorithm, the distance value
in each loop should be determined between each pixel and each clustering core [58]. Hence,
a lot of time was consumed by this event. Therefore, the FKM clustering algorithm used the
histogram value and the KM algorithm’s discrete function to reduce time consumption for
training image cluster centers, and also got control of the retraining cluster center problem.
The exact explanation regarding FKM clustering steps can be referred to in [57].

Enhanced k-Means: The EKM clustering was a modified clustering algorithm that
was enhanced by the conventional KM clustering algorithm. This clustering technique
was a part of the author’s previous work proposed by Nasir et al. and published in [59].
Here, EKM clustering has been invented to address the shortcomings of the KM clustering
algorithm regarding the assignation of the cluster center. Furthermore, to facilitate the
distribution of data to the relevant cluster to generate the finest segmented image, clustering
has invented a new transferring mechanism for the clustered members that employ the
idea of variance [59]. In addition, the variance value was calculated and often checked
through the clustering process to assess the relationship between the center and its members.
This action should be done because the data assigned to the center that did not meet a
predetermined criterion should naturally be relocated to the appropriate cluster. A detailed
explanation of how the EKM clustering algorithm works can be referred to in [59].

3.3. Proposed Segmentation Procedures for Thick and Thin Blood Smear Images

This section provides detailed information regarding the proposed image-processing
procedures applied to thick and thin blood smear images. Thus, the full framework based
on image-processing techniques that were designed to segment both thick and thin blood
smear images was disclosed in the following sub-sections.

3.3.1. Thick Blood Smear Segmentation Procedure

The framework of the proposed image-processing procedure for thick smear segmen-
tation is shown in Figure 3. In this study, the thick smear images were captured under
several lighting conditions, such as underexposed, overexposed, and normal, which may
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result in low-quality images. To obtain a fully segmented malaria parasite region, sev-
eral image-processing techniques were utilized to process the thick smear images. These
processes include image enhancement, color conversion to extract color components, and
image segmentation.
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Here, the image enhancement technique was applied to malaria images for two main
purposes. First, it was to improve the visual quality of malaria images, such as blurriness or
poor contrast. Second, it was to reduce the effect of staining variation on the malaria image.
Therefore, the image enhancement process was divided into two steps, namely contrast
enhancement and color constancy. Contrast enhancement was performed on malaria images
to enhance the region contrast of malaria parasite for easing the segmentation process.

In contrast, color constancy was performed on malaria images to standardize the color
of background areas to appear as if they were captured under similar color staining. In the
image enhancement process, the thick smear images were first enhanced using the modified
global contrast stretching (MGCS) technique to increase the image contrast [59]. MGCS is
the modified version of global contrast stretching (GCS) techniques. Additionally, MGCS
techniques work based on the computation of total pixels in a histogram. The selected
minimum and maximum percentage pixel values within the RGB image’s histogram were
used to enhance the ROI. Note that the required parameter of minimum and maximum
percentage values of minp = 0.1 and maxp = 10 was selected to produce new minimal
and maximal RGB values for the contrast stretching process. The MGCS algorithm was
described in more depth in [60]. After that, the color constancy technique, known as the
gray world, was applied to the MGCS image. It was to remove color casts and portray
the true colors of the malaria parasites by standardizing the color of background areas
in malaria images to appear as if they were captured under similar color staining. The
gray world was operated based on the presumption that the average pixel values for R, G,
and B components will converge to the same mean value [61]. This presumption allows
the elimination of color casts and the image’s color to be uniformly comparable to the
actual scene.

Once the malaria image was enhanced, the image proceeded with color conversion
to extract the color components for easing the segmentation process. Based on the initial
analysis and the findings presented in [17], the blue (B) color component was extracted
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from the RGB color model to facilitate the segmentation process. Afterwards, the B compo-
nents were segmented by 11 segmentation techniques consisting of local thresholding and
clustering techniques. Adaptive thresholding, Bradley, Niblack, Nick, Sauvola, Phansalkar,
Feng, KM, FCM, FKM, and EKM clustering were the segmentation algorithms used on the
thick smear images, in which the performance of local thresholding methods depends on
the window size selection. Windows sizes were used to get the local information by subdi-
viding the images into several blocks. In the adaptive thresholding method, the selected
parameter of window size was 65 × 65. As for Bradley, Nick, Sauvola, and Phansalkar,
the selected window size parameter was 15 × 15. In the Niblack method, the selected
parameter of window size was 250 × 250. Meanwhile, in Feng’s method, the local threshold
was determined by considering two local windows, such as primary and secondary. The
selected parameter of the primary window size was 5 × 5, and the secondary window size
was 150 × 150.

Meanwhile, the performance of clustering methods depended on the selection of
the cluster number. The clusters for KM, FCM, FKM, and EKM clustering were set into
three clusters, representing the malaria parasites, artifacts, and background region. Thus,
watershed segmentation with the Euclidean distance transform approach was used after
the segmentation process to separate the touching malaria parasite cells. The Euclidean
distance transform calculates the inequality within the neighborhood pixel to separate each
touching parasite.

After isolating the touching malaria parasites using watershed segmentation, some un-
wanted pixels, such as artifacts, staining precipitation, and WBCs, were still encountered in
the segmented images. These unwanted pixels were removed to enhance the segmentation
performance and avoid misidentifying the parasites in the further classification process.
In order to proceed with this procedure, two operations were applied to the resultant
segmented images. The first operation was to obtain the total pixel’s area in the ROI,
where the ROI referred to the malaria parasite. Here, the parasite’s size was one of the
crucial morphological characteristics used to differentiate between the malaria parasite
and non-malaria parasite. Meanwhile, the second operation was to remove the unwanted
pixels after the segmentation process. In order to obtain the total pixel’s area in the ROI, a
regional feature descriptor was used to extract the area in pixels of the segmented malaria
parasite. Based on this operation, it was found that a typical malaria parasite size might
have a value of the area in pixels between 7 to 280 pixels. Thus, any regions that were not
in these pixel ranges were labeled as non-malaria parasites. By utilizing the morphological
operation process, any pixels lower than 7 pixels and higher than 280 pixels were removed
from the segmented image to obtain the final segmented image.

3.3.2. Thin Blood Smear Segmentation Procedure

The framework of the proposed image-processing procedure for thin smear segmenta-
tion is shown in Figure 4. In this study, the thin smear images were captured under various
conditions, as mentioned in Section 3.1. To obtain a fully segmented malaria parasite region
from thin smear samples, several image-processing techniques were utilized to process
the thin smear images. These processes include image enhancement, extraction of color
components, image segmentation, and removal of unwanted pixels.

An image enhancement technique was applied to thin smear images to improve the
visual quality of thin smear images. In addition, the thin smear images were also enhanced
for the image enhancement process using the MGCS technique to increase the image
contrast. Note that the required parameter of minimum and maximum percentage values
of minp = 0.5 and maxp = 10 were selected to produce new minimal and maximal RGB values
for the contrast stretching process. After the malaria image was enhanced, color conversion
was used to extract the color components and facilitate better segmentation. As for the thin
smear image, the green (G) component information was extracted from the enhanced image.
Subsequently, the G components were segmented by 11 segmentation techniques consisting
of local thresholding and clustering techniques. Here, the segmentation algorithms used
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on the thin smear images were adaptive thresholding, Bradley, Niblack, Nick, Sauvola,
Phansalkar, Feng, KM, FCM, FKM, and EKM clustering. As mentioned previously, the
performance of local thresholding methods depends on the window size selection. In
the thin smear image, the window size selection for adaptive thresholding, Bradley, Nick,
Sauvola, Phansalkar, and Niblack, including the Feng method, were 175 × 175. Meanwhile,
the cluster number for KM, FCM, FKM, and EKM clustering was set to the value of three
clusters, which stand for the malaria parasites, artifacts, and background region.
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After the segmented image was obtained through the image segmentation process,
some unwanted regions, such as small background pixels, were still encountered in the
image. Therefore, the median filter was used as a noise removal to remove these small
background pixels from the segmented image. It was performed by replacing a current
pixel’s value with its neighboring pixels’ median value. In addition, the median filter could
also be used to fill the small holes that might appear on the segmented malaria parasite due
to its good smoothing performance and preserving the edge well without blurring it. Here,
the neighborhood of n × n (n = 7) pixels was used because large neighborhoods produce
more severe smoothing. After segmentation and filtering processes were performed on
the malaria image, there was a tendency for the unwanted regions, such as segmented
RBCs, platelets, and artifacts, to appear on the segmented image. This can be due to some
properties, such as color and size, which these unwanted regions share with the malaria
parasite. Thus, these unwanted regions should be excluded from the segmented image to
enhance the segmentation performance and to avoid the misdiagnosis of the infected cell
in the further classification process.

In order to reduce this problem, a modified version of the conventional seed-based
region growing algorithm, namely the seeded region growing area extraction (SRGAE)
algorithm proposed by Harun et al. [62], was applied to the segmented image. This
algorithm was applied for two main purposes. First, calculate the total area in pixels for the
ROI, where the ROI is referred to as the malaria parasite. Second, remove any unwanted
regions that were bigger in size that cannot be cleaned using the 7 × 7 pixels median filter.
Based on analysis of malaria parasites that had been segmented manually in several malaria
images, it had been found that a typical malaria parasite (ring and mature trophozoite of
P. falciparum) might have a value of the area between 150 to 1000 pixels. Meanwhile, the
other types of the malaria parasite (schizont and gametocyte of P. falciparum; ring, mature
trophozoite, schizont, and gametocyte of P. vivax) might have a value of the area between
3500 to 30,000 pixels. Thus, regions not in these ranges were labeled non-malaria parasites
and excluded from the segmented image during the region-growing process to obtain the
final image. Here, the analysis of different segmentation techniques was done to find the
best segmentation technique that should be used for segmenting thin smear images in all
stages of thin blood smear images.

After analyzing different segmentation techniques, a standard segmentation frame-
work was developed using proposed image-processing procedures to segment malaria
parasites in all stages of thin blood smear images. The proposed procedures for the seg-
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mentation of the malaria parasite, consisting of the best image segmentation techniques
determined after the segmentation analysis, were shown in Algorithm 1. The procedures in
Algorithm 1 were conducted on ring, mature trophozoite, schizont, and gametocyte images
captured from the thin blood smears of P. falciparum and P. vivax samples. The detailed
explanation regarding the proposed image-processing procedures of Algorithm 1 if the
malaria parasite had not been segmented properly and a large number of RBCs were still
included in these images. Therefore, these types of images should encounter a second
segmentation process. These processes include enhancing the malaria image using the
MGCS technique with minp = 0.05% and maxp = 10%, extracting the green component image
from the enhanced image, and segmenting the image using the best image segmentation
techniques determined after performing the analysis of segmentation previously.

After a properly segmented malaria image was obtained, the image was filtered using
a media filter to remove small background pixels and provide other segmented regions. At
this time, the neighborhood of 3 × 3 pixels was chosen to prevent the severe smoothing
effect on the segmented image. Afterwards, the SRGAE algorithm was applied to remove
the large unwanted regions in the malaria image. When applying the SRGAE algorithm,
regions not in the 150–1000 pixels and 3500–30,000 pixels were considered non-malaria
parasites and removed from the image during this process. Later, the holes inside the
malaria parasite were filled by applying region filling using a 5 × 5 pixels minimum filter.
Subsequently, 5 × 5 pixels of erosion process was performed to erode the boundary so that
the shape of the malaria parasite was well defined. If the unwanted regions appeared on
the image, the image would again be processed using the SRGAE algorithm. By applying
the proposed segmentation procedures, a smoother malaria parasite region and a clean
segmented malaria image without or less appearance of RBCs region were obtained. The
implementations of the proposed procedures for the segmentation of malaria parasite were
summarized as follows:

Algorithm 1: Procedures for segmentation of thin blood smears of P. falciparum and P. vivax

Input: Ring, trophozoite, schizont, and gametocyte images
Output: Segmented images of P. falciparum and P. vivax
Procedures:

1. Apply the MGCS contrast enhancement technique to the original malaria image.

2. Extract the G colour component from the enhanced RGB image.

3. Apply the selected segmentation technique that had been determined from the analysis of different segmentation techniques.

4. Check the area of background region, Area[bg] that satisfies this condition,

a. If the value of Area[bg] >= 450,000 pixels, apply the 3×3 pixels median filter.

b. Else, go to step 1.

5. Apply the seeded region growing area extraction algorithm.

Note: Regions not in the ranges of 150–1000 and 3500–30,000 were labeled as non-malaria parasites and excluded from the
segmented image during this process.

6. Apply the 5 × 5 pixels minimum filter.

7. Perform the 5 × 5 pixels of the erosion process.

8. Check the area of the foreground region, Area[fg] that satisfies this condition,

a. If the value of Area[fg] >= 9000 pixels, apply the seeded region growing area extraction algorithm

Note: Regions not in the 3500–30,000 range were labeled as non-malaria parasites and excluded from the segmented
image during this process.

b. Colorize the segmented image based on the enhanced RGB image.

9. End.
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3.4. Evaluation of Image Segmentation Quality

In the present study, image segmentation quality was evaluated using three objective
indices, accuracy, sensitivity, and specificity. The quality of segmentation of an image
was determined based on the pixel similarity of the resultant segmented image against
the manually segmented image. The manually segmented image was obtained by man-
ually editing the original malaria image using Adobe Photoshop CS5.1 software, so that
the image only consists of the malaria parasite. In contrast, the other regions had been
removed from the image. Then, the lab technician validated the visual evaluation of the
resultant manual segmented images. In this research, the primary criterion for assessing
the performance of image segmentation was based on its ability to produce a fully seg-
mented malaria parasite region and segment the malaria parasite from its complicated
blood cell background. The accuracy, sensitivity, and specificity were defined based on
Equations (8)–(10), respectively [63].

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (8)

Speci f icity =
TP

TP + FN
× 100 (9)

Sensitivity =
TN

TN + FP
× 100 (10)

Consequently, for thin blood smears, the performances of the proposed segmentation
method were further evaluated using recall, precision, and F1-score. Precision and recall
are used to assess whether the segmented image is over-segmented or under-segmented.
A low recall value indicated under-segment, whereas a low precision value indicated
over-segment. Here, recall and sensitivity were comparable. A good segmentation would
result in an F1-score of 1, which combines precision and recall as a single statistical measure
for the segmented image [63].

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 − score = 2 × Precision × Recall
Precision + Recall

(13)

3.5. Feature Extraction for Thick and Thin Blood Smear Images

To classify the malaria parasite or non-malaria parasite successfully, the combination
of different types of features, such as size, shape, and color, was used to represent the types
of the malaria parasite. For thick smear, a number 32 input features consisting of size,
shape, texture, and color-based features had been extracted from the segmented objects,
which were given as inputs to the intelligent classifiers. The features used on the segmented
thick blood smear images in this study can be classified into four main categories. These
features are:

• Size-based feature: Area, perimeter, solidity, and eccentricity of the segmented object.
• Shape-based feature: Hu’s moment invariant of the segmented object.
• Texture-based feature: Haralick and Hausdorff dimension.
• Color-based feature: Mean and standard deviation of the segmented object’s red,

green, and blue color components.

Meanwhile, for thin smear, 28 input features consisting of size, shape, and color-
based features were extracted from the segmented objects and were given as inputs to the
intelligent classifiers. The features used in this study’s segmented thin blood smear images
can be classified into three main categories. These features are:
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• Size-based feature: area of the segmented object.
• Shape-based feature: Second and third order central moment, affine invariant moment,

and Hu’s moment invariant of the segmented object.
• Color-based feature: Mean and variance of red, green, blue, intensity, and saturation

color components of the segmented object.

3.6. Malaria Diagnosis Using Intelligent Classifier

After the features had been extracted, the suitability of utilizing these features for the
classification of the thick and thin smear blood samples was tested using three different
classifiers. These three different classifiers were single-hidden layer feed-forward neural
networks (SLFN) trained by ELM and OS-ELM, and RFs. The classifications of the indi-
vidual segmented object (malaria parasite and non-malaria parasite) inside the thick and
thin smear blood samples using the three intelligent classifiers consist of one task in thick
smear blood samples and five tasks in thin smear blood samples. As for thick smear, the
classification task was to classify malaria and non-malaria parasites. Meanwhile, five tasks
in thin smear are:

• Task 1: Classification between the malaria parasite and non-malaria parasite.
• Task 2: Classification of malaria parasite as either P. falciparum or P. vivax species.
• Task 3: Classification of P. falciparum species into the ring, mature trophozoite, schizont,

and gametocyte stages.
• Task 4: Classification of P. vivax species into the ring, mature trophozoite, schizont,

and gametocyte stages.
• Task 5: Classification of the individual segmented object inside the malaria sample into

eight categories, such as P. falciparum (Ring, Trophozoite, Schizont, and Gametocyte)
and P. vivax (Ring, Trophozoite, Schizont, and Gametocyte).

Thick blood smear training and validation data distributions were tabulated in Table 1,
whereas thin blood smear training, validation, and testing data distributions were tabulated in
Table 2. In an attempt to classify the malaria parasite and non-malaria parasite inside the thick
blood smear sample, a number of 7500 segmented objects were obtained from 300 malaria
images. A total of 4500 segmented objects were used as training data, and 3000 were used
as validation data. Meanwhile, in a thin blood smear sample, a number of 6300 segmented
objects had been obtained from 4035 malaria images. A total of 3380 segmented objects were
used as training data, while 1260 were used as validation and testing data.

Table 1. Training and validation data distributions for the thick smear.

Categories Training Data Validation Data

Non-malaria parasite 1000 1000
PF 1750 1000
PV 1750 1000

Total Data 4500 3000

Table 2. Training, validation, and testing data distributions for the thin smear.

Categories Training Data Validation Data Testing Data

Non-malaria parasite 720 240 240
PF_Ring 720 240 240

PF_Trophozoite 300 100 100
PF_Schizont 360 120 120

PF_Gametocyte 360 120 120
PV_Ring 300 100 100

PV_Trophozoite 300 100 100
PV_Schizont 360 120 120

PV_Gametocyte 360 120 120
Total Data 3780 1260 1260
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3.6.1. Classification Using Extreme Learning Machine (ELM)

In this study, the ELM classification process for training the SLFN proposed by Huang
et al. [63] was used to classify the target in thick and thin blood smear images. ELM is a
supervised batch learning algorithm that employs random computational nodes in the
hidden layer and computes its output weights analytically by solving a general linear
system equation. Basically, ELM is made of three layers: input, hidden, and output. Here,
a sigmoid activation function was used for both hidden and output nodes. Note that
these activation functions can effectively avoid the insufficient expression ability of neural
networks caused by linear mapping. During the ELM training process, the analysis of
finding the best number of states and the best number of hidden nodes was conducted to
obtain the best classification result. Here, the number of hidden nodes was optimized by
varying the hidden nodes from 1 to 50 with the step of 1. The state is a seed that can be
used to initialize weights to get consistent results. As for the analysis of states, the number
of states varied between the value of 1 and 4 to optimize the classification performance.
The full implementation of ELM for training an SLFN could be referred to in [64].

3.6.2. Classification Using Online Sequential Extreme Learning Machine (OS-ELM)

In this study, the next classification process was conducted using an SLFN trained
by OS-ELM, which was proposed by Liang et al. [47]. OS-ELM is an upgraded online
sequential version of the ELM. As for the OS-ELM, this algorithm can learn the training
data one-by-one and chunk-by-chunk, discarding the data for which training had already
been done [47]. Similar to ELM, the analysis of finding the best number of states and
hidden nodes was conducted to obtain the best classification result. However, in sequential
learning, only one epoch was needed, and the training stopped right after all the training
patterns were processed. In terms of performance, the OS-ELM has been proven to be
faster than the other well-known sequential algorithms and produces better generalization
performance with lower training time. The full implementation of OS-ELM for training an
SLFN could be referred to in Liang et al. [47].

3.6.3. Classification Using Random Forest

RF is one of the potential algorithms for building classifiers introduced by Breiman [65].
This classifier consists of many binary decision trees, where each tree is a classifier by itself,
given a certain weight for its classification output. A binary decision tree is a method of
using nodes in a tree structure to test the attributes of a dataset. The results of these tests
were used to split the training data into subsets, which were then passed onto the next
layer of the tree. This continues until each subset at a node contains only one class. As an
ensemble of models, the RF used majority voting for the classification task and averaging
for regression to make a final prediction [65]. For classification using RF, the decision
tree algorithm used during the classification process is Classification and Regression Tree
(CART) [65]. In order to obtain the best classification result in this study, the optimization
parameter for the number of trees in the forest was analyzed. Therefore, the number of
trees would vary from 1 to 50 to optimize this parameter. Note that the procedures for
finding the best number of trees were applied for each classification task.

4. Results and Discussion

This section provides the results of segmentation performance using various seg-
mentation techniques and the result of classification performance of thick and thin blood
smears using three different intelligent classifiers. Here, a total of 11 segmentation tech-
niques: adaptive threshold, Niblack, Sauvola, Phansalkar, Nick, Bradley, Feng, KM, FKM,
EKM, and FCM have been used on thick and thin blood smear images of P. falciparum
and P. vivax species to obtain the best segmented resultant image as can be seen from
Figures 5–7, respectively.
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Figure 5. P. falciparum of thick smear in various segmentation techniques of (a) original image; (b)
adaptive thresholding; (c) Niblack; (d) Sauvola; (e) Phansalkar; (f) Bradley; (g) Nick; (h) Feng; (i) KM;
(j) FCM; (k) FKM; (l) EKM.
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Figure 6. P. vivax of thick smear in various segmentation techniques of (a) original image; (b) adaptive
thresholding; (c) Niblack; (d) Sauvola; (e) Phansalkar; (f) Bradley; (g) Nick; (h) Feng; (i) KM; (j) FCM;
(k) FKM; (l) EKM.



Diagnostics 2023, 13, 511 21 of 36Diagnostics 2023, 13, x FOR PEER REVIEW 22 of 38 
 

 

Technique Ring Trophozoite Schizont Gametocyte 

MGCS 

    

Adaptive 

threshold 

    

Niblack 

    

Sauvola 

    

Phansalkar 

    

Bradley 

    

Nick 

    

Feng 

    

Figure 7. Cont.



Diagnostics 2023, 13, 511 22 of 36Diagnostics 2023, 13, x FOR PEER REVIEW 23 of 38 
 

 

KM 

    

FCM 

    

FKM 

    

EKM 

    

Figure 7. P. vivax of thin smear in the ring, mature trophozoite, schizont, and gametocyte in various 

segmentation techniques. 

The comparison of the image segmentation techniques for thick and thin blood smear 

images is presented in Table 3, and the resultant images have been displayed in Figures 

5–7, respectively. Based on the findings summarized in Table 3, the Feng technique is un-

suitable for thick smear images since this technique is unable to segment malaria parasites 

properly, yet produces over-segment and resultant noisy images. In addition, Sauvola, 

KM, FKM, and EKM techniques are able to segment the thick smear image, but in some 

cases, the parasites become thin and disappear. Thus, the suitable image segmentation 

technique for thick blood smear images is the Phansalkar technique, as this technique can 

segment the thick smear image properly. As for thin smear, all techniques can segment 

thin smear images, but some techniques, such as Niblack, Sauvola, Nick, and Feng tech-

niques, produce over- and under-segment resultant images and noisy images, and, in 

some cases, the parasites disappear. Additionally, clustering techniques, such as KM, 

FKM, and FCM, produce over-segment and resultant noisy images. Note that the Phansal-

kar technique is unsuitable for thin smears because this technique produces under-seg-

ment and resultant noisy images. Based on the findings, the suitable image segmentation 

technique for thin blood smears is the EKM clustering technique. EKM technique is able 

to segment thin smear images and performs well by producing a clean segmented image. 

Table 3. Findings of investigated segmentation techniques on thick and thin blood smear images. 

Segmentation Method 
Findings on Thick Smear  

(Refer to Figures 5 and 6) 

Findings on Thin Smear  

(Refer to Figure 7) 

Adaptive threshold 

This technique is able to segment thick smear 

images, but in some cases, this technique will 

produce a noisy image. 

This technique is able to segment thin smear 

images, but in some cases, it produces an 

over-segment and noisy image. 

Figure 7. P. vivax of thin smear in the ring, mature trophozoite, schizont, and gametocyte in various
segmentation techniques.

The comparison of the image segmentation techniques for thick and thin blood smear
images is presented in Table 3, and the resultant images have been displayed in Figures 5–7,
respectively. Based on the findings summarized in Table 3, the Feng technique is unsuitable
for thick smear images since this technique is unable to segment malaria parasites properly,
yet produces over-segment and resultant noisy images. In addition, Sauvola, KM, FKM, and
EKM techniques are able to segment the thick smear image, but in some cases, the parasites
become thin and disappear. Thus, the suitable image segmentation technique for thick
blood smear images is the Phansalkar technique, as this technique can segment the thick
smear image properly. As for thin smear, all techniques can segment thin smear images,
but some techniques, such as Niblack, Sauvola, Nick, and Feng techniques, produce over-
and under-segment resultant images and noisy images, and, in some cases, the parasites
disappear. Additionally, clustering techniques, such as KM, FKM, and FCM, produce
over-segment and resultant noisy images. Note that the Phansalkar technique is unsuitable
for thin smears because this technique produces under-segment and resultant noisy images.
Based on the findings, the suitable image segmentation technique for thin blood smears is
the EKM clustering technique. EKM technique is able to segment thin smear images and
performs well by producing a clean segmented image.

4.1. Analysis of Thick Smear Segmentation

In order to evaluate the proposed image segmentation procedure and select the best
segmentation technique for thick smear images, the performance of all 11 segmentation
techniques is further analyzed by comparing the resultant segmented image against the
manually segmented image. Table 4 presents the results of segmentation performances
based on accuracy, specificity, and sensitivity evaluation obtained from the average of
200 thick blood smear images. The best results obtained for analyses using different
segmentation techniques are made bold. Specificity evaluation indicates the percentage of
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actual negative values was correctly identified. Meanwhile, sensitivity evaluation indicates
the percentage of actual positive values was correctly identified. Based on the average of
segmentation performances in Table 4, for the segmentation accuracy, segmentation using
the FKM clustering has proven to be good in segmenting the entire region in thick blood
smear images compared to other segmentation techniques with the highest accuracy of
99.91%. Nevertheless, even though the accuracy of the FKM technique is highest compared
to other segmentation techniques, FKM cannot obtain a fully segmented malaria parasite
region, as seen in Figure 6 previously.

Table 3. Findings of investigated segmentation techniques on thick and thin blood smear images.

Segmentation Method Findings on Thick Smear
(Refer to Figures 5 and 6)

Findings on Thin Smear
(Refer to Figure 7)

Adaptive threshold
This technique is able to segment thick smear
images, but in some cases, this technique will

produce a noisy image.

This technique is able to segment thin smear
images, but in some cases, it produces an

over-segment and noisy image.

Niblack
This technique is able to segment thick smear

images, yet this technique will produce an
over-segment and noisy image.

This technique is able to segment thin smear
images. However, it produces both over- and
under-segment, and noisy images. In some

cases, the parasites disappear.

Sauvola
This technique is able to segment thick smear

images. However, in some cases, the
parasites become thin and disappear.

This technique can segment thin smear
images but produces under-segment and

noisy images. Plus, in some cases, the
parasites disappear.

Phansalkar
This technique is able to segment thick smear

images and perform better, especially on
images with uneven lighting conditions.

This technique is able to segment thin smear
images. However, in some cases, it produces

an under-segment and noisy image.

Bradley
This technique is able to segment thick smear

images, but in some cases, it produces an
over-segment and noisy image.

This technique is able to segment thin smear
images, but in some cases, it produces an

under-segment and noisy image.

Nick
This technique is able to segment thick smear

images; however, in some cases, the
parasites disappear.

This technique is able to segment thin smear
images but produces under-segment, noisy

images, causing some parasites to disappear.

Feng
This technique is unable to segment thick
smear images as it produces over-segment

and noisy images.

This technique is able to segment thin smear
images. However, it produces both over and
under-segments and noisy images; in some

cases, the parasites disappear.

KM

This technique is able to segment thick smear
images. However, in some P. falciparum

images, the parasites become thin
and disappear.

This technique is able to segment thin smear
images. However, in some cases, it produces

over-segment and noisy images.

FCM
This technique is able to segment thick smear

images, but in some cases, it produces
over-segment and noisy images.

This technique is able to segment thin smear
images. However, in some cases, it produces

an over-segment and noisy image.

FKM

This technique is able to segment thick smear
images. However, in some P. falciparum

images, the parasites become thin
and disappear.

This technique is able to segment thin smear
images. However, in some cases, it produces

an over-segment and noisy image.

EKM

This technique is able to segment thick smear
images. However, in some P. falciparum

images, the parasites become thin
and disappear.

This technique is able to segment thin smear
images and perform better by producing a

clean segmented image.
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Table 4. Average segmentation evaluation consisting of accuracy, specificity, and sensitivity of
200 thick blood smear images.

Techniques Accuracy (%) Specificity (%) Sensitivity (%)

Adaptive
thresholding 99.89 99.96 40.04

Bradley 99.63 99.64 76.71
Feng 98.70 98.75 52.35

Niblack 99.81 99.82 83.85
Nick 99.83 99.84 88.02

Phansalkar 99.86 99.87 92.47
Sauvola 99.89 99.91 81.71
k-means 99.91 99.94 70.32

Fuzzy c-means 98.77 98.82 57.44
Fast k-means 99.91 99.93 75.75

Enhanced k-means 99.86 99.90 74.43

Based on the segmentation performance of specificity evaluation in Table 4, segmenta-
tion using adaptive thresholding has proven to produce a clean segmented image compared
to other segmentation techniques, with the highest specificity of 99.96%. However, even
though the adaptive thresholding technique has a high specificity value, this technique
produces a lower sensitivity value compared to other segmentation techniques with a
value of 40.04%, which means that this technique cannot obtain a fully segmented malaria
parasite region. The main element used to evaluate the segmentation performance is based
on its capability to entire segment region in thick blood smear image, including obtaining
the fully segmented malaria parasite region and producing a clean segmented resultant
image. Therefore, considering this element, segmentation using the Phansalkar technique
has the best performance by providing the highest sensitivity results with a value of 92.47%
compared to the other segmentation techniques. It can also achieve high accuracy and
specificity with a value of 99.86% and 99.87%, respectively.

4.2. Analysis of Thin Smear Segmentation

In order to evaluate the proposed image segmentation procedure and select the best
segmentation technique for thin smear images, the performance of all 11 segmentation
techniques is further analyzed by comparing the resultant segmented image against the
manually segmented image. Table 5 presents the results of segmentation performances
based on accuracy, specificity, sensitivity, precision, recall, and F1-score evaluation obtained
from the average of 100 thin blood smear images of a ring, trophozoite, schizont, and
gametocyte stages. In essence, the primary factor considered to assess the segmentation
performance is based on its ability to segment the entire region in a thin blood smear image,
including obtaining the fully segmented malaria parasite region and the ability to produce
a clean segmented resulting image.

Based on the average of segmentation performances in Table 5, for segmentation
accuracy, segmentation using the EKM clustering has proven to be good in segmenting the
entire region in thin blood smear images compared to other segmentation techniques with
the highest accuracy value of 99.2%. Subsequently, based on the segmentation performance
of specificity evaluation in Table 5, segmentation using the nick technique has proven
to produce a clean segmented image compared to other segmentation techniques with
the highest specificity value of 99.92%. However, even though the Nick technique has a
high specificity value, this technique produces a low recall value of 0.5895. Therefore, this
technique has produced an under-segmented resultant image, as seen in Figure 7. Apart
from that, based on the segmentation performance of sensitivity evaluation in Table 5,
segmentation using the FKM clustering technique has proven to be good in obtaining the
fully segmented malaria parasite region compared to other segmentation techniques, with
the highest sensitivity value of 93.87%. Nevertheless, even though the FKM clustering
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technique has a high specificity value, this technique produces a low precision value with a
value of 0.5103 means that this technique has produced an over-segmented resultant image.

Table 5. Average segmentation evaluation consisting of accuracy, specificity, sensitivity precision,
recall, and F1-score of 100 thin blood smear images.

Techniques Accuracy (%) Specificity (%) Sensitivity (%) Precision Recall F1-Score

Adaptive
thresholding 97.40 97.75 87.15 0.7914 0.8716 0.7870

Bradley 98.81 99.33 83.71 0.9011 0.8372 0.8525
Feng 80.20 81.49 43.98 0.0670 0.4398 0.2227

Niblack 94.65 95.70 63.81 0.5867 0.6381 0.5539
Nick 98.58 99.92 58.95 0.9715 0.5895 0.7598

Phansalkar 99.18 99.74 83.13 0.9457 0.8313 0.8783
Sauvola 99.28 99.89 81.59 0.9672 0.8159 0.8882
k-means 95.87 96.11 88.63 0.6867 0.8863 0.7099

Fuzzy c-means 97.95 98.25 89.43 0.7821 0.8943 0.8010
Fast k-means 93.69 93.72 93.87 0.5103 0.9387 0.5870

Enhanced k-means 99.20 99.58 87.52 0.9579 0.8752 0.9033

By considering the primary factor that has been mentioned previously, segmentation
using the EKM clustering technique has the best performance. It provides the highest
accuracy results, meaning that this technique can segment the entire region of a thin blood
smear image with a value of 99.2% and the highest F1-score. Furthermore, it means that
the EKM clustering technique is able to obtain a good, segmented image with a value of
0.9033 compared to the other segmentation techniques. Additionally, this technique can
achieve good specificity, sensitivity, precision, and recall value of 99.58%, 87.52%, 0.9579,
and 0.8752, respectively. Furthermore, as seen in Figure 7, these resultant images show that
using the proposed image segmentation procedure of the EKM clustering technique has
produced good segmented thin blood smear images consisting of P. falciparum and P. vivax
species in all stages.

The analysis based on the proposed segmentation framework as presented in Algo-
rithm 1 has also been conducted using 400 (50 PF_Ring, 50 PF_Trophozoite, 50 PF_Schizont,
50 PF_Gametocyte, 50 PV_Ring, 50 PV_Trophozoite, 50 PV_Schizont, and 50 PV_Gametocyte)
images from different malaria blood slides. Figures 8 and 9 provide the results of the proposed
segmentation procedures applied to malaria images of the ring, mature trophozoite, schizont,
and gametocyte stages captured from P. falciparum and P. vivax blood samples. In addition,
Table 6 tabulates the segmentation performance based on sensitivity, specificity, and accuracy
for the final segmented images of eight different types of malaria. Here, the final segmented
images’ sensitivity, specificity, and accuracy are determined based on the pixel similarity of
the final segmented image against the manually segmented image. Overall, the proposed
segmentation method has successfully segmented 400 malaria images with segmentation
accuracy, sensitivity, and specificity of 99.49%, 84.07%, and 99.77%, respectively.

Table 6. Segmentation performances for the final segmented malaria images.

Images Sensitivity (%) Specificity (%) Accuracy (%)

PF_Ring 75.95 99.56 99.35
PF_Trophozoite 76.22 99.86 99.81

PF_Schizont 82.23 99.95 99.68
PF_Gametocyte 88.35 99.90 99.68

PV_Ring 88.87 99.22 98.92
PV_Trophozoite 91.59 99.95 99.65

PV_Schizont 81.27 99.88 99.50
PV_Gametocyte 88.11 99.86 99.34

Average of 400 Images 84.07 99.77 99.49
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Figure 9. Original and final segmented images for P. vivax: (a) Original ring; (b) Original tropho-
zoite; (c) Original schizont; (d) Original gametocyte; (e) Segmented ring (f) Segmented trophozoite;
(g) Segmented schizont; (h) Segmented gametocyte.

4.3. Analysis of Thick Smear Classification

The findings of employing ELM, OS-ELM, and RF intelligent classifiers to distinguish
between malaria parasites and non-malaria parasites inside thick blood samples are pre-
sented in this section. Here, the result of the classification between the malaria parasite
and non-malaria parasite inside the thick blood samples will start with the analysis using
ELM. Followed by classification using OS-ELM and ended with the classification using RF.
The first classification process is to classify the malaria parasites and non-malaria parasites
using ELM. Note that the analysis of the number of hidden nodes for classification between
the malaria parasites and non-malaria parasites using ELM is shown in Table 7. According
to the results in Table 7, ELM can detect malaria parasites with a training accuracy of 83%,
and the best validation accuracy of 83.83%.
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Table 7. The performance comparison among ELM, OS-ELM, and random forest networks for
classification between malaria and non-malaria parasites.

Task Techniques Number of
Epochs

Number of
Hidden Nodes

Number of
Trees Accuracy (%)

Training Validation
Classify malaria

parasite and
non-malaria parasite

ELM 1 6 - 83.00 83.83
OS-ELM 1 29 - 85.37 86.39

Random forest - - 32 95.44 86.89

Next, the second classification process to classify malaria and non-malaria parasites
use OS-ELM. The analysis of the number of hidden nodes for classification between
the malaria parasites and non-malaria parasites using OS-ELM is shown in Table 7. It
has been illustrated in Figure 10a. According to the values highlighted bold in Table 7,
OS-ELM effectively detects malaria parasites, with a training accuracy of 85.37% and
the best validation accuracy of 86.39%. RF is the third intelligent classifier to classify
malaria and non-malaria parasites. Table 7 and Figure 10b demonstrate the analysis of
the number of trees for classification between the malaria parasites and non-malaria
parasites using RFs. The results present that the RF can detect the malaria parasite by
producing the best classification result with high training and validation accuracies of
95.44% and 86.89%, respectively.
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Here, the classification performance of three intelligent classifiers for identifying
malaria and non-malaria parasites is summarized in Table 7. According to the data tab-
ulated in Table 7, all these intelligent classifiers of ELM, OS-ELM, and RF network have
exhibited good classification performance by achieving training and validation accuracy
values higher than 80%. By comparing the classification results between the three intelligent
classifiers, the RF network has proven to be the best by producing the highest validation
accuracies of 86.89% for classifying malaria and non-malaria parasites. Consequently, it is
followed by the classification results provided by OS-ELM in the second and ELM in the
third place, with values of 86.39% and 83.83%, respectively.

4.4. Analysis of Thin Smear Classification

This section provides the results of classifying the individual segmented object (the
malaria parasite and non-malaria parasite) inside the thin blood samples using ELM,
OS-ELM, and RF intelligent classifiers. Here, the classifications of individual segmented
objects involve five main tasks previously described in Section 3. For each category of
the classification task, the result and discussion will start with the analysis using ELM,
followed by classification using OS-ELM, and end with the classification using RF. The
following sub-sections will discuss the results obtained after performing the analysis using
the three intelligent classifiers.
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4.4.1. Classification Results of Malaria Parasites Detection

In this section, the three different classifiers have been applied to perform the classifi-
cation process based on Task 1. This task involves the classification between the malaria
parasite and the non-malaria parasite. The first classification process to perform Task 1 is
the classification using ELM. Table 8 summarizes the classification performances between
the malaria parasite and non-malaria parasite using ELM. Based on the results in Table 8,
ELM is also capable of detecting malaria parasites with good generalization properties by
producing good training accuracy of 94.29%, and producing the best validation and testing
accuracies of 93.57% and 93.81%, respectively. Consequently, the second classification pro-
cess to perform Task 1 is using OS-ELM. Figure 11a illustrates the analysis of several hidden
nodes for classifying the malaria parasite and non-malaria parasite using OS-ELM. Mean-
while, Table 8 summarizes the performances of classification between malaria parasites
and non-malaria parasites using OS-ELM. Based on the results in both tables, OS-ELM can
detect malaria parasites with good generalization properties by producing good training
accuracy of 94.29% and the best validation and testing accuracies of 93.57% and 93.81%,
respectively. Apart from that, the third classification process to perform Task 1 is the
classification using RF. Table 8 and Figure 11b demonstrate the analysis of the number of
trees for classifying malaria parasites and non-malaria parasites using RFs. The results
indicate that the RF can detect malaria parasites with good generalization properties by
producing the best classification result with training, validation, and testing accuracies of
97.80%, 94.37%, and 94.29%, respectively.

Table 8. The performance comparison among ELM, OS-ELM, and Random Forest network for five
classification tasks.

Tasks Techniques Number of
Epochs

Number of
Hidden Nodes

Number of
Trees Accuracy (%)

Training Validation Testing

1
ELM 1 46 - 93.86 93.81 93.33

OS-ELM 1 44 - 94.29 93.57 93.81
Random forest - - 19 97.80 94.37 94.29

2
ELM 1 35 - 97.45 97.25 95.98

OS-ELM 1 46 - 97.68 97.55 97.06
Random forest - - 22 99.28 98.82 93.73

3
ELM 1 30 - 88.05 97.41 95.17

OS-ELM 1 41 - 89.37 97.24 94.14
Random forest - - 41 93.79 98.79 96.38

4
ELM 1 47 - 86.74 85.91 65.45

OS-ELM 1 40 - 86.14 86.36 77.95
Random forest - - 33 98.94 84.77 80.00

5
ELM 1 49 - 89.12 88.46 80.00

OS-ELM 1 49 - 89.54 89.12 86.86
Random forest - - 33 96.70 90.78 82.25

4.4.2. Classification Results of Malaria Parasites Species

This section provides the classification results based on Task 2, which involves classify-
ing P. falciparum and P. vivax species. The first classification process to perform Task 2 is the
classification using ELM. Table 8 summarizes the performances of classification between
malaria parasites and non-malaria parasites using ELM, OS-ELM, and RF. Based on the
results in Table 8, ELM can differentiate between P. falciparum and P. vivax species with good
training accuracy of 94.29%, and producing the best validation and testing accuracies of
93.57% and 93.81%, respectively. Subsequently, the second classification process to perform
Task 2 is using OS-ELM. Based on the results in Table 8, OS-ELM can differentiate between
P. falciparum and P. vivax species by producing a good training accuracy of 97.68%, and the
best validation and testing accuracies of 97.55% and 97.06%, respectively. Apart from that,
the third classification process to perform Task 2 is the classification using RF. The results
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from Table 8 exhibit that the RF has the capability to differentiate between P. falciparum and
P. vivax species by producing training, validation, and testing accuracies of 99.28%, 98.82%,
and 93.73%, respectively.
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4.4.3. Classification Results of Malaria Parasites Life-Cycle Stages

This section provides the classification results based on Tasks 3 and 4, which involve
the classifications of P. falciparum and P. vivax species into their four life-cycle stages: ring,
mature trophozoite, schizont, and gametocyte stages. The classification using ELM is the
first classification process to perform Tasks 3 and 4. Table 8 summarizes the performances
of classification among ring, mature trophozoite, schizont, and gametocyte stages of P.
falciparum and P. vivax species using ELM. Based on these results, the ELM can classify the
four life-cycle stages of P. falciparum with high validation and testing accuracies compared
to P. vivax species. Here, the validation accuracy of 97.24%, and testing accuracy of 94.14%
that ELM has produced for the recognition of P. falciparum species are higher as compared
to the recognition of P. vivax species with validation and testing accuracies of 86.36%
and 77.95%, respectively. Correspondingly, the second classification process to perform
Tasks 3 and 4 is the classification utilizing OS-ELM. The analysis of the number of hidden
nodes for classification among ring, mature trophozoite, schizont, and gametocyte stages
of P. falciparum and P. vivax species using OS-ELM are present in Figures 12a and 13a
and summarized in Table 8. Based on these results, the OS-ELM can classify the four
life-cycle stages of P. falciparum with high validation and testing accuracies compared to
P. vivax species. The validation accuracy of 97.24%, and testing accuracy of 94.14% that
OS-ELM has produced for the recognition of P. falciparum species are higher as compared
to the recognition of P. vivax species with validation and testing accuracies of 86.36% and
77.95%, respectively. In addition, the third classification process to perform Tasks 3 and 4
is RF classification. The analysis of the number of trees for the classification of different
life-cycle stages in P. falciparum and P. vivax species employing RF is demonstrated in
Figures 12b and 13b and summarized in Table 8. These results indicate that the diagnosis
among different stages in P. falciparum species with validation accuracy of 98.79% and
testing accuracy of 96.38% is easier to recognize and differentiate than the P. vivax species
with validation and testing accuracies of 84.77% and 80%, respectively.

4.4.4. Classification Results of Multiclass Classification for Malaria Parasites Species and
Life-Cycle Stages

This section provides the multiclass classification results based on Tasks 5. Here,
Task 5 involves classifying the individual segmented object inside the malaria sample into
eight classes which are PF_Ring, PF_Trophozoite, PF_Schizont, PF_Gametocyte, PV_Ring,
PV_Trophozoite, PV_Schizont, and PV_Gametocyte stages. The first classification process
to perform Task 5 is the classification using ELM. Table 8 summarizes the performances of
classifying the malaria parasite into eight classes using ELM. Based on these results, the
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ELM has the ability to classify the individual segmented object inside the malaria sample
into eight classes of PF_Ring, PF_Trophozoite, PF_Schizont, PF_Gametocyte, PV_Ring,
PV_Trophozoite, PV_Schizont, and PV_Gametocyte stages. Here, the validation accuracy
of 97.24% and testing accuracy of 94.14% have been produced by ELM for the classification
of malaria parasites into eight classes. Subsequently, the second classification process to per-
form Task 5 is the classification using OS-ELM. The analysis of the number of hidden nodes
for classifying malaria parasites into eight classes using OS-ELM is summarized in Table 8.
Here, the validation accuracy of 89.12%, and testing accuracy of 86.86%that have been
produced by OS-ELM for the classifications of the individual segmented object inside the
malaria sample into eight classes of PF_Ring, PF_Trophozoite, PF_Schizont, PF_Gametocyte,
PV_Ring, PV_Trophozoite, PV_Schizont, and PV_Gametocyte stages. In addition, the third
classification process to perform Task 5 is the classification using RF. Note that the anal-
ysis of the number of trees for classifications of the individual segmented object inside
the malaria sample into eight classes which are PF_Ring, PF_Trophozoite, PF_Schizont,
PF_Gametocyte, PV_Ring, PV_Trophozoite, PV_Schizont, and PV_Gametocyte stages are
summarized in Table 8. The classification results show that the RF can classify malaria
parasites into eight classes by producing good results in the validation and testing phases
with accuracies of 90.78% and 82.25%, respectively.
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Table 8 presents the classification results for the five different tasks produced by the
three intelligent classifiers. The best results obtained for analyses using these classifiers
are made bold. Based on the results in Table 8, the three intelligent classifiers provide
good classification performance with training, validation, and testing accuracies of more
than 80%, except for the classification of Task 4 using OS-ELM. In addition, RF produces
the best classification results for both the validation and testing phases for Tasks 1 and
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3. As for the classification of Tasks 2 and 5, the RF network produces the best validation
accuracy, while the best testing accuracy has been produced by OS-ELM. However, for the
classification of Task 4, the OS-ELM network produces the best validation accuracy, but
the best testing accuracy has been produced by RF. By comparing the classification results
of the five tasks provided by the three intelligent classifiers, the RF network has proven
to be the best by producing high validation accuracies for Tasks 1, 2, 3, and 5, and high
testing accuracies for Tasks 1, 3, and 4. Although RFs obtain better accuracy than ELM and
OS-ELM, this classifier requires a lot of training time and is quite slow to make predictions.
Even though the ELM and OS-ELM algorithms are computationally efficient and relatively
faster, the robustness and stability of both ELM and OS-ELM algorithms cannot always be
guaranteed. This is because the random generation of the parameters for the hidden nodes
will result as the model’s expected output may not match the actual output. Hence, due to
good classification performance, the RF network has been selected to classify blood images
from both normal and malaria samples.

5. Discussion

A rapid and accurate malaria diagnosis is essential as a precautionary measure to
prevent more malaria infections. Thus, this study presents a novel multi-stage malaria
parasite recognition framework for microscopy diagnosis of both thick and thin smear
images. This study aims to deal with parasite detection in thick smear microscopy, and
parasite species classification and staging for thin smear microscopy. In brief, Table 9
presents the classifier performance reported in the recent literature related to malaria
diagnosis, which is comparable to the performance obtained from this study. However,
certain noteworthy elements that are distinct from other recent works are presented in this
study. First, most of the relevant studies utilized thin blood smear samples for parasite
detection, as in [25,29,37–44]. Based on clinical microscopy tests, a thick blood smear
sample is more suitable for performing parasite detection since it is more sensitive to
the parasite.

Table 9. Comparison of our proposed classifier performance with the current relevant studies.

Authors Task Classifier Dataset Classifier Performance

Nanoti et al. [25]
Detect three lifecycle
stages (trophozoite,

schizont, and gametocyte)
k-nearest neighbor (KNN) 300 thin blood smear

images
Accuracy = 90.17%

Sensitivity = 90.23%

Dave [27] Parasite detection Support vector machine
(SVM)

87 thick blood smear
images

Discrepancy of parasites
count = 7.18%

Sensitivity = 86.34%
Specificity = 96.60%

Setianingrum et al. [29]
Detect two lifecycle stages

in P. falciparum
(trophozoite and schizont)

Support vector machine
(SVM)

24 images (consisting of
12 images of the

trophozoite stage and
12 images of the
schizont stage)

Accuracy = 91.67%

Sifat and Islam [32]

Classification of Infected
and Uninfected RBC using
CNN, Detect the type and

stage of the detected
parasite using VGG16

Convolutional neural
network (CNN), visual

geometry group
16 (VGG16)

5512 images (consist of
3815 P. falciparum, 237 P.
malariae, 618 P. ovale, and

842 P. vivax)

Accuracy of infected
RBC = 100%

Specificity of infected
RBC = 95%

Average accuracy of
species and stage

identification = 95.55%
Specificity of

species and stage
identification = 94.75%

Nugroho et al. [33] Species recognition and
staging identification Naïve Bayes 35 thin blood smear

images

Sensitivity = 84.37%,
Positive predictive

value = 80.60%
F1-score = 80.60%
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Table 9. Cont.

Authors Task Classifier Dataset Classifier Performance

Swastika et al. [34] Parasite detection ResNet-50, MicroVGGNet
and BaselineNet-1

27,558 thin blood smear
images (consisting of

13779 infected and 13779
uninfected images)

Accuracy of
ResNet-50 with

regularization = 97.12%
Accuracy of

MicroVGGNet with
regularization = 95.64%

Accuracy of
BaselineNet-1 with

regularization = 96.28%

Taha and Liza [35] Classification of infected
and uninfected samples InceptionResNetV2

27,558 thin blood smear
images (consisting of

13,779 infected and 13,779
uninfected images)

Accuracy = 97.10%
Precision = 96.93%

Recall = 97.28%
F1-score = 97.10%

Matthews
correlation = 94.20%

Widiawati et al. [36] Identification of parasite
and non-parasite Naïve Bayes 38 thick blood smear

images

Accuracy = 82.05%
Sensitivity = 84.62%
Specificity = 76.92%

Maqsood et al. [37] Parasite detection Convolutional Neural
Networks

27,558 thin blood smear
images (consisting of

13,779 infected and 13,779
uninfected images)

Accuracy = 96.82%

Shal and Gupta [41] Classification of infected
and uninfected samples Yolo version 5

27,558 thin blood smear
images (consisting of

13,779 infected and 13,779
uninfected images)

Accuracy = 94.67%
True positivity
rate = 50.30%

Precision = 95.25%

Razin et al. [42]
Parasite detection and

classification of infected
and uninfected samples

Convolutional Neural
Network (CNN) and
YOLOv5 algorithm

27,558 thin blood smear
images (consisting of

13,779 infected and 13,779
uninfected images)

Accuracy of infected
YOLOv5 = 95.37%

Accuracy of uninfected
YOLOv5 = 97.05%

Accuracy of parasite
detection CNN= 96.21%

Zarima et al. [43] Classification of infected
and uninfected samples EfficientNet

27,558 thin blood smear
images (consisting of

13,779 infected and 13,779
uninfected images)

Accuracy = 91%

Gummadi, Ghoosh, and
Vootla [44] Parasite detection Convolutional neural

network (CNN)

27,558 thin blood smear
images (consisting of

13,779 infected and 13,779
uninfected images)

Accuracy = 96.88%
Sensitivity = 97.35%
Specificity = 96.41%
F1-score = 96.89%
Precision = 96.44%

Our proposed technique
Parasite detection,

species recognition, and
staging identification

Random forest

500 thick blood smear
images (consisting of both
P. falciparum and P. vivax),

4035 thin blood smear
images (consisting of both
P. falciparum and P. vivax)

Accuracy of
parasite detection

(thick smear) = 86.89%
Accuracy of

parasite detection
(thin smear) = 94.37%
Accuracy of species
recognition = 98.82%
Accuracy of staging

identification = 90.78%

In contrast, a thin blood smear sample is suitable for identifying species and life-
cycle stages. Yet, this study applies both thick and thin smear images for malaria parasite
recognition. Second, the malaria diagnosis techniques, based on the standard machine
learning procedure as in [25,27,29,33,36], use small datasets. The majority of them employ
datasets with fewer than 300 total images. Nonetheless, adding more data will help in
producing a better result. Therefore, to achieve superior performance, this study used a
total of 500 thick blood smear images and 4035 thin blood smear images, which include
both P. falciparum and P. vivax species. Based on Table 9, most recent studies used deep
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learning [37–44] and achieved high accuracies. However, deep learning models require a
huge amount of data to learn and make an effective prediction. For instance, [34,35,37–44]
utilized about 27,558 images as datasets. Nevertheless, even though our proposed work
used standard machine learning procedures, our proposed work also demonstrates higher
accuracies in parasite detection on thick and thin blood smear samples. This includes
high accuracies in species recognition and staging identification with the value of 86.89%,
94.37%, 98.82%, and 90.78%, respectively. The values are higher than other researchers that
also used machine learning, such as in [25] and [36]. However, it is also comparable to the
researcher that used deep learning, such as in [41,43]. Therefore, the results presented in
this study are comparable to the state-of-the-art results but also reliable and generalizable.
Note that it was trained and validated on a quite large dataset compared to other recent
machine learning works.

6. Conclusions

In this study, a full framework based on image processing and machine learning
was designed to address the problem of detecting parasites for quantifying parasitemia
levels in thick smear microscopy, classifying parasite species, and staging for thin smear
microscopy. A total of 11 segmentation techniques, namely, adaptive thresholding, Bradley,
Niblack, Nick, Sauvola, Phansalkar, Feng, KM, FKM, EKM, and FCM clustering have
been employed to explore the effect of segmentation on thick and thin smear images. The
proposed image-processing framework for thick smears using the Phansalkar segmentation
technique has established the highest potential for segmenting the entire region of a thick
blood smear image. This includes obtaining the fully segmented malaria parasite region
and producing a clean segmented resultant image by reaching an overall accuracy of
99.8593%, specificity of 99.8678%, and sensitivity of 92.4705%. Meanwhile, the proposed
image-processing framework for thin smears using the EKM clustering technique has
established the highest potential for segmenting the entire region of thin blood smear
images. This includes obtaining the fully segmented malaria parasite region and producing
a clean segmented resultant image by achieving the best accuracy, specificity, sensitivity,
precision, recall, and F1-score value of 99.19932%, 99.57775%, 87.5209%, 0.957919, 0.875209,
and 0.90334, respectively. Overall, the proposed intelligent diagnostic system for malaria
has performed the detection process of thick smear images with a classification accuracy
of 86.39% using an RF classifier. As for the diagnosis process, the system based on the
RF has correctly classified P. falciparum and P. vivax species with 98.82% accuracy and a
staging result of 90.78%. Combining these approaches will allow for versatile detection
and stage categorization of malaria parasites from thick and thin smear images with an
interactive assessment of the results. Hence, it will improve inspection reproducibility and
present a standard lab routine lab for future field-based automated malaria diagnosis. This
study focused on processing the malaria images from only two malaria species, which
are P. falciparum and P. vivax species. Therefore, to improve the research performance for
future work, diagnosis of malaria disease based on all others malaria species, such as
P. ovale, P. malariae, and P. knowlesi species, could be considered so that this system could be
used worldwide.
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