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Abstract: Breast cancer is clinically and biologically heterogeneous and is classified into different
subtypes according to the molecular landscape of the tumor. Triple-negative breast cancer is a subtype
associated with higher tumor aggressiveness, poor prognosis, and poor response to treatment. In
metastatic breast cancer, approximately 6% to 10% of new breast cancer cases are initially staged
IV (de novo metastatic disease). The number of metastatic recurrences is estimated to be 20–30% of
all existing breast tumor cases, whereby the need to develop specific genetic markers to improve
the prognosis of patients suffering from these deadly forms of breast cancer. As an alternative,
liquid biopsy methods can minutely identify the molecular architecture of breast cancer, including
aggressive forms, which provides new perspectives for more precise diagnosis and more effective
therapeutics. This review aimed to summarize the current clinical evidence for the application
of circulating tumor DNA in managing breast cancer by detailing the increased usefulness of this
biomarker as a diagnostic, prognostic, monitoring, and surveillance marker for breast cancer.

Keywords: circulating tumor DNA (ctDNA); liquid biopsy; breast cancer; cancer diagnosis; tumor
heterogeneity; early detection; therapeutic targets and resistance

1. Introduction

Breast cancer (BC) is a disease characterized by various clinical behaviors and biologi-
cal characteristics, making the prediction and management process more challenging [1].
Specific pathological findings and distinct hereditary or somatic genetic alterations appear
to be the major factors linked in some way to the risk of developing breast cancer [2].

Breast cancer (BC) is heterogenous, showing variable morphologic and biological
features; thus, it has different clinical behaviors and responses to treatment [3]. Based on
molecular and histological evidence, BC could be categorized into three groups: (1) BC
expressing hormone receptor (estrogen receptor (ER+) or progesterone receptor (PR+)) com-
monly noted as luminal tumors and are responsive to endocrine therapy, (2) BC expressing
human epidermal receptor 2 (HER2+) which is characterized by the overexpression of
HER2 oncogene and is treated with trastuzumab, (3) Triple-negative breast cancer (TNBC)
(ER−, PR−, HER2−) subtype, which is associated with high mortality rates and is not
responsive to some drug treatment approaches [4,5]. Nowadays, efforts have been fo-
cused mainly on a better understanding of triple-negative breast cancer (TNBC) biology
since it is the most clinically aggressive group of breast cancers by: (i) the absence of all
three immunohistochemical (IHC) biomarkers, (ii) it affects the youngest women, (iii) and
has no specific biomarkers. Therefore, the current treatment of TNBC relies largely on
chemotherapy and radiotherapy, with no targeted drug yet approved for TNBC [6,7].

In metastatic breast cancer, metastases are heterogeneous with various somatic muta-
tions and molecular alterations. Consequently, it is essential and necessary to identify new
biomarkers to guide treatment and improve clinical cancer management [8].
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Intratumoral heterogeneity and tumor evolution contribute to treatment failure in
cancer patients, which is explained by cellular mutability, cancer cell survival, and drug se-
lection pressures, including adaptive mutability. Thanks to important collaborative efforts
of several research entities such as the Cancer Genome Atlas (TCGA), the Human Tumor
Atlas Network, the Pan-Cancer Analysis of Whole Genomes Consortium, and the Inter-
national Cancer Genome Consortium, this intratumoral and intertumoral heterogeneity
has been elucidated through single-cell analyses of primary tumors and corresponding
metastases, genomic studies of treated and untreated metastatic disease, and investigations
of the tumor microenvironment [9].

Therefore, the ideal approach to address the heterogeneity of breast tumors would be
to find a method that can capture the entire genetic map of the tumor. Collecting serial
biopsies of the tumors and longitudinal monitoring is essential to catch the phylogenetic
progress of the tumor. However, it is not feasible to conduct such procedures through tissue
biopsy, as they are highly invasive and may be incomprehensible.

Progress and scientific advances in liquid biopsy have raised the hope of detecting
temporal and spatial heterogeneity before and after systemic therapy, or when multiple
potentially discordant metastases are present [9].

In this review, we will focus on the study of circulating DNA as a liquid biopsy
biomarker, highlighting the latest pre-analytical considerations and analytical techniques
for the analysis of this biomarker. This review will also focus on the study of the clinical
utility and validity of circulating tumor DNA, outlining recent advances and current
challenges, particularly in aggressive breast cancer.

2. General Overview of Cell-Free DNA

The presence of cell-free DNA (cfDNA) in healthy people’s blood was first reported by
Mandel and Metais in 1948 [10], but it was only correlated with cancer in 1977. Leon and
Shapiro, using a radioimmunoassay, showed that the serum of cancer patients contained a
significantly higher quantity of cell-free DNA [11]. In 1997, Lo’s team demonstrated the
presence of circulating fetal DNA in maternal blood during pregnancy [12]; as a result, the
first method of diagnosing trisomy 21 was established [13].

Generally, cfDNA consists of short DNA fragments of 160–180 bp, which are the size
of a single nucleosome [14]. Based on the most quantitative studies performed so far,
cfDNA concentration within healthy people is between 0 and 100 ng/mL of blood [15,16].
The level of cfDNA can be increased with infection [17], stroke [18], trauma, myocardial
infarction [19], tissue damage [20], or cancer [11]. In addition to the bloodstream, cfDNA
can be extracted from saliva [21], urine [22,23], cerebral spinal fluid [24], and pleural
fluid [25].

Although the source of cfDNA is not completely elucidated, various studies report
the origin and possible mechanisms of the release of cfDNA [26,27]. Cell-free DNA can be
generated from two main sources: dead cells by several mechanisms of cellular degradation
such as necrosis and apoptosis or living cells by active release [28]. This source may differ
depending on physiological and pathological conditions [27]. For healthy people, cfDNA
may originate principally by apoptosis of lymphocytes or other nucleated cells [29,30],
this results in high inter-nucleosomal DNA fragmentation. On the other hand, necrosis
produces larger cfDNA fragments, higher than 10,000 base pairs (bp) [31]. Many recent
studies demonstrate that cfDNA is involved in normal cell function as an intercellular
signaling pathway [27], as well as the induction of neutrophil release into the bloodstream
to clear bacterial infections [32]. Further studies suggest that cfDNA has other potential
biological functions, such as stimulating cell transformation and tumorigenesis in recipient
cells [33,34].

The application and potential use of cfDNA as a biomarker achieved the best suc-
cess in different clinical phases, thus making it a popular and potential target in a wide
range of research areas, principally prenatal diagnosis [35,36], organ transplantation
monitoring [37,38], and cancer [39,40].



Diagnostics 2023, 13, 470 3 of 16

In cancer, every tumor cell potentially releases circulating tumor DNA (ctDNA) [41].
The growing interest in this biomarker is simply due to its potential use as a liquid biopsy.
This approach holds great promise in a wide range of clinical applications [42], mainly:
early detection of cancer [43], monitoring of tumor dynamics [44], as well as analysis of the
evolution of genetic or epigenetic alterations characterizing the tumor [45].

In addition to its non-invasiveness, rapidity, and low cost, ctDNA allows for longi-
tudinal monitoring of cancer in real time and can potentially capture tumor heterogene-
ity [46,47]. Indeed, ctDNA can be particularly useful when tumor tissue is unavailable or
insufficient for testing. Thus, this molecule can be collected at any time and allows for close
monitoring [16,48].

In this review, we outlined recent advances and current challenges in the study of
circulating tumor DNA, particularly in breast cancer.

3. The Importance of Testing for Circulating Tumor DNA

Compared to liquid biopsy, conventional tissue biopsy presents some drawbacks: in
addition to its invasiveness [49], it can only provide a static and spatially limited snapshot
of the disease at the time of surgery [50,51] which may lead to false-negative results and
suboptimal therapeutic selection as a result of their limitation for capturing intratumoral
heterogeneity [52]. Given that biopsy samples may be inadequate for routine genetic
profiling in up to 30% of cases [53].

Cell-free DNA (cfDNA) analysis, also known as liquid biopsy, created new options for
non-invasive diagnosis and therapeutic monitoring, and these liquid biopsies may mirror
clinically relevant genetic alterations, which occur in all tumor tissues [41,52,53].

Circulating tumor DNA (ctDNA) represents a substantial fraction of circulating DNA,
which varies from <0.05% to 90% depending on tumor location, size, and vascularity, as
well as liver and kidney clearance [16,54,55]. Circulating DNA half-life ranges from 16 min
to 2.5 h [56] allowing dynamic, real-time monitoring of tumor status as well as rapid evalu-
ation of therapeutic response [57,58]. The origin of ctDNA is not completely elucidated, it
may be derived from circulating tumor cells, primary tumors, or metastasis [59,60], which
proves that the genomic alteration repertoire of circulating tumor DNA reflects both pri-
mary tumors and distant metastatic sites [61]. Several methods have been implemented to
identify quantitative and qualitative tumor-specific alterations, such as gene amplification,
gene mutations, gene methylation, and microsatellite abnormalities [62,63]. However, these
genetic tumor alterations are informative in a variety of applications namely early detection
and prevention, minimal residual disease assessment and prognosis, tumor burden moni-
toring and therapy guidance, as well as relatively non-invasive repeated serial sampling
for continuous disease monitoring [64,65].

Studying circulating tumor DNA in breast cancer by determining the heterogeneity of
clinically relevant alterations has created new possibilities for non-invasive diagnosis and
therapeutic monitoring, ctDNA analysis could potentially reflect the genetic alterations
that occur in all breast cancer tissues [52,53].

4. Analytical and Clinical Validity of Cfdna

The application and potential use of ctDNA as a biomarker have achieved the best
results in different clinical phases, making it a popular and potential target [66]. Therefore,
the development of techniques for the detection of genomic variants in ctDNA is increas-
ing in the clinical oncology setting, despite the uncertainties surrounding pre-analytical
considerations, analytical validity, clinical validity, and utility.

Pre-analytical considerations are those parameters that influence the quality of cfDNA
and are most likely to compromise the success of the analysis. Analytical validity refers
to the ability of a test to identify variants of interest accurately and reliably; the test or
analysis must be sensitive, specific, and robust. Clinical validity is explained by the ability
of the test to detect the presence or absence of a disease state accurately and completely.



Diagnostics 2023, 13, 470 4 of 16

Regarding clinical utility (final phase), it is reached when there are high levels of evidence
confirming that using the test improves patient outcomes compared to not using it [67].

The pre-analytical steps are crucial in the analysis of circulating DNA because it is
a very sensitive analysis, since tumor-derived DNA is a small fraction of cfDNA, with
possible contamination by leukocyte genomic DNA in the case of leukocyte degradation,
which makes a downstream analysis of circulating tumor DNA mutations more difficult
and the quantification of this biomarker less accurate.

Plasma is the optimal specimen type for cfDNA analysis, studies showed that the
amount of normal DNA derived from leukocyte lysis, which dilutes cfDNA, is much higher
in serum than in plasma, this crucial step is excellent to ensure if the plasma is separated
from the leukocyte fraction immediately after blood collection or the blood is collected in
collection tubes containing a leukocyte stabilizer. The freezing of unfiltered whole blood
should not be performed and plasma should be isolated before it is frozen. Although
exposure of plasma to a single freeze-thaw cycle does not affect downstream cfDNA
analysis, multiple freeze-thaw cycles may lead to nucleic acid degradation. Studies agree
that storage of frozen plasma before DNA extraction does not affect further cfDNA analysis.

For the analytical phase, currently, ddPCR is the most widely used method for cfDNA
analysis, this technique allows precise detection of known DNA mutations with a better
detection limit as well as a more accurate quantification of the ctDNA fraction, the major
challenge is the high cost and a low number of installed ddPCR instruments, given that
ddPCR is currently capable of analyzing only one potential mutation per reaction [68,69].

However, the limitation of PCR approaches is that these techniques only detect known
mutations in certain genes, so patients without these mutations will be overlooked, limiting
the application of this technology as a generic diagnostic technique for ctDNA analysis [70].

On the other hand, NGS approaches cover a wider range of mutations by examining
the entire gene sequences of interest. However, targeted approaches for ctDNA profiling
generally sequence tens of genes to hundreds of genes or even the entire exome, a high
sensitivity can then be achieved by deep sequencing of specific regions of interest that cover
clinically relevant mutations. Several technologies are struggling to innovate more suitable
platforms for ctDNA sequencing, notably sequencing by synthesis (SBS) from Illumina, Ion
Torrent from Thermo Fisher Scientific, and nanopore sequencing from Oxford Nanopore
Technologies; however, Illumina’s sequencing platform currently dominates due to its high
throughput and accuracy [70,71].

While cfDNA NGS sequencing offers a non-invasive approach to the identification
of clinically relevant somatic genomic alterations, it is probably not intended to replace
the need for tumor biopsies as the gold standard for diagnosis and genotyping, but it can
be used as a complementary or alternative analysis when a tissue biopsy is not possible.
In addition, ctDNA analysis by NGS is limited by a relative scarcity of total cfDNA and a
low fraction of ctDNA (tumor-derived cfDNA fraction), and therefore the development of
methods that increase the sensitivity and specificity of cfDNA sequencing is necessary for
overcoming these limitations [71].

5. Gene Analysis

Several genes present a potential target for studying breast cancer, in this review, we
will provide accurate and relevant information on the clinical utility of circulating DNA,
we have not targeted all breast cancer genes and signaling pathways, instead we have
specifically targeted the most studied genes to evaluate the clinical utility of this ctDNA.

The genes studied have been listed in Table 1, and the signaling pathways of these
genes were mentioned in Figure 1.
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Table 1. Summary of molecular and clinical utility of ctDNA in breast cancer.

Gene Patient Cohort Molecule Testing Technique Main Findings Clinical Significance References

ESR1 541 postmenopausal women
with a diagnosis of MBC.

Analyzed ESR1 mutations (Y537S and
D538G) on cell-free DNA (cfDNA)
using droplet digital polymerase chain
reaction (ddPCR).

D538G (21.1%)
Y537S (13.3%)
30 had both mutations.

These mutations were associated with
shorter overall survival:
- wild-type, 32.1 months
- D538G, 25.99 months
- Y537S, 19.98 months
- Both mutations, 15.15 months.

[72]

86 estrogen receptor-positive BC
patients. 185 plasma samples
(151 plasma samples from
69 MBC patients, and 34 plasma
samples from 17 primary BC
(PBC) patients).

Multiplex droplet digital PCR assays
in a snapshot and serially.

cfDNA ESR1 and PIK3CA
mutations were found in 28.9%
and 24.6% of MBC
patients, respectively.

All patients with ESR1 mutations had
resistance to prior AI (aromatase
inhibitor) therapy.
85% of patients with ESR1 mutations
had resistance to prior SERM (Selective
estrogen receptor modulators) therapy.

[73]

BRCA1/2

828 patients with advanced
breast, ovarian, prostate, or
pancreatic cancer.
(the study was conducted in
accordance with the Declaration
of Helsinki).

Plasma-based NGS assay.

Of 828 patients, 60 (7.2%) had at
least one BRCA1/2
loss-of-function mutation,
42 patients with germline
mutations and 18 (14 patients
had breast cancer) with somatic
mutations only.

NGS analysis of cfDNA identified high
rates of therapeutically relevant
mutations, including deleterious
BRCA1/2 somatic mutations missed by
germline testing.

[74]

24 patients with proven BRCA1/2
germline mutations (19 ovarian
cancer patients and 5 patients
with MBC who received prior
treatment with platinum-based
chemotherapy and/or
PARP inhibitors).

Targeted massively parallel
sequencing of tumor DNA from
ovarian cancer patients, cfDNA from
ovarian and breast cancer patients, and
their germline DNA.

Identification of BRCA1 or
BRCA2 reversion mutations in
the cfDNA of 4 ovarian cancer
patients (21%) and 2 breast
cancer patients (40%).

cfDNA sequencing can help identify
putative BRCA1/2 reversion mutations
which may facilitate patient selection
for PARP inhibition therapy.

[75]

PIK3CA Thirty patients with advanced
BC (ABC);

PIK3CA mutation analysis was
performed using ddPCR.

The presence of a PI3K mutation
in liquid biopsy correlates with
worse PFS in patients with ABC
receiving CDK4/6i.

Integration of PI3K status assessment
with other molecular information
could improve the management of
patients with aggressive breast cancer
and better suggest the best
therapeutic strategy.

[76]



Diagnostics 2023, 13, 470 6 of 16

Table 1. Cont.

Gene Patient Cohort Molecule Testing Technique Main Findings Clinical Significance References

TP53 46 patients with nonmetastatic
triple-negative breast cancer;

Characterization of TP53 gene
mutations in tumor tissue through
massively parallel sequencing (MPS).
Monitoring of previously
characterized mutations based on
ctDNA analysis by ddPCR at four time
points: pre-NCT, post-cycle,
pre-surgery, and post-surgery.

Results show a marked decrease
in ctDNA levels and positivity
rate during chemotherapy cycles.

The high prevalence of TP53 mutations
in TNBC is a potential biomarker for
ctDNA monitoring during NCT, and
therefore is a tool for
TNBC management.

[77]

113 lung and 18 breast
cancer patients

NGS analysis of ctDNA: Panel for hot
spot regions in 11 genes for lung
cancer and 10 genes for breast cancer.

Variations in the TP53 gene were
detected at a high frequency in
both tumor types, followed by
the PIK3CA gene in breast cancer.

Based on NGS and ddPCR techniques,
liquid biopsy could be a very effective
method for managing terminal cancer
cases and monitoring
treatment responses.

[78]

68 patients with metastatic breast
cancer (MBC).

cfDNA and gDNA (Genomic DNA)
analysis by next-generation
sequencing (NGS)

TP53 mutations occurred in
10 (45.45%) TNBC patients,
9 (36.00%) HER2+ patients, and
7 (22.22%) HR+ patients.
TP53 represents the gene with the
highest number of
somatic mutations.

Mutations in TP53 cDNA and PIK3CA
genes likely limit survival and
promote disease progression.

[79]

ERBB2 636 women with HER2
nonamplified MBC. ctDNA analysis by NGS.

Results of this study indicate the
efficacy of neratinib for
HER2-mutated nonamplified
breast cancer.

This study supports the potential use
of ctDNA to identify patients with
HER2-mutated breast cancer to
establish a new standard of care.

[80]

Multicohort, phase 2a, platform
trial of ctDNA testing in 18 UK
hospitals.1051 patients were
registered in the study.

ddPCR and NGS are used to detect
ctDNA mutations.
Patients were recruited into four
parallel treatment cohorts
corresponding to the mutations
identified in the ctDNA (ESR1; HER2;
AKT1 and PTEN).

The findings of this study
demonstrate the clinically
relevant activity of targeted
therapies against rare HER2 and
AKT1 mutations.

The results of this research show that
ctDNA analysis, with the technologies
used in this study, is accurate enough
to be routinely adopted into
clinical practice.

[81]
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Figure 1. Illustration of several signaling pathways implicated in the oncogenesis of breast cancer.
(1) ERBB2 associated protein HER2 signaling pathway, (2) p53 protein implicated in the apoptosis,
(3) BRCA1/2 couple implicated in DNA repair mechanisms such as Homologous recombination,
(4) ESR1 engaged as a transcription factor.

5.1. BRCA1/2 Genes

Breast cancer with BRCA mutations is characterized by its aggressiveness, BRCA1
mutated breast cancer is frequently high grade and triple negative, BRCA2 related breast
cancer is on average of a higher histological grade than sporadic cases [82]. Somatic
mutations in BRCA1/2 occur in approximately 3% of all sporadic breast cancers [83].

The BRCA1 gene encodes a nuclear phosphoprotein that acts as a tumor suppressor
gene by maintaining genomic stability [84]. The encoded protein combines with other
tumor suppressors, DNA damage sensors, and signal transducers to form a large multi-unit
protein complex known as the BRCA1 genome-associated surveillance complex [85].

The BRCA2 gene is involved in the maintenance of genomic stability and more specif-
ically the homologous recombination (HR) pathway that repairs double-stranded DNA
breaks. BRCA2 is located on chromosome 13q12.13, it is a large gene comprising 27 exons
coding for 3418 amino acids [86].

In The Cancer Genome Atlas breast cancer study, which performed exome sequencing
of tumor and normal samples from a selected cohort of breast cancer patients, a 1/3 somatic
to 2/3 germline ratio was found [87] and a similar ratio of somatic to germline mutations
has been found in other studies [88].

In a large-scale study in the United States, Vidula et al. analyzed cDNA by NGS and
demonstrated that this approach can identify three classes of clinically relevant BRCA1/2
mutations: germline mutations, somatic loss of function, and reversions. This study
supports the notion that systematic analysis of cfDNA in patients with advanced cancer
can help identify potential candidates for appropriate genotype-based therapy [74].
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In line with this, another study conducted in 2017 to analyze cfDNA by massively
parallel sequencing, this study targeted all exons of 141 genes and all exons and introns of
BRCA1 and BRCA2, as well as functional studies to assess the impact of putative BRCA1/2
reversion mutations on BRCA1/2 function, the findings of this study support the utility of
cfDNA sequencing to identify putative BRCA1/2 reversion mutations and facilitate patient
selection for PARP inhibition therapy [75].

5.2. ESR1 Gene

Over 75% of primary breast cancers are ER-positive, for which hormone therapy
is the gold standard in the treatment armamentarium [58,89]. The estrogen receptor
(ER) is a transcription factor involved in cell proliferation and activation [90]. Estrogen
receptor alpha is encoded by the ESR1 gene. The acquisition of alterations in this gene
has been identified as an important resistance mechanism to endocrine therapy [91]. ESR1
mutations rarely occur in primary tumors (~1%) but are relatively common (10–50%) in
metastatic cancers presenting resistance to endocrine therapy, this is explained by the
therapeutic pressure that stimulates the emergence of activating mutations of ESR1 in
the metastatic tissue. These gene mutations are associated with shorter progression-free
survival [90]. Therefore, it is important to test for ESR1 somatic mutations in ctDNA
in order to detect the onset of this molecular resistance even before clinical progression.
To predict treatment outcomes, because this may dictate patient management, including
monitoring and modifications of the treatment plan, eventually this approach can be used
to guide sequential treatment options in patients [68,71]. The potential value of screening
for ESR1 mutations in metastatic cancer has increased.

In 2016, a secondary analysis of the BOLERO-2 clinical trial (clinicaltrials.gov Identifier:
NCT00863655) was reported in the United States, including 541 patients. ESR1 gene
mutations were analyzed from cfDNA using a droplet digital polymerase chain reaction.
The main result of this work was the high prevalence of ER mutations for patients with
ER+ metastatic breast cancer treated by aromatase inhibitors (AIs), and the association
of this gene’s mutations with more aggressive disease biology, as explained by a median
overall survival of 20.73 months (95% CI, 17.71–28.06 months) for patients with ESR1 gene
mutations compared with 32.1 months (95% CI, 28.09–36.4 months) for patients without
mutations [72].

In a Japanese study in 2017, involving 86 ER+ breast cancer patients, including
69 patients diagnosed with metastatic breast cancer (MBC) and 17 patients with primary
breast cancer (PBC), the results showed the absence of ESR1 mutations in the PBC group,
whereas in the MBC group ESR1 cfDNA mutations were detected in 28.9%. The clinical
impact of these mutations was significantly important: all ESR1 mutation-positive patients
had resistance to previous treatments with aromatase inhibitors (AIs) compared to 71.4%
of ESR1 WT patients; 85% of ESR1 mutation-positive patients had resistance to previous
treatment with selective estrogen receptor modulators (SERMs) compared to 51% of ESR1
WT patients. Otherwise, cfDNA monitoring in a subgroup of 52 patients showed that loss
of ESR1 mutations was associated with a longer response time [73].

In January 2020, a Chinese comparative study was conducted comparing 297 tumor
samples of primary breast cancer patients and 43 blood samples of metastatic breast cancer
(MBC) patients. Next-generation sequencing (NGS) was used by targeting the whole exon
of the ESR1 gene, and the result’s findings are consistent with previous studies: ESR1
mutations were more frequently detected in circulating tumor DNA of MBC patients than
in PBC patients, and the ESR1 mutation frequency in patients using aromatase inhibitors
(AIs) was significantly higher than those who were not using AIs [92].

A French large study targeting twelve genes by whole exome sequencing has identified
ESR1 as a pilot gene specific to MBC, they confirmed that the ESR1 gene mutation is the
most frequent “metastasis-specific” mutation observed in MBC, by identifying that 100% of
ESR1 mutation-positive cases are ER + and present resistance to endocrine therapy [93]. In
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2020, a confirmative study by Shibayama and Al reported that ESR1 mutations were found
to be a prognostic predictor of acquired resistance to endocrine therapy [94].

Collectively, these studies demonstrate how the genetic profile of MBC is different
from that of primary breast tumors. Hence, metastatic cancer profiling must become a
primary step in the definition of optimal treatments for patients; thus, monitoring and
surveillance studies will be critical to confirm the effectiveness after treatment. A final point
regarding these findings was how easily and feasibly this biomarker could be obtained,
plasma samples can be easily collected for ctDNA analysis, allowing for dynamic testing
that will increase our understanding of the disease progression and the design of strategies
to improve outcomes.

5.3. PIK3CA Gene

The PIK3CA gene encodes the A isoform of the catalytic subunit (p110a) of the phos-
phatidylinositol 3-kinases class IA. Phosphatidylinositol 3-kinases (PI3K) are involved
in the conversion of phosphatidylinositol 4,5-biphosphate (PIP2) to phosphatidylinositol
3,4,5-triphosphate (PIP3). This PI3K class has a critical role in the control of various cel-
lular processes such as cell growth and proliferation, metabolism, and migration via the
PI3K/AKT/mTOR pathway [95].

In approximately 40% of HR + breast cancer cases, the most common molecular
alterations are the activating mutations of the PI3K subunit in the PIK3CA gene, these
mutations induce hyperactivation of the p110α catalytic subunit, leading to constitutive
phosphorylation of the AKT and its forward effectors [96,97].

Several preclinical studies indicate that the PIK3/AKT/mTOR pathway alterations
may correlate with resistance to CDK4/6 inhibitors (CDK4/6i). Cyclin-dependent kinase 4
and 6 (CDK4/6i) inhibitors have shown clinical efficacy in ER-positive MBC, although their
cytostatic effects are limited by primary and acquired resistance, putative mechanisms of
resistance to CDK4/6i have been identified [76,98].

An Italian study completed in January 2021 showed that patients with a PIK3CA mu-
tation in the blood at the start of CDK4/6i treatment had a significantly shorter Progression
Free Survival (PFS) compared to patients without a mutation. Therefore, PI3K status should
be considered as a potential predictive biomarker of CDK4/6i resistance. The integration of
PI3K status assessment with other molecular information in a surveillance system can im-
prove the accuracy of predicting Overall Survival (OS) and PFS of patients with metastatic
breast cancer and may suggest the best treatment strategy. On the other hand, it should be
noted that PI3K status as such cannot be the only responsible for CDK4/6i resistance, and
thus, special attention should be given to all mutations that also promote the activation of
the PI3K/AKT/mTOR signaling pathway [76].

In the same sense, targeted therapy drugs in the final phase of clinical trials, specifically
targeting PI3K, are designed to be administered to patients whose tumor has a PIK3CA
gene alteration, which makes their detection particularly important in tumor genetics.

In July 2017, a Phase I study was designed to evaluate the effectiveness of TASELISIB
which is a selective inhibitor of tumor growth by suppression of the PI3K pathway, the
results show an increase in the antitumor activity for patients with PIK3CA mutant tumors,
confirming the results in preclinical trials [99].

In February 2021, the SANDPIPER trial (ClinicalTrials.gov NCT02340221) (a randomized,
multicenter, international, double-blind, placebo-controlled Phase III trial) evaluated the
clinical benefit of TASELISIB (a powerful, selective PI3K inhibitor) in combination with
FULVESTRANT for Advanced Breast Cancer in a population of 516 PIK3CA mutated
patients. The results showed a statistically significant improvement in progression-free
survival evaluated by the investigator in the PIK3CA mutant population [100].

Furthermore, an open-phase 1b study (ClinicalTrials.gov identifier: NCT01219699) con-
ducted by Juric et al. aims to evaluate, in patients with advanced ER + breast cancer,
the maximum tolerated dose (MTD), safety and activity of L’ALPELISIB which is an oral
specific PI3Kα inhibitor, combined with FULVESTRANT, the clinical trial results suggest
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that the combination of ALPELISIB and FULVESTRANT may have greater clinical activity
in PIK3CA-altered tumors compared to wild-type tumors [101].

In May 2019, a Phase 3 randomized clinical trial SOLAR-1 (SOLAR-1 ClinicalTrials.gov
number, NCT02437318) was designed to compare ALPELISIB plus FULVESTRANT with
placebo plus FULVESTRANT, this study included 572 patients of which 341 patients
had confirmed tumor tissue PIK3CA mutations, the results showed a prolongation of
progression-free survival in patients with PIK3CA-mutated advanced breast cancer who
were treated with ALPELISIB-FULVESTRANT [102]. However, these clinical trials highlight
the increased utility of testing for PIK3CA mutations in circulating tumor DNA as part of
daily clinical practice.

5.4. TP53 Gene

Tumor suppressor TP53 is considered the genome gatekeeper. Several studies indicate
that TP53 mutations increase the risk of cancer and, once cancer occurs, these mutations
promote invasion, metastasis, and chemoresistance [103]. In invasive breast cancer, TP53
(p. 53) is the most frequently mutated gene, which is mutated in approximately 80% of
triple-negative breast cancer (TNBC) [104].

The presence or absence of TP53 mutations is routinely investigated in clinical practice
on tumor tissues, using immunohistochemistry or sequencing techniques. However, these
methods have various limitations, such as invasiveness and inability to identify tumor het-
erogeneity and progression, which underline the need for a more robust and sophisticated
technology [105]. Currently, TP53 gene mutations can be detected by cfDNA analysis given
the ability of this biomarker to detect tumor heterogeneity, which is a limitation of tumor
biopsies [106,107].

In 2017, a French study was realized including 47 patients with non-metastatic triple-
negative breast cancer (TNBC) treated with neoadjuvant chemotherapy (NCT), and the
study targeted the TP53 gene at several time points: before NCT; after 1 cycle; before
surgery, and after surgery. The results indicated a decrease in ctDNA levels during NCT;
however, a small decrease in ctDNA levels during NCT was significantly associated with
shorter survival. This research confirmed that the high prevalence of TP53 mutations
in TNBC is a potential biomarker for ctDNA monitoring during NCT, and that ctDNA
may become a clinically useful prognostic tool for managing TNBC patients treated with
NCT [77].

In July 2019, Savli and colleagues showed that variations in the TP53 gene are strongly
observed in breast cancer samples, this study demonstrated that TP53 pathogenic variants
detection and monitoring by ctDNA analysis is recommended as a useful biomarker for
predictive studies, for tumor growth monitoring and personalized treatment strategy
planning [78].

Screening for TP53 mutations in ctDNA can provide monitoring for early detection of
genetic events underlying drug resistance and can also inform therapy approaches [79],
FEI MA et al., (ClinicalTrials.gov NCT01937689) have exploited ctDNA profiling before
and after treatment with an oral anti-HER1/HER2 tyrosine kinase inhibitor for 18 HER2-
positive metastatic breast cancer patients, and they identified that mutations in TP53 and
PI3K/Akt/mTOR pathway genes were strongly implicated in resistance to HER1/HER2
blocking [108].

The overall clinical trials confirm that p53 is both a potential prognostic and predic-
tive biomarker and a therapeutic target for breast cancer patients, particularly for TN
subtype patients.

5.5. ERBB2 Gene

The human epidermal growth factor receptor 2 (HER2) is overexpressed in 20–30%
of breast cancer patients [109], this amplification is “acquired” in approximately 2–5% of
metastatic breast cancers that originally had primary cancers that were not HER2 ampli-
fied [110]. Blocking HER2 activity through trastuzumab provides a better outcome for
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HER2-positive patients. However, resistance in women with metastatic breast cancer (MBC)
is usually observed [111].

As targeted anti-HER2 therapies are developed, the assessment of HER2 status will be
more important to stratify patients to the most appropriate treatment regimens [110], and
this requires repetitive tumor sampling to identify whether the cancer’s genetic profile has
changed after previous treatment [112]. The analysis of circulating DNA has the potential
to screen for HER2 (ERBB2) amplification acquisition in a non-invasive manner.

In 2017, a phase II study (Clinicaltrials.gov, NCT01670877) was conducted to evaluate
the clinical benefit rate (CBR) of NERATINIB as monotherapy through determining HER2
mutations based on circulating DNA analysis, whereby the results indicated the efficacy of
NERATINIB in HER2 mutated non-amplified breast cancer and justify that cfDNA sequenc-
ing may offer a non-invasive strategy to identify patients with HER2 mutated cancers [80].
In a similar direction, and at a larger scale, a multicenter, open-label, multicohort, phase 2a
clinical trial (ClinicalTrials.gov, NCT03182634) in 18 UK hospitals was conducted, the results
confirm the clinically relevant activity of targeted therapies against rare activating muta-
tions in breast cancer, in HER2 mutant breast cancer (ERBB2) identified by cfDNA tests,
NERATINIB had comparable activity to that observed when guided by tissue tests [81].

In October 2020, Kleftogiannis et al. developed a new error-correcting cfDNA se-
quencing approach using bioinformatics strategies to identify tumor-associated genomic
alterations. This assay was also performed effectively on the detection of copy number
variations (CNVs) in the ERBB2 oncogene. This result creates opportunities for better tumor
characterization, in which sequential plasma samples can be collected to represent CNVs
and variants more precisely over time [113].

6. Conclusions

Breast cancer displays high levels of heterogeneity and is generally subject to clonal
evolution underpinning drug therapy. Through our review, we have demonstrated that the
multipoint analysis of cfDNA reflects clonal evolution and allows us to track the molecular
landscapes of cancer cell growth by capturing broader molecular alterations that could
affect the efficacy of targeted therapies. The shorter execution time of cfDNA analysis
and its high sensitivity and specificity are key factors in providing new opportunities for
adaptive personalized therapies, optimizing healthcare resources, and enabling higher
treatment efficacy and lower risk side effects.

The potential use of cfDNA in the management of breast cancer has been significantly
improved by recent advances in molecular technologies, as digital PCR and next-generation
sequencing technologies take hold, and as an understanding of the biology and clinical
potential of cfDNA increases, the ultimate use of cfDNA in clinical practice seems assured.

7. Perspectives

Several clinical trials in Europe, North America, and Asia are underway to evaluate
the diagnostic utility of ctDNA, and hence the possibility of incorporating this biomarker
into cancer monitoring. Minimally invasive methods of cancer diagnosis have potential
because current tumor biopsy and medical imaging techniques that require exposure to
ionizing radiation are limited to high-risk individuals and those with previously identified
lesions. Alternatively, liquid biopsy-based diagnostics are adapted to repeated sampling
and can potentially be used for early detection or screening of cancer.

The challenge is to establish adequate and international pre-analytical conditions, to
optimize state-of-the-art analytical techniques with improved sensitivity and specificity, for
the purpose of avoiding missing mutations and tumor changes.
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