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Abstract: Skin cancer develops due to the unusual growth of skin cells. Early detection is critical for
the recognition of multiclass pigmented skin lesions (PSLs). At an early stage, the manual work by
ophthalmologists takes time to recognize the PSLs. Therefore, several “computer-aided diagnosis
(CAD)” systems are developed by using image processing, machine learning (ML), and deep learning
(DL) techniques. Deep-CNN models outperformed traditional ML approaches in extracting complex
features from PSLs. In this study, a special transfer learning (TL)-based CNN model is suggested for
the diagnosis of seven classes of PSLs. A novel approach (Light-Dermo) is developed that is based
on a lightweight CNN model and applies the channelwise attention (CA) mechanism with a focus
on computational efficiency. The ShuffleNet architecture is chosen as the backbone, and squeeze-
and-excitation (SE) blocks are incorporated as the technique to enhance the original ShuffleNet
architecture. Initially, an accessible dataset with 14,000 images of PSLs from seven classes is used to
validate the Light-Dermo model. To increase the size of the dataset and control its imbalance, we
have applied data augmentation techniques to seven classes of PSLs. By applying this technique, we
collected 28,000 images from the HAM10000, ISIS-2019, and ISIC-2020 datasets. The outcomes of the
experiments show that the suggested approach outperforms compared techniques in many cases.
The most accurately trained model has an accuracy of 99.14%, a specificity of 98.20%, a sensitivity of
97.45%, and an F1-score of 98.1%, with fewer parameters compared to state-of-the-art DL models.
The experimental results show that Light-Dermo assists the dermatologist in the better diagnosis of
PSLs. The Light-Dermo code is available to the public on GitHub so that researchers can use it and
improve it.

Keywords: pigmented skin lesions; deep learning; convolutional neural network; transfer learning;
pretrained models; ShuffleNet; depthwise separable CNN

1. Introduction

Skin cancer is affecting the population and posing a significant financial burden on
the global healthcare system. This is despite the fact that preliminary treatment may
dramatically increase the cure rate for skin cancer. It is challenging due to the lack of
access to dermatologists and the lack of training among other healthcare professionals [1].
The World Health Organization (WHO) anticipates that one individual in every three
may suffer from skin cancer. The prevalence of skin cancer has been rising over the past
few decades in nations including the USA, Canada, and Australia [2]. Early detection
of skin cancer decreases the mortality rate. To identify early skin cancer, dermatologists
use computer-aided diagnosis (CAD) systems, which were developed through machine
learning (ML) and deep learning (DL) techniques. Recently, there is growing evidence that
ML and DL can help dermatologists to make better clinical decisions. Studies have shown
that DL algorithms can help doctors figure out the type of skin cancer [3].

Diagnostics 2023, 13, 385. https://doi.org/10.3390/diagnostics13030385 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13030385
https://doi.org/10.3390/diagnostics13030385
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-1986-0636
https://orcid.org/0000-0002-0361-1363
https://orcid.org/0000-0003-0730-6857
https://orcid.org/0000-0003-1075-6365
https://doi.org/10.3390/diagnostics13030385
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13030385?type=check_update&version=1


Diagnostics 2023, 13, 385 2 of 35

Deep learning (DL) is a subset of machine learning that is particularly effective for
image categorization tasks. DL uses multi-layer neural networks with numerous hidden
layers made up of interconnected artificial neurons that process input data mathematically.
A form of neural network called convolutional neural networks (CNNs) is particularly
good at categorizing images. In practice, these are frequently used for image tasks. Since
the CNNs replicate natural visual processing in the brain, which is capable of interpreting
rich information such as the link between nearby pixels and objects, image categorization
has been performed remarkably well [4] by CNN models. DL has recently made it possible
to use diverse types of medical imaging to find abnormalities such as breast cancer, brain
tumors, lung cancer, and skin lesions.

Several methods based on the pretrained architecture with a transfer learning (TL)
scheme were also presented in the past to automatically classify two or seven classes
of pigmented skin lesions (PSLs) when diagnosed through dermoscopy. This follows a
general trend of building deeper and more complex networks to achieve higher accuracy.
Some authors utilized modified CNNs or pretrained CNN models for the classification of
PSL. Currently, embedded, IoT, and mobile devices are widely utilized. However, they
frequently have low CPU and storage capacities. These devices cannot use more sophis-
ticated networks because of the number of parameters and computational requirements.
To meet the application requirements, it is possible to investigate unique network designs
that provide the highest accuracy with an extremely constrained computational cost. To
address these problems, compact and effective neural networks were developed, including
SqueezeNet, MobileNet, and ShuffleNet [5]. These methods provide a compact architec-
tural unit that may be integrated into existing networks to improve performance at a low
computational cost.

In this study, we suggest innovative designs that pair the channelwise attention (CA)
mechanism with effectively pretrained CNN networks to adhere to resource constraints (la-
tency, memory size, etc.). We have selected the ShuffleNet [5] architecture as the backbones
because of its effective topologies, which not only provide tiny networks but also allows
for the encoding of more data. Squeeze-and-excitation (SE) blocks, which are regarded
as CA mechanisms, are combined with the backbones to further increase the precision of
pigmented skin lesions (PSLs) categorization. Comparative trials for the categorization of
seven categories of PSLs demonstrate that this proposed lightweight CNN (Light-Dermo)
model is more successful than its alternative structures. This outcome demonstrates that
accuracy and efficiency have increased. Finally, the Light-Dermo can handle real-time
applications.

1.1. Motivations

There are several reasons for developing a lightweight PSL multiple-class recognition
classifier. Firstly, state-of-the-art approaches were mostly evaluated on a single dataset and
classified two classes of PSLs (benign vs. malignant), compared to seven classes, but were
computationally expensive. Overfitting and underfitting problems were mostly pointed
out in past studies. There was a class imbalance problem in terms of multiple PSLs. To
address these issues, this paper proposes a new lightweight pretrained model based on the
ShuffleNet architecture which incorporates different layers, a separate nonlinear activation
function such as GELU, and a channel shuffling technique.

1.2. Major Contributions

Below are the major advantages of Light-Dermo over alternative techniques to recog-
nize seven classes of PSLs.

• A new lightweight pretrained model based on the ShuffleNet architecture is developed
in this paper which incorporates different layers, a separate nonlinear activation
function such as GELU, and a channel shuffling technique.
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• The Squeeze-and-excitation (SE) blocks are integrated to ShuffleNet architecture for
developing a lightweight Light-Dermo model to manage resource constraints (latency,
memory size, etc.).

• The Light-Dermo model has ability to reduce overfitting. The ShuffleNet network’s
connections create quick pathways from the bottom layers to the top ones. As a
result, the loss function (GELU) gives each layer more direction. Therefore, the dense
connection protects against the overfitting problem better, especially when learning
from insignificant amounts of data.

• The Light-Dermo model is a computational inexpensive solution for the diagnosis
of multiple classes of pigmented skin lesions (PSLs) compared to state-of-the-art
approaches, when tested on mobile devices.

The remainder of this paper is structured as follows. In Section 2, we have presented a
brief introduction about previous works. Whereas in Section 3, we describe the background
about the cutting-edge DL architectures based on TL schemes. The dataset and procedures
used in this investigation are presented in Section 4. The findings and analysis of studies
on the categorization of diseased pigmented skin lesions (PSLs) are presented in Section 5.
The key results are described in Section 6, and finally, this paper concludes in Section 7.

2. Literature Review

Several DL-based CAD systems were developed in the past to help ophthalmologists
better diagnose multiclasses of PSLs. Before 2016, many studies were developed based on
the standard steps such as preprocessing, segmentation, feature extraction, and classifica-
tion. Different skin lesion datasets are now available to the public. To discriminate among
PSLs, researchers have created DL algorithms. Over time, it was noticed that the CNNs
had more effective features compared to hand-crafted methods. In this paper, we have
studied and selected past studies (as shown in Table 1) that have recently utilized the DL
and TL-based methods for the diagnosis of PSLs. Those studies were described in brief in
the subsequent paragraphs.

A transfer learning (TL)-based approach is described in paper [5] for the classification
of only melanocytic skin lesions. Using the publicly available ISIC-2021 dataset from
Kaggle, the authors tested their approach. The suggested model had a 98.35% success rate.
Another classification method was presented in paper [6]. Using a few convolutional neural
networks (CNNs) trained on the HAM-2010 dataset, this method predicts seven different
classes of PSL lesions. The authors used nine CNN models, which were experimentally
selected. Then, a weight matrix was created by integrating the decisions of each CNN model
into a decision fusion module. They examined the performance of each of CNN’s network
to design a multi-network system. For each network, a 75% performance threshold has
been achieved. Whereas in the study of [7], the authors recognized PSLs in two categories;
benign and malignant. The proposed models were trained on the ISIC-2020 dataset. Using
three pre-trained models, they obtained an average classification accuracy of 98.73%.

In study [8], the authors present a DL approach that combines a TL scheme with the
pre-trained AlexNet. Based on the results, it was concluded that the suggested method is
quite successful in categorizing skin lesions into seven classes. The achieved percentages
for accuracy (ACC), sensitivity (SE), specificity (SP), and precision (PR) are 98.70%, 95.60%,
99.27%, and 95.06%, respectively. Another DL-based algorithm is proposed in paper [9].
By recognizing two categories of PSLs, the accuracy was equal to that of dermatologists.
Authors in [10] provided methods for data augmentation to balance different types of
lesions. The proposed model was found to be effective in classifying and identifying PSLs
by using the LSTM and MobileNet V2 approaches.

In paper [11], an enhanced capsule network for dermoscopic picture classification
(FixCaps) is introduced. FixCaps uses a large, high-performance kernel at the bottom
convolution layer. The loss of spatial information brought on by convolution and pooling
was lessened by using the convolutional block attention module. Based on the results
of the experiments, FixCaps is better at finding skin cancer than IRv2-SA, which had
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an accuracy rate of 96.49% on the HAM10000 dataset. For the work in [12], the authors
implemented a preprocessing image pipeline. To satisfy the needs of each model, they
augmented the dataset to eliminate hairs from the images. The EfficientNet B0-B7 is trained
on the HAM10000 dataset by presenting a transfer learning (TL) algorithm. An F1 score
of 87% and a Top-1 accuracy of 87.91 percent were presented. In paper [13], the authors
showed how quickly and effectively nonlinear activation functions work on a CNN when
just a few picture datasets are available. According to experimental findings, the proposed
model performs better than the model that divides skin lesions into three classes of PSLs.
A lightweight and effective model is suggested for the precise categorization of skin
lesions [14]. To get the best results, layers with dynamic-sized kernels are utilized, leaving
relatively few trainable parameters. Furthermore, the suggested model intentionally uses
both the leaky-ReLU and ReLU activation functions. The HAM10000 dataset’s classes were
correctly categorized by the model. The model outperformed other state-of-the-art heavy
models with an overall accuracy of 97.85%.

The authors in [15] presented a CNN model based on DL for accurately distinguishing
benign from malignant skin lesions. Three steps make up the suggested model. Pre-
processing, normalization, and augmentation. To evaluate the proposed DCNN model’s
performance, AlexNet, ResNet, VGG-16, DenseNet, MobileNet, and other transfer learning
techniques are compared with it. The model was examined using the HAM10000 dataset,
and the findings revealed that it had the highest training accuracy of 93.16% and testing
accuracy of 91.93%. The results of the proposed DCNN model show that it is more accurate
and reliable than other methods. In paper [16], the authors developed a differentiation
system to classify two classes of PSLs. The authors used one flat layer, two dense layers
with LeakyReLU, and another dense layer with the sigmoid function. On average, they
obtained 89% ACC. The work in [17] investigated the classification of clinical images of
four skin disorders using a DL algorithm. Images from the training set of three datasets
were used to adjust the ResNet-152 convolutional neural network model. The areas under
the curve were 0.96, according to the results.

To improve classification accuracy, the authors in [18] merged the deep feature vector
and the colored network feature vector using a parallel fusion technique. Machine learning
classifiers correctly divide the dermoscopic pictures into two groups, benign and malignant
melanoma, using this optimized fused feature vector as input. Three skin lesion datasets
were used. The maximum classification accuracy was 99.8% for the ISBI-2016 dataset.

In paper [19], authors suggested a DL method for categorizing seven different forms of
skin cancer. They made use of the HAM10000 datasets and used augmentation to increase
the dataset size. They concluded that, when compared to other machine learning techniques
used in the proposed work, convolutional neural networks offer superior accuracy. They
achieved an accuracy of 95.18%. Using a CNN, authors in [20] offered an automated
method for skin lesion detection and identification. The findings support the notion that
the suggested method performs better than several other existing methods and achieved
an accuracy of 98.4% on the PH2 dataset. The efficiency of skin lesion categorization using
CNN-TL is impacted by image size, according to paper [21]. They also demonstrated that,
in terms of performance, image cropping is superior to image resizing. Finally, the best
classification performance is displayed by using a straightforward ensemble technique that
combines the results from images cut at three fine-tuned CNNs and six different scales.
Recent studies suggested that DL-based algorithms [22] presented a potential answer to
recognizing images for darker skin tones and diversifying image repositories dominated
by light skin. As a result, they created a DL-based technique for training and evaluating
various photos that accurately depict human skin tones. However, skin cancer is more
common in white-skinned people than in black-skinned people.

To solve the research issues, a multi-class multi-level (MCML) [23] classification algo-
rithm inspired by the “divide and conquer” rule was investigated. The MCML classification
algorithm was developed utilizing both conventional and sophisticated machine learning
techniques. They presented improved strategies for noise reduction in the conventional
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machine learning methodology. The suggested technique uses a DL-based, pre-trained
CNN model, which then uses the segmented color lesion pictures to extract features. To
choose the most discriminant features and escape the dimensionality curse, they used
the enhanced moth flame optimization (IMFO) approach. The resulting characteristics
achieved an accuracy of 95.38%. The authors in paper [24] describe another method for
extracting features from segmented color lesion images using a pre-trained CNN model.
On the ISBI 2016, ISBI 2017, ISIC 2018, and PH2 datasets, the segmentation performance
of the suggested technique is examined, with accuracy values of 95.38%. The HAM10000
dataset was used to examine the classification performance, which resulted in an accuracy
of 90.67%.

In one of our studies [25], we developed a perceptually oriented color space to extract
visual features. Additionally, a new DermoDeep system based on a five-layer architecture
is suggested. Based on 2800 PSLs, comprising of 1400 nevi and 1400 malignant lesions,
this DermoDeep system was achieved with a ACC of 0.96, an SE of 93%, and an SP of
95%. Whereas in paper [26], the binary classification is used by utilizing the multi-class
confidence values supplied by the other half of the network. While any CNN architecture
might be utilized for both challenges, they have selected the Inception-v3 pretrained model
for both classification tasks. The entire network is trained in the conventional manner, and
the multi-class accuracy is noticeably improved (by 7% when compared to the balanced
multi-class accuracy). To increase effectiveness and performance, the authors in paper [27]
suggested the Deep-CNN model, which was constructed with several layers, various filter
sizes, and fewer filters and parameters. For experiments, dermoscopic pictures are obtained
from the different versions of the ISIC dataset. It achieves 94% accuracy, 93% sensitivity,
and 91% specificity in ISIC-17. Likewise [28], a unique parallel fusion method is utilized
to combine OCFs with a DCNN-9 model to extract deep features. After that, the most
reliable characteristics for classification are chosen using a normal distribution-based high-
rank feature selection approach. Datasets from the ISBI series (2016, 2017, and 2018) are
used to assess the recommended technique. On all three datasets, the provided technique
achieved classification accuracy of 92.1%, 96.5%, and 85.1%, respectively, demonstrating its
impressive performance.

Table 1. State-of-the-art studies to diagnosis PSLs by using pretrained TL models.

Ref. Description * Classification Dataset Augment? Results% Limitations

[8]

Pigmented Skin Lesions
(PSLs) classify into seven

classes by using TL
approach.

AlexNet ISIC2018 Yes ACC.: 89.7

Evaluated on single
dataset, classify

seven-classes, but
computational expensive,

classifier overfitting.

[10] The combine work of TL
and DL.

MobileNet V2
and LSTM HAM10000 Yes ACC: 85

Classes imbalance
problem, binary

classification, tested on
signal dataset and

computational
expensive.

[11]
The approach employs

FixCaps for dermoscopic
image classification.

FixCaps HAM10000 Yes Acc.: 96.49

Classes imbalance
problem, evaluated on
single dataset, classify
only two-classes, and

computational
expensive.
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Table 1. Cont.

Ref. Description * Classification Dataset Augment? Results% Limitations

[12]

The approach is a
multiclass

EfficientNet TL classifier
to recognize different

classes of PSLs.

EfficientNet HAM10000 Yes ACC.: 87.91

Single dataset, accuracy
is not good, which limits

the detection accuracy,
6 classes only, overfitting

and computational
expensive

[13]

They developed another
technique based on CNN

and non-linear
activations functions.

Employ Linear
and nonlinear

activation
functions either

the hidden
layers or output

layers

PH2
ISIC Yes ACC: 97.5

Evaluated on two
datasets, classify only
two-classes, classifier

overfitting, and
Computational

expensive.

[14] CNN model along with
activation functions.

Multiple-CNN
models

HAM10000
Dataset Yes ACC: 97.85

Three classes of PSLs and
reduced

hyper-parameters so
computational expensive,
classifier overfitting and
used only single dataset.

[15]

The approach is based on
convolutional neural

network model based on
deep learning (DCNN to

accurately classify the
malignant skin lesions

DCNN HAM10000
Dataset Yes ACC:91.3

Classes imbalance
problem, evaluated on
single dataset, classify

seven-classes, and
computational expensive,

classifier overfitting.

[16] Differentiate only benign
and Malignant. VGG16

Skin Cancer:
Malignant vs.

Benign 1
Yes ACC: 89

Classes imbalance
problem, binary

classification only
two-classes, not

generalize solution, and
computational

expensive.

[17]

The approach of the
classifier is based on

Deep Learning
Algorithm

ResNet-152
ASAN

Edinburgh
Hallym

Yes ACC: 96

Classes imbalance
problem, evaluated on
single dataset, classify
only two-classes, and

computational
expensive.

[18]
This technique uses

features fusion approach
to recognize PSLs.

PDFFEM
ISBI 2016,
ISIC 2017,
and PH2.

Yes ISBI 2016
ACC:99.8

Image processing,
handcrafted-based
feature extraction

approach, which limits
the detection accuracy,
6 classes only, classifier

underfitting, and
computational expensive

[19]
Different classifiers are
utilized to evaluate the

approach.

DT, KNN, LR
and LAD HAM10000 Yes ACC:95.18

Classes imbalance
problem, evaluated on
single dataset, classify

seven-classes, and
computational expensive,

classifier overfitting.
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Table 1. Cont.

Ref. Description * Classification Dataset Augment? Results% Limitations

[20]

The approach is a
Heterogeneous of Deep
CNN Features Fusion

and Reduction

SVM, KNN and
NN

PH2,
ISBI 2016,
ISBI 2017

Yes ACC: 95.1%

Image processing,
handcrafted-based
feature extraction

approach, which limits
the detection accuracy,

6 classes only and
computational expensive

[22]
Segmentation and
Classification of

Melanoma and Nevis
KNN, CNN ISIC,

DermNet NZ Yes –

Classes imbalance
problem, evaluated on
two datasets, classify
only two-classes, and

computational
expensive.

[24] Segmentation and
classification approach

Pretrain CN,
moth flame

optimization
(IMFO)

ISBI 2016,
ISBI 2017,
ISIC 2018,
and PH2,

HAM10000

Yes ACC: 91%

Image processing,
handcrafted-based
feature extraction

approach, which limits
the detection accuracy,

6 classes only and
computational expensive

[25]

Dermo-Deep is
developed for

classification based on
two classes

five-layer
pretrained

CNN
architecture

ISBI 2016,
ISBI 2017,
ISIC 2018,
and PH2,

HAM10000

No ACC: 96%

Classes imbalance
problem, classify

seven-classes, and
computational expensive,

classifier overfitting.

[26] Classification of seven
classes to recognize PSLs

Google’s
Inception-v3 HAM10000 Yes ACC: 90%

Classes imbalance
problem, binary

classification only
two-classes, and
computational

expensive.

[27]

A DCNN model is
developed, which was

constructed with several
layers, various filter

sizes, and fewer filters
and parameters

DCNN
ISIC-17,
ISIC-18,
ISIC-19

Yes ACC: 94%

Classes imbalance
problem, classify only

two-classes, and
computational

expensive.

[29]

Different pretrained
models based on transfer
learning techniques were
evaluated in recent study

DenseNet201 ISIC Yes —

Limits the detection
accuracy, 6 classes only

and computational
expensive

* DT: decision tree, KNN: k-nearest neighbor, PDFFEM: pigmented deep fused features extraction method,
LDA: Linear Discriminant Analysis, SVM: support vector machine, NN: neural network, ResNet: residual
network, DCNN: deep convolutional neural network, FixCaps: improved capsule network, LSTM: long short-
term memory, 1 https://www.kaggle.com/datasets/fanconic/skin-cancer-malignant-vs-benign (accessed on
2 September 2022).

Different pretrained models based on transfer learning techniques were evaluated in a
recent study [29]. The dataset utilized for these tests contains 10,154 images from ISIC 2018.
The findings demonstrate that DenseNet201 outperforms other models with an accuracy of
0.825 and enhances skin lesion categorization under various disorders. The suggested study
displays the distinct factors, including the precision of all pretrained learning networks, that
contributed to the development of a successful automated classification model for a variety
of skin lesions. In paper [30], the ML-basic models (logistic regression, SVM, random
forest, KNN, and gradient boosting machine) were trained using manually created features.

https://www.kaggle.com/datasets/fanconic/skin-cancer-malignant-vs-benign
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These base models’ predictions were utilized to train the level-one model stacking on the
training set using cross-validation. Transfer learning was carried out using pre-trained deep
learning models (MobileNet, Xception, ResNet50, ResNet50V2, and DenseNet121) using
ImageNet data. The DL-based models were then evaluated after being ensembled with
various model combinations. The experimental results indicate that the authors achieved
good accuracy for the classification of PSLs.

3. Background of Cutting-Edge TL Networks

A broad range of deep neural network models, including AlexNet, VGG, GoogleNet,
and ResNet, have been proposed because of improvements in hardware technology de-
velopment [31–37]. Due to the high volume of parameters and computational processes,
these deep and broad networks slow down training and detection. The most cutting-edge
networks are taken into consideration in this study, including Inception, ResNet, Xception,
AlexNet, SqueezeNet, MobileNet, and ShuffleNet [38]. To increase representational capacity
and decrease computing complexity, they have different architectural designs.

3.1. AlexNet TL

Five convolutional layers and three fully linked layers make up AlexNet [32]. Fol-
lowing the last fully connected layer, the softmax layer generates the distribution of class
labels. Usually, normalizing and pooling layers come after the convolution layers as an
alternative. ReLU nonlinear activation units often mix with most of the layers in this design.
Max pooling’s purpose is to reduce the size of the feature map (downsampling). A dropout
layer is connected to the first two completely connected layers as well. In trials, the last
completely linked layers in the pigmented skin lesions (PSLs) datasets were changed to
two classes.

3.2. MobileNet TL

The Google research team suggests MobileNet [33] is a mobile-first computer vision
model. The fundamental principle of MobileNet is to drastically reduce both the size of the
model and the computational complexity by using depthwise separable convolution. The
two types of convolutions that make up a depthwise separable convolution are pointwise
and depthwise. Pointwise convolution is used to modify the dimension, whereas depthwise
convolution applies a single filter to each input channel. Therefore, depthwise separable
convolutions work well with good accuracy and speed and can reduce computation by
eight to nine times. Finally, the model may be successfully used with portable electronics.

3.3. SqueezeNet TL

For computer vision applications, the SqueezeNet [34] architecture is a deep CNN
that focuses on efficiency (having fewer parameters and a smaller model size). The fire
module is the fundamental component of the SqueezeNet design. The module has both an
expansion phase and a squeeze phase. A series of 11 filters are applied during the squeeze
phase, and then a ReLU activation follows. There are always fewer learned squeeze filters
than there is input volume. As a result, the squeeze phase may be thought of as a procedure
that reduces the number of dimensions, while also capturing pixel correlations across
input channels. The squeeze phase’s output is used to train a mixture of one and three
convolutions in the expanding phase. The spatial correlations between pixels are captured
using the bigger 3D filters. The outputs of the expanding phase are then checked by a ReLU
activation, which adds them up over the channel dimension. The number of filters used in
the expanding phase was suggested to be between one and three, as many as were used in
the squeeze phase. The traditional convolution layers, max pooling, fire modules, and an
average pooling layer at the end are stacked to create the whole SqueezeNet architecture.
There are no fully linked layers in the model.
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3.4. Inception TL

The Inception network [35] is a deep convolutional architecture that was first released
in 2014 as GoogLeNet. The design has been improved in a variety of ways, such as
by factoring convolutions with bigger spatial filters for computational efficiency and by
using batch normalization layers to speed up training. We chose the Inceptionv3 model
because of its exceptional capabilities for object localization and image identification. The
Inception module, which comes in a variety of forms, is the essential building block for all
Inception-style networks. After accepting input, the module branches into four separate
directions, each of which does a distinct series of actions. The input goes via a pooling
process, followed by convolutional layers with varying kernel sizes (1 × 1, 2 × 2, and 3 × 3,
respectively). The module can recognize complicated patterns at various scales by using
different kernel sizes. All branches’ outputs are concatenated channel-wise. Early on in
the network’s development, the Inception-v3 network’s general architecture was made up
of typical three-layer convolutional layers, some of which were followed by max pooling
operations.

3.5. ResNet TL

Deep residual networks (ResNet) [36] are a series of exceptionally deep CNN architec-
tures that are utilized for object identification, localization, and image recognition. The fact
that the winning network had 152 layers validates the positive effects of network depth on
visual representations. However, vanishing gradients and performance deterioration are
two significant issues that arise while training networks with increasing depth. By using
skip connections, the authors were able to solve the issues and prevent information loss
as the network got deeper. The residual module of the two variations is the foundation
for building deep residual networks. Two convolutional layers make up the left route of
the residual module. These layers use three kernels and maintain the spatial dimensions.
Additionally, the ResNet model used batch normalization (BN) and rectified linear units
(ReLU) activation functions. The input is further added to the output of the left path on
the right path, which is the skip connection. As a result, the ResNet model is successfully
utilized in many models to skip connections.

3.6. Xception TL

Another deep CNN architecture is called the Xception [37] model. It makes use of
the residual connections suggested by ResNet models and was inspired by the Inception
architecture. However, depthwise separable convolution (Depth-CNN) layers are used in
place of the Inception modules. A depth-first CNN consists of a pointwise convolution
(1 × 1) to map the cross-channel correlations after a depth-first convolution (spatial con-
volutions of 3 × 3, 5 × 5, etc.) is performed over each input channel to map the spatial
correlations. The Xception design only relies on convolution layers that can be separated
by depthwise convolution, and it strongly assumes that cross-channel correlations and
spatial correlations can be mapped separately. The network has 14 modules made up of
36 convolutional layers. Except for the first and last modules, all modules have residual
connections. For a detailed explanation of the model specification.

3.7. ShuffleNet TL

The ShuffleNet model [38], which significantly lowers the computation cost, addresses
the rising need for operating effective DL networks on embedded devices while main-
taining accuracy. For the ImageNet classification challenge, their model outperformed
MobileNet with a smaller top-1 error. To extract more feature maps in the standard version
of the ShuffleNet TL model, the authors used pointwise convolution in conjunction with
the channel-shuffle operation. These steps enable the network to encode more information,
which is typical of the model. The goal of pointwise group convolution is to use dense
(1 × 1) convolutions to reduce computation costs. Group convolutions deteriorate repre-
sentation and block information because only a small percentage of the input channel is
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used to create the outputs from a specific channel. The channel-shuffle operation solution
is offered as a means of resolving this problem. The purpose of the channel shuffle is to get
input data from various groups by dividing the channels in each group into many groups,
which are then sent into the subsequent layer as various subgroups. In this paper, we have
improved the ShuffleNet as described in the methodology section.

4. Materials and Methods

This section is used to describe in detail the dataset used for the study and the proposed
methodology.

4.1. Data Acquisition

The Harvard database made the 10,015 dermatoscopy images in the HAM10000
(“Human Against Machine with 10,000 Training Images”) dataset [39] available to the
public with the aim of providing training data for automating the process of classifying
skin cancer lesions. The goal of this research was to give the public access to a large and
diverse data source for machine learning training so that the outcomes could be compared
to those of human experts. This dataset includes the following 7 kinds of skin cancer
lesions such as “actinic keratoses (AK), basal cell carcinoma (BCC), benign keratosis (BK),
dermatofibroma (DF), melanoma (MEL), melanocytic nevi (NV), and vascular skin lesions
(VASC)”. Figure 1 is a visually represented example of a patient’s history and type of
pigmented skin lesions (PSLs) in the HAM10000 dataset. Figure 2 shows an example
of selecting a region-of-interest (ROI) from PSL lesions (6000 images) after the area was
automatically chosen from the centroid.
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Figure 2. A visual example of a selection of region-of -interests (ROIs) from PSLs lesions after
automatically selecting from centroid position.

In addition, we utilized the ISIC-2019 [40] dataset, which consists of nine classes of
PSLs. This dataset contains a total of 33,126 PSL images. We have selected only seven
classes from the ISIC-2019 dataset, such as actinic keratoses (AK), basal cell carcinoma
(BCC), benign keratosis (BK), dermatofibroma (DF), melanoma (MEL), melanocytic nevi
(NV), and vascular skin lesions (VASC). The Kaggle platform’s competition includes a
download link for this dataset. We have selected only 6000 PSLs from the ISIC-2020
images. Recent ISIC-2020 developments in the field have revealed a growing emphasis
on the models capable of multi-class predictions [41,42]. From these datasets, there were
25,331 PSL images available based on nine classes. However, we have only selected seven
classes, which consisted of 2000 PSLs. In total, we have used 14,000 PSLs from these
datasets and removed many duplicate lesions. In Figure 3, the distribution of samples is
presented from the ISIC-2019 and ISIC-2020 datasets according to the patients’ history and
type of pigmented skin lesions (PSLs). In addition, Table 2 represents the total images in
each class, which were selected from the HAM10000, ISIC-2019, and ISIC-2020 datasets.
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Figure 3. Distribution of samples in the ISIC-2019 and ISIC-2020 datasets according to patients’
history and type of pigmented skin lesions (PSLs).

Table 2. Number of images in each class, which were selected from the HAM10000, ISIC-2019, and
ISIC-2020 datasets.

Classes * No. of Images Data Augmentation

AK 500 4000
BCC 2000 4000
BK 2000 4000
DF 200 4000
NV 6000 4000

MEL 3000 4000
VASC 300 4000
Total 14,000 2800

* Actinic keratoses (AK), basal cell carcinoma (BCC), benign keratosis (BK), dermatofibroma (DF), melanoma
(MEL), melanocytic nevi (NV), and vascular skin lesions (VASC).
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4.2. Proposed Methodology

Figure 3 depicts a simplified attentional-convolutional network-based learning (Light-
Dermo) framework for the recognition of PSLs. The Inception-v3 model is a transfer
learning (TL) model that is included in four stages of ShuffleNet model, such as stage 1,
stage 2, stage 3, and stage 4. These stages are listed in that order, starting from the
bottom block to the top block. In this study, we used the same stages which were selected
by empirical result analysis. We have utilized four stages, but in a different formation
compared to original ShuffleNet model. However, compared to the CNN [29] model,
we have used depthwise and pointwise separable CNNs (DPS-CNN). In practice, the
DPS-CNNs require fewer parameters and adjustments than regular CNNs, which reduces
overfitting. They are appropriate as well for mobile vision applications because they need
fewer computations, which makes them more affordable computationally. In addition,
we used the GELU activation function instead of other regular non-linear functions and
different layers [29]. Each block is made up of (1 × 1), (2 × 2), and (3 × 3) convolutional
layers with 64, 128, 256, and 512 filters, respectively. The stride is one for each of the four
blocks. An SE block comes after each block. The BN layers and the ReLU come before each
convolutional layer. A max pooling layer with a filter size of (2 × 2) and a stride of 2 is
followed by SE blocks 1 through 4. Figure 4 has displayed the proposed architecture for an
improved ShuffleNet deep learning model in terms of activation function and layers of the
network. A global average pooling layer is followed by SE block 4, fully connected (FC),
GELU, and then a softmax layer is used to avoid overfitting. The output layer, which has
seven neurons encoding seven classes of pigmented skin lesions (PSLs), is the last layer.

Diagnostics 2023, 13, x FOR PEER REVIEW 12 of 35 
 

 

GELU activation function instead of other regular non-linear functions and different lay-

ers [29]. Each block is made up of (1 × 1), (2 × 2), and (3 × 3) convolutional layers with 64, 

128, 256, and 512 filters, respectively. The stride is one for each of the four blocks. An SE 

block comes after each block. The BN layers and the ReLU come before each convolutional 

layer. A max pooling layer with a filter size of (2 × 2) and a stride of 2 is followed by SE 

blocks 1 through 4. Figure 4 has displayed the proposed architecture for an improved 

ShuffleNet deep learning model in terms of activation function and layers of the network. 

A global average pooling layer is followed by SE block 4, fully connected (FC), GELU, and 

then a softmax layer is used to avoid overfitting. The output layer, which has seven neu-

rons encoding seven classes of pigmented skin lesions (PSLs), is the last layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. A systematic flow diagram of the improved ShuffleNet architecture. 

4.2.1. Data Imbalance and Augmentation 

We discovered a considerable difference in the number of images contained inside 

the various classes of PSLs in the ISIC-2019, ISIC-2020, and HAM10000 datasets. In con-

trast to the other classes, the melanocytic nevi (NV) class, for instance, has a lot of samples. 

Additionally, the classifications of dermatofibroma (DF) and vascular lesions (VASC) con-

tain fewer samples. To effectively train a DL-based model, we need enough balanced data, 

as illustrated in Figures 1 and 3, which display the bar representation of the class-wise 

sample distribution of the original dataset. Also, Table 2 shows the overall 14,000 PSLs. 

To prevent biased training of the DL model, data balancing is carried out. Additionally, 

the imbalanced data may lead the model training to stay biased towards some classes with 

a relatively significant number of examples. Therefore, we applied augmentation tech-

niques to balance our 14,000 PSLs images. We expanded our dataset by more than 14,000 

and balanced it for each class using data augmentation, which consists of seven classes. 

In this study, we applied image transform steps such as cropping, resizing, adding a 

random amount of Gaussian noise, adjusting brightness with contrast, rotating by 30°, 

Input 

(a) 

Training Dataset 

Output 

Class -0 

Class-1 

Class-2 

Class-3 

Class-4 

Class-5 

ShuffleNet Stage 1 

SE b
lo

ck 

ShuffleNet Stage 2 

SE b
lo

ck 

ShuffleNet Stage 3 

SE b
lo

ck 

ShuffleNet Stage 4 

SE b
lo

ck 

Figure 4. A systematic flow diagram of the improved ShuffleNet architecture.
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4.2.1. Data Imbalance and Augmentation

We discovered a considerable difference in the number of images contained inside the
various classes of PSLs in the ISIC-2019, ISIC-2020, and HAM10000 datasets. In contrast to
the other classes, the melanocytic nevi (NV) class, for instance, has a lot of samples. Addi-
tionally, the classifications of dermatofibroma (DF) and vascular lesions (VASC) contain
fewer samples. To effectively train a DL-based model, we need enough balanced data,
as illustrated in Figures 1 and 3, which display the bar representation of the class-wise
sample distribution of the original dataset. Also, Table 2 shows the overall 14,000 PSLs. To
prevent biased training of the DL model, data balancing is carried out. Additionally, the
imbalanced data may lead the model training to stay biased towards some classes with a
relatively significant number of examples. Therefore, we applied augmentation techniques
to balance our 14,000 PSLs images. We expanded our dataset by more than 14,000 and
balanced it for each class using data augmentation, which consists of seven classes.

In this study, we applied image transform steps such as cropping, resizing, adding
a random amount of Gaussian noise, adjusting brightness with contrast, rotating by 30◦,
and horizontal and vertical flipping to increase the training set size and reduce overfitting.
All images were resized to a uniform (256 × 256 × 3) size. A visual example of the data
augmentation technique is displayed in Figure 4, and parameter settings are mentioned in
Table 3. By applying these transformations, we have obtained 28,000 PSLs consisting of
seven classes, and each class has 4000 PSL images. A visual example of this transformation
step is described in Figure 5.

Table 3. Data augmentation techniques used to develop a Light-Dermo system.

Parameters Angle Brightness Zoom Shear Mode Horizontal Vertical Rescale Noise

values 30◦ [0.9, 1.1] 0.1 0.1 Constant Flip Flip 1./255 0.45
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Figure 5. An example of data augmentation techniques applied on the selected datasets from the
ISIC-2019, ISIC-2020, and HAM10000 sources in case of benign and malignant skin lesions.

4.2.2. Improved ShuffleNet-Light Architecture

Overall steps of proposed ShuffleNet-Light architecture for Features Extraction and
Classification of PSLs are displayed in Algorithm 1. Recent works in a variety of fields,
such as natural language processing (NLP), image captioning, and image understanding,
frequently use the attention mechanism. With minimal computational overhead, the
SE introduces the SE block (see Figure 4), which self-recalibrates the feature map via
channelwise significance to improve the performance of current state-of-the-art models.
The SE block may be immediately applied to current network designs because of its
flexibility. The SE block is integrated into ShuffleNet. The first is called the SE-Inside block,
and it layers the SE unit straight after the final convolutional layer to embed it inside the
ShuffleNet unit. The SE unit is positioned after the summation (“Add,” “Concat”) with the
identity branch in the SE-Post block method to sum up. Due to the computational expense,
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if we use the tactics in all 16 blocks of ShuffleNet, we will need a lot of SE units. Without a
doubt, the expensive density will force the network to become redundant.

In this study, the depth feature map produced by CNN is re-calibrated via the channel
attention technique to enhance the model’s feature extraction performance and accomplish
accurate classification of PSLs. Through SE operation, the network may choose to amplify
useful feature channels and suppress unnecessary feature channels to reduce redundant
information. Different weight ratios can be assigned from a global information perspective.
By learning, the SE block automatically learns the weight of each feature channel and
adjusts the weight of the original feature channel. In Figure 6a, the SE block structure is
displayed. The suggested structure does not require a significant increase in computational
cost because it accepts each feature map following the “concat” operation as an input. The
feature refinement improves the model’s capacity for learning. Figure 6 depicts the entire
classification structure of pigmented skin lesions (PSLs).
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Figure 6. The modules of improved ShuffleNet by using depthwise and pointwise separable CNN
along with channel shuffle operations, where (a) squeeze and excitation (SE) block, and (b) shows the
proposed ShuffleNet-Light architecture.

To implement the final approach, we only use SE blocks at the conclusion of the first
four stages of the architecture (a total of four stages, each including multiple blocks), which
results in the addition of just four SE blocks to each of the two structures. Figure 4 shows
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the network designs of enhanced ShuffleNets. The SE blocks are depicted as the lower
portions of the frameworks in Figure 6a,b. In the squeeze phase, global average pooling is
used to provide channel-wise statistics that embed global spatial information. The simplest
aggregation method, global average pooling, is used to specifically reduce the spatial
dimensions of the entire image.

The branch normalization (BN) layer’s benefits include accelerating training and en-
hancing the network’s generalization capacity. It can take the place of the normalized local
response layer and function effectively as a normalized network layer. We concentrate on
one activation for the sake of clarity because normalization operates differently for each
activation. Additionally, the aggregated information produced from the squeeze informa-
tion in the excitation phase is used in a bottleneck with two tiny, completely linked layers.
A set of per-channel modulation weights is then produced when the excitation process
completely captures channelwise interdependence. The input feature maps are given these
weights. The gating mechanism is the subject of this operation, which is known as feature
recalibration. To accomplish this, a straightforward gating technique with softmax is used
to finally classify PSL lesions.

Algorithm 1: ShuffleNet-Light Architecture for Features Extraction and Classification of PSLs

Input: Input Tensor (X), 2-D of (256 × 256 × 3) PSLs training dataset.
Output: Obtained and Classified feature map x = (x1, x2, . . . , xn) augmented 2-D image
Main Process:
Step 1. Define number of stages = 4
Step 2. Iterate for Each Stage

(a) “Depthwise-CNN is applied to tensor x by kernel size of (3 × 3), which includes a number of filters;
branch normalization, the ReLU activation function, Pointwise-CNN by kernel size of (1 × 1),
branch normalization, and the GELU” activation function are applied.

(b) “Pointwise-CNN is applied to tensor x by kernel size of (1 × 1), which includes a number of filters,
branch normalization, ReLU activation function, Pointwise-CNN by kernel size of (1 × 1), branch
normalization, GELU” activation function are applied.

Step 3. Fscale = Squeeze and Excitation (SE) block contains expansion (1 × 1 × 3) layers.
Step 4. Fcat(i) = concatenation (# features-maps)
Step 5. channel = shuffle (x)
[End Step 2]
Step 6. Model Construction

(a) Define Global-average-pooling layer
(b) Define Fully-Connected (FC) Layer and applied GELU function.

Step 7. Afterward, the feature map x = (x1, x2, . . . , xn) generated, which is recognized by Softmax
function.
Step 8. Test samples yt

i are predicted to the class label using the decision function of the below equation.

yt
i =

M−1
∑

t=0
ft(xi)

4.2.3. Design of Network Structure

We process the channel information using three technologies, such as depthwise
separable convolutional (DConv), channel-shuffle (CS), and squeeze and excitation (SE)
modules, which improve the correlation between different channel information and can fil-
ter noisy channel information. The channel information improvement element significantly
improves the classification model’s accuracy and stability.

The DConv step only uses one convolution kernel (1 × 1) per channel, and each
channel is convolved only once at a time. In other words, it is the same as treating the
input feature map like a single-channel image. Because of the multi-channel nature of
pigmented skin lesions (PSLs), DConv is more appropriate than ordinary convolutions. The
standard convolution is only applied to the input image through a convolution kernel in the
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DConv. The value obtained by multiplying the original data’s weight and the convolution
kernel’s corresponding position is mapped to the corresponding position of the feature
maps. In other words, all input channels’ data is processed by each convolution kernel.
Each convolution kernel in a normal convolution processes the data from every input
channel and turns it into a feature map. The traditional convolution (Conv)’s parameter
amount, ConvP, is calculated using the following formula:

ConvP = ConvW × ConvH ×Conv × Conv (1)

Among them, the ConvW, ConvH, and Conv stand for the number of convolution
kernels, their size, and the quantity of input data channels, respectively. The basic idea
behind DConv is that each convolution kernel processes each input channel individually to
produce a map, as illustrated in Figure 7. By processing just 2-dimensional spatial data in
this way, the convolution kernel reduces the processing of data from many channels. As a
result, the following is the calculation formula for the parameter amount DConvP of the
DConv:

DConvP = ConvW × ConvH × Conv (2)

When compared to the traditional convolution approach, DConv requires fewer pa-
rameters for the calculation and, to some extent, increases the model’s operational efficiency.
But since DConv doesn’t care about information across channels, which would mean that
useful information would be lost, the channel-shuffle technique is used to make up for it.
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Figure 7. A structure of depthwise separable convolution neural network.

The channel-shuffle compensates for the DConv’s shortcomings. Each convolution
handles the data from the same channel group, as seen in Figure 8. As a result, there is a
breakdown in channel communication and a loss of some of the most useful information.
The idea behind channel-shuffle is to rearrange the channels in various channel groups such
that each group’s information is properly integrated without requiring further calculations,
which fixes the issues arising before. This method increases the model’s capacity for
learning by avoiding the occurrence where each output feature map is independent of the
others. The channel-shuffle implementation technique is given below:

Let’s assume that the input layer is separated into G classes, and each class has N
number of channels, then there are (G × N) channels in all. The reshape operation is
performed to generate a feature matrix of (G, N) dimensions.
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Turn the feature matrix upside down and change its size to (G, N).
Arrange this matrix in rows and columns.
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Figure 8. A visual demonstration of the channel-wise shuffle operation.

Hu et al. [44] suggested the squeeze-excitation (SE) module in 2018. By determining the
significance of feature channels, the self-attention of SE module determines the weight factor
of each channel. The learning of feature-channel data with high weight factors is the main
emphasis of neural network models. Complex information may be found in PSLs patterns,
and pixel noise is more prevalent. Not every channel’s data helps the classifier to make the
best choice. To eliminate the duplicate channel information, it is important to examine the
significance of each channel using the SE module before channel-switching. This can boost
the model’s anti-delay properties, while enhancing the classification precision.

Figure 6a displays the construction of the SE module. The Squeeze and Excitation
sections make up the SE module. Through the global pooling layer, the squeeze component
turns the input data from W × H × C into 1 × 1 × C data. The characteristic length,
breadth, and channel number, respectively, are denoted by W × H, and C. The Excitation
part’s primary structure is made up of two fully connected layers (FC). To lower the amount
of calculation, the first fully-connected (FC) layer is decreasing the channels. To increase
the channels, the second FC layer is utilized. Afterwards, we used the GELU function to
regulate the weight factor value between the first FC layer and the second FC layer. Also,
we used the sigmoid function to regulate the weight factor value between 0 and 1 FC layer,
which are decreasing the channels. The module will then execute a scale operation. To
acquire the feature data with re-calibrated weights, multiply the input W × H × C data
with the 1 × 1 × C weighting factor generated by Excitation in the appropriate manner.

4.2.4. Transfer Learning

Transfer learning (TL) [45] enables the transfer of information acquired in other activi-
ties or domains, which can save training time and enhance performance. Domain, D, is the
topic of learning in TL. The source domain (DS) and the destination domain (DT) make up
the domain. D = X, P(X), where X is the data and P(X) is the probability distribution that
generates X. Task T, the learning objective, is divided into source task Ts and target task Tt.
The task may be written as T = {Y, f(.)}, and consists of the label space Y and the prediction
function f(.). Given the source domain Ds and source task Ts, the target domain Dt and
target task Tt are known. When Ds 6= Dt or Ts 6= Tt, transfer learning uses the information
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acquired in the source domain Ds and the source task Ts to complete the target task Tt in
the target domain Dt. TL is implemented in this study using the weights of Inception-v3 on
the “ImageNet” dataset.

5. Results
5.1. Experimental Setup

In experiments, the data are divided into two groups by using a 10-fold cross-validation
test for the training set and the test set. The test set is utilized for model evaluation and
prediction. Furthermore, we evaluate the classification accuracy of each PSL’s images after
cropping (256 × 256 × 3). To ensure fair comparisons, the same settings are used for all
models. Additionally, the output layer, which is equal to the number of classes, has taken
the place of the model’s final layer. In all networks, the hyperparameters were standardized.
“Stochastic Gradient Descent (SGD)” is used to train all network models because it runs
quickly and converges well. Due to GPU memory limitations, we train the networks in
64-batch increments. For all networks, the initial learning rate is set to 0.001 and the learning
policy is “step” with a gamma of 0.5. Also, we used a set of optimization configurations.
By using the “ADAM” optimizer on a categorical cross-entropy loss, the networks were
optimized. To perform comparisons, we employ a “momentum” of 0.9 and a weight decay
of 5 × 104 All experiments use the branch normalization (BN) technique and the GELU
function. To implement and test the ShuffleNet-Light model, we utilized a PyTorch library
and a computer Intel Core i7-3770 CPU, 16 GB of RAM with an Nvidia GTX 1080 GPU.

5.2. Model Training

Each PSL is down-sampled to produce (256 × 256 × 3) tensors before training the
model. Afterward, several CNN pre-training models are then gathered from different
sources. The ShuffleNet [11], SqueezeNet [12], ResNet18 [13], MobileNet [14], Inception-
v3 [15], Xception [16], and AlexNet [17] are the pretrained TL architectures. The ImageNet
dataset was used to train all these TL models, as well as our improved ShuffleNet-Light
architecture on 28,000 PSLs. Due to memory limitations, we employ the stochastic gradient
descent (SGD) algorithm to optimize the parameters of these pretrained TL models. For
Inception-v3 or ShuffleNet-Light models, the learning rate and batch size are 0.001 and
64, respectively. The learning rate and batch size for other networks are 0.01 and 64,
respectively. To enhance PSLs classification, the network parameters of these pretrained
models must be adjusted and fixed with training samples.

5.3. Model Evalaution

To compare the performance of suggested ShuffleNet-Light classifier compared to
state-of-the-art solutions, we utilized various statistical metrics. Several metrics, including
accuracy (ACC), recall (RL), specificity (SP), precision (PR), F1-score, and Matthew’s corre-
lation coefficient (MCC), have been used in the past. Compared to other metrics, the MCC
uses a contingency matrix approach to calculate the “Pearson product-moment correlation
coefficient” between actual and expected values. The MCC metric [46] is unaffected by the
problem with imbalanced datasets. In this study, these metrics were employed. The True
Positive (TP) and True Negative (TN) values are measured, which demonstrate whether
the model successfully predicted the data was true or incorrect. “False Positive (FP)” and
“False Negative (FN)” statistics show that the algorithm is not correctly recognized the data.
In other words, it provides a technique for checking how well the method recognizes the
data. These statistical indicators are computed in the manner shown below:

Accuracy = (TP + TN)/(TP + TN + FP + FN)× 100 (3)

Recall = TP/(TP + FN)× 100 (4)

Speci f icity = TN/(TN + FP)× 100 (5)

F1− Score = 2× (precision× recall)/(precision + recall) (6)
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Matthews correlation coe f f icient (MCC)
= (TP× TN
−FP× FN)

/
(√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
) (7)

5.4. Results Analyis

We have selected various architectures of a CNN-based model to compare the per-
formance with the proposed Light-Dermo system. Figure 9 presents representations of
upgraded ShuffleNet-Light’s significant feature maps to help comprehend the learning
capacity of the channelwise method. It shows how we said that the Light-Dermo model
could keep more of an image’s details because it reuses features. Furthermore, as the
network grows, the features become increasingly abstract. Based on the best splits of PSL’s
dataset with 40 epochs, the Light-Dermo model’s training and testing loss vs. accuracy
diagram, along with the AUC curve, are shown in Figure 10. In addition, the Light-Dermo
used seven classes of PSLs to recognize actinic keratoses (AK), basal cell carcinoma (BCC),
benign keratosis (BK), dermatofibroma (DF), melanoma (MEL), melanocytic nevi (NV),
and vascular skin lesions (VASC). Table 4 shows the classification results achieved by the
Light-Dermo by developing the ShuffleNet-Light model for recognition of the seven classes
of PSLs in terms of SE, SP, ACC, PR, F1-score, and MCC.

Table 4. Classification results achieve by the proposed ShuffleNet-Light for recognition of the seven
classes of PSLs.

Classes 1 ACC 1 PR 1 SE 1 SP 1 F1-Score 1 MCC

(1) ACTINIC KERATOSES (AKIEC) 96.1 ± 1.3 94.2 ± 2.0 96.2 ± 1.4 94.0 ± 2.2 95.2 ± 1.2 97.4

(2) BASAL CELL CARCINOMA (BCC) 97.5 ± 0.8 96.1 ± 1.4 97.0 ± 0.2 95.9 ± 1.5 97.5 ± 0.8 98.4

(3) BENIGN KERATOSIS (BKL) 98.3 ± 0.8 97.2 ± 1.2 99.6 ± 0.3 97.1 ± 1.4 98.4 ± 0.7 96.0

(4) DERMATOFIBROMA (DF) 99.2 ± 0.3 99.1 ± 0.5 99.4 ± 0.5 99.1 ± 0.5 98.2 ± 0.3 98.0

(5) MELANOMA (MEL) 98.1 ± 0.5 99.0 ± 0.5 98.3 ± 0.5 98.9 ± 0.6 99.1 ± 0.5 100.0

(6) MELANOCYTIC NEVI (NV) 98.2 ± 0.3 99.2 ± 0.4 97.3 ± 0.5 99.2 ± 0.4 98.2 ± 0.3 96.0

(7) VASCULAR SKIN LESIONS (VASC) 99.4 ± 0.4 99.6 ± 0.3 99.1 ± 0.6 99.6 ± 0.3 99.4 ± 0.4 99.5

1 SE: Sensitivity, SP: Specificity, RL: Recall, PR: Precision, ACC: Accuracy, MCC: Matthew’s correlation coefficient.
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where (a) shows the seven layers through original ShuffleNet model and (b) displays the proposed
ShuffleNet model.
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Figure 10. An example of progress improvements in a training and validation data set in terms of
accuracy, AUC, and recall by the improved ShuffleNet learning.

For the dataset of pigmented skin lesions (PSLs), we assess the performance of the
different DL and TL-based models such as ShuffleNet [11], SqueezeNet [12], ResNet18 [13],
MobileNet [14], Inception-v3 [15], Xception [16], and AlexNet [17]. These CNN-based
architectures with TL capabilities are compared with the proposed ShuffleNet-Light model
in terms of performance. According to Table 4, the ACC of 99%, PR of 98.3%, SE of 97.4%, SP
of 98.2%, F1-score of 98.1%, and MCC of 99% are achieved by a proposed ShuffleNet-Light
model compared to other CNN-based architectures. The classification accuracy (ACC) for
AlexNet is 88.9%, MobileNet is 90.8%, ResNet18 is 89.3%, Inception-v3 is 89.4%, Xception is
89.5%, and ShuffleNet is 88.5%. According to this table, MobileNet achieved a higher ACC
compared to others. Also, the original ShuffleNet is not performing well when observed in
40 iterations.

Compared to others, the ShuffleNet-Light model is an effective method for classifying
pigmented skin lesions (PSLs) with a higher accuracy. Compared to other CNN and TL-
based architectures, the original ShuffleNet network has more parameters and FLOPs
(shown in Table 5) than the proposed ShuffleNet-Light model. As a result, the enhanced
architecture has fewer parameters and converges more quickly than its baseline. The FLOPS
are 67.3 million, the number of parameters is 1.9 million, the model size is 9.3 million, and
the GPU speed is 0.6 million, as shown in Table 5. As a result, the ShuffleNet-Light model
created a new and improved architecture, as described in Section 4.
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Table 5. Computational performance of the different models.

TL Architectures Complexity
(FLOPs)

# Parameters
(M)

Model Size
(MB)

GPU Speed
(MS)

ShuffleNet-Light 67.3 M 1.9 9.3 0.6

ShuffleNet 98.9 M 2.5 14.5 1.7

SqueezeNet 94.4 M 2.4 12.3 1.2

ResNet18 275.8 M 2.7 15.2 2.6

MobileNet 285.8 M 3.4 16.3 2.7

Inception-v3 654.3 M 3.9 17.5 2.9

Xception 66.9 M 2.5 14.5 2.7

AlexNet 295.8 M 2.5 12.3 3.3
FLOPs: floating-point operations, M: millions, MB: megabyte, MS: milliseconds.

We run tests on the pigmented skin lesions (PSLs) dataset to assess the performance
of various CNN-based models. The accuracy curves for the improved ShuffleNet-Light
suggest that it is a lightweight architecture for the classification of seven classes of PSLs.
However, the other network architectures occasionally yield worse results, depending on
the number of iterations. The network structure of our proposed model is more complex
than their backbones because we concatenated the features of the previous layers, which are
thought to be the cause of these situations. Figure 11 also displays the classification results
of the basic ShuffleNet and ShuffleNet-Light in terms of accuracy, precision, F1-score, and
MCC.
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These experiments show that an improved ShuffleNet produces classification rates
for seven classes of PSLs that are superior to those of standard models. The improved
ShuffleNet-Light-based classification accuracy of PSLs is 99%. As a result, the integration of
squeeze-and-excitation (SE) blocks provides the best TL-based architecture for developing
a lightweight Light-Dermo model, as shown in Table 6. Also, the dense connection protects
against the overfitting problem better, especially when learning from small amounts of
data. The layers in the light dermis are thicker. As a result of direct connections between
all layers, the network has a very deep design. In this paper, speed is a key performance
measure in addition to classification accuracy and a significant assessment criterion for
specific application situations. In addition, we have performed state-of-the-art comparisons
in terms of computational cost and accuracy, which are described in Section 5.4.

Table 6. Comparisons results of the various TL-based DL models.

State-of-the-Art Classes Augment Epochs 1 Time (S) 1 ACC F1-Score 1 MCC

Light-Dermo Model 7 Yes 40 2.4 98.1% 98.1% 98.1%

9CNN models [6] 7 Yes 40 12 80.5% 80.5% 82.5%

AlexNet [8] 7 Yes 40 17 81.9% 81.9% 81.9%

MobileNet-LSTM [10] 7 Yes 40 13 82.3% 82.3% 80.3%

FixCaps [11] 7 Yes 40 15 84.8% 84.8% 83.8%

EfficientNet [12] 7 Yes 40 18 75.4% 75.4% 74.4%

CNN-Leaky [13] 7 Yes 40 20 76.5% 76.5% 75.5%

DCNN [15] 7 Yes 40 22 77.9% 77.9% 76.9%
1 ACC: Accuracy, MCC: Matthew’s correlation coefficient, S: Seconds.

5.5. Comparisons in Terms of Computational Time

Table 7 compares the model’s performance with some other current models over PSL
datasets in terms of the number of epochs, accuracy, f1-score, MCC, and computational
time in seconds (S). In addition, we have also compared the Light-Dermo model in terms
of computational cost with others such as 9CNN-models [6], AlexNet [8], MobileNet-
LSTM [10], FixCaps [11], EfficientNet [12], CNN-Leaky [13], and DCNN [15]. Those
results are described in Table 8. The suggested model has been shown to work very well,
even though it only has a few trainable parameters and a short calculation time. PSL
images have been used to compare accuracy with other cutting-edge techniques, and the
results are shown in Table 7. The result of the analysis demonstrates that the proposed
model, when compared to other cutting-edge models, has attained high accuracy. Since
different datasets (HAM10000, Kaggle, and clinical pictures) are utilized throughout all
investigations, the accuracy varies as shown in Table 8. In this table, the execution time
is very small compared to others. In addition, Khan et al. [8] used the VGG16 model
architecture to reach an accuracy of 80.46% using the HAM10000 dataset, whereas Agrahari
et al. [10] and Chaturvedi et al. [11] used the MobileNet model architecture to obtain
accuracy rates of 80.81% and 83.10%, respectively. Compared to them, our Light-Dermo
model outperforms them in terms of accuracy and computational time.

In another experiment, we compared CPU, GPU, and TPU processing in terms of
batch size and computational performance of the proposed ShuffleNet-Light model. In
practice, layer-by-layer analysis of the CNN implementation [43] in the CPU, TPU, and
GPU was required. To maximize its performance on TPU, the ShuffleNet-Light network
should be built with each job being a MISD (multiple instruction, single data) task. When
creating instructions, the tasks of the neural network must be prioritized. In fact, the
GPU offers increased flexibility and simple programming for small quantities. Due to the
execution pattern in wraps and scheduling on simple on-stream multiprocessors, GPUs
suit batch sizes for little data better. By maximizing memory reuse, the GPU works well
for huge datasets and network models. Weight reuse in fully linked neural networks is
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lower and, as a result, increased memory traffic results as the model size grows. The GPU’s
memory bandwidth enables it to be used for applications that need memory. Due to the
additional parallelism capability, GPUs perform better than CPUs when handling large
neural networks. The GPU outperforms the CPU for fully linked neural networks, but the
TPU excels with huge batch sizes.

Table 7. Computational performance of the different TL-based deep learning models.

Deep Learning Models 1 ACC 1 PR 1 SE 1 SP F1-Score 1 MCC

ShuffleNet-Light 99.1% 98.3% 97.4% 98.2% 98.1% 98%

ShuffleNet 88.5% 87.3% 88.3% 88.7% 87.7% 85%

SqueezeNet 87.9% 84.5% 90.8% 85.4% 87.6% 84%

ResNet18 89.3% 87.1% 93.1% 87.9% 90.1% 89%

MobileNet 90.8% 90.2% 90.0% 91.4% 90.1% 88.%

Inception-v3 89.4% 87.7% 90.0% 88.9% 88.8% 88%

Xception 89.5% 88.3% 89.3% 90.7% 88.7% 88%

AlexNet [17] 88.9% 87.6% 88.8% 88.9% 87.7% 86%
1 SE: Sensitivity, SP: Specificity, RL: Recall, PR: Precision, ACC: Accuracy, MCC: Matthew’s correlation coefficient.

Table 8. Computational performance of state-of-the-art seven classes. Experiments were performed
on three datasets such as the ISIC-2019, ISIC-2020 and HAM10000.

CNN-TL Architectures Complexity (FLOPs) # Parameters
(M)

Model Size
(MB)

GPU Speed
(MS)

ShuffleNet-Light 67.3 M 1.9 9.3 0.6

ShuffleNet 98.9 M 2.5 14.5 1.7

SqueezeNet 94.4 M 2.4 12.3 1.2

ResNet18 275.8 M 2.7 15.2 2.6

MobileNet 285.8 M 3.4 16.3 2.7

Inception-v3 654.3 M 3.9 17.5 2.9

Xception 66.9 M 2.5 14.5 2.7

AlexNet 295.8 M 2.5 12.3 3.3

FLOPs: floating-point operations, M: millions, MB: megabyte, MS: milliseconds.

Whereas in the case of TPU, we have utilized the array structure, which works better
in the case of TPU, on the ShuffleNet-Light architecture with big batches to offer high
throughput during training. To fully utilize the matrix and multiply units in the systolic
array of the TPU, large batches of data are required. The speedup in the architecture rises
as the batch size does. TPU is the best due to the spatial reuse properties of the networks
for large batch sizes and complicated CNNs. The performance of CPU, TPU, and GPU
benchmarks in terms of batch size is mentioned in Table 9 for the proposed ShuffleNet-Light
model.

Table 9. Performance of CPU/TPU/GPU Comparisons of the proposed ShuffleNet-Light model.

Batch Size Epochs CPU/TPU/GPU (MS)

64 40 600/400/500
128 40 800/450/550
256 40 900/500/600
512 40 900/500/600

1024 40 900/500/600
MS: milliseconds, CPU: central processing unit, GPU: graphical processing unit, and TPU: Tensor Processing Units.
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We suggested a lightweight CNN and applied the channelwise attention (CA) mecha-
nism on ShuffleNet blocks, which were tested on a huge PSLs dataset for the classification
of multiclass to produce cutting-edge results. The top-1 accuracy of ShuffleNet-Light
increased to 8.7% when SE modules were combined with the backbone ShuffleNets, for
example (shown in Table 9). We discover that ShuffleNets with CA modules are often
25–40% faster than the basic ShuffleNets on mobile devices, despite a minimal decrease
in theoretical complexity. This suggests that real-time speedup evaluation is crucial for
low-cost architecture design.

The ShuffleNet model gathers the real-time control needs and boosts accuracy, which is
the underlying improvement. In addition, the ShuffleNet-Light model further comprehends
the learning capacity of the channelwise method. To show this point, the visualizations with
numerous major feature maps of enhanced ShuffleNet are provided in Figures 12 and 13,
where our suggested model can preserve more image information due to important feature
reuse. Furthermore, as the network grows, so do the featured visuals. For the unseen test
datasets, it obtains an accuracy of 99.1% and an equivalent score for weighted precision and
recall, an f1-score of 98.5%, and MCC of 99%. We have shown that combining two or more
models using different assembly approaches can increase a classification model’s capacity
for prediction and generalization. By contrasting the true label and predicted label for
each item in the test set, the confusion matrix also provides a crystal-clear demonstration,
as shown in Figure 12. Even if many of the photos are properly classified, it is hard to
achieve high classification capacity for each class due to the high interclass similarity and
intraclass variability across images in some classes. The comparison procedure shows that
the suggested technique performs better in terms of accuracy, precision, and the f1-score.
However, our model is a lot more accurate than this one, so the study that was suggested
has a higher MCC.
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Figure 13 shows the classification results of the proposed ShuffleNet-Light model,
when Xception-v3 is deployed as a pretrained model with data augmentation, consisting of
28,000 PSLs. Whereas in Figure 14, the best classification results of the proposed ShuffleNet-
Light model are shown when Xception-V3 is deployed as a pretrained model without data
augmentation techniques. Therefore, the proposed ShuffleNet-Light model provides the
best classification accuracy when combined with data augmentation techniques. These
results also indicate that the proposed ShuffleNet-Light model will be built by using any
pretrained model without affecting its performance.
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The results show that, regardless of complexity, ShuffleNet models outperform Mo-
bileNet or AlexNet architectures. Even though the ShuffleNet network is built for tiny
models (150 MFLOPs), it still performs better than MobileNet in terms of computation
cost. ShuffleNet performs 6.7% better than MobileNet on networks with fewer nodes
(40 MFLOPs). ShuffleNets design features 50 levels (or 44 layers) from a configuration
standpoint, whereas MobileNet only has 28 layers.

Table 10 compares the performance of the ShuffleNet-Light architecture with various
pretrained TL models such as Inception-v3, AlexNet, and MobileNet. This performance is
measured on an Android mobile device with an ARM platform. The real inference speed of
ShuffleNet models will be tested as part of the final evaluation. The resulting inference time
on the mobile device is displayed in Table 10. The outcome demonstrates that ShuffleNet
is significantly quicker than earlier AlexNet-level models or speedup techniques. The
ShuffleNet-Light architecture becomes more popular for mobile devices with comparable
computing costs and greater performance. ShuffleNet is clearly better than other current
models, as shown by the studies on pointwise group convolution and channel shuffle
operations, where ShuffleNet performs best, and comparisons with other structural units,
where ShuffleNet beats other units by an average of 5%. According to all appearances,
there is no noticeable difference when ShuffleNet is implemented using any pre-trained
model, but the Inception-v3 model is the best on actual mobile devices. Nevertheless, the
cost of calculation has significantly decreased from AlexNet’s 720 of FLOPs to ShuffleNets
140 of FLOPs and 0.5x’s 40 of FLOPs. Future research may decide to concentrate on
optimization and performance evaluations on various mobile devices. Given the amount of
work that Apple and Google invest in their mobile platforms, it could be useful to compare
performance or computation costs between various companies.
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Table 10. Performance of the proposed ShuffleNet-Light model on an Android mobile device.

Model 1 FLOPs 256 × 256 300 × 300 400 × 400

ShuffleNet 80 M 50.2 ms 54.4 ms 54.4 ms
ShuffleNet-

Light+Inception-v3 60 M 34.5 ms 35.9 ms 35.9 ms

ShuffleNet-
Light+AlexNet 220 M 40.8 ms 45.4 ms 45.4 ms

ShuffleNet-
Light+MobileNet 120 M 47.7 ms 50.7 ms 50.7 ms

ms: milliseconds, 1 FLOPs: floating-point operations.

Table 11 is used to display that the outcome demonstrates a trend where the PSLs’
recognition scores rise. The ShuffleNets’ decreased categorization error demonstrates
the value of cross-group information exchange even better. The lower the classification
error, the better ShuffleNet with channel shuffle is in various architectures than ShuffleNet
without channel shuffle.

Table 11. Comparisons result of ShuffleNet models with or without channel shuffle.

Model Shuffle No Shuffle %Err

ShuffleNet 40% 50% 2.3
ShuffleNet-Light+Inception-v3 55% 65% 1.4

ShuffleNet-Light+AlexNet 60% 70% 3.2
ShuffleNet-Light+MobileNet 40% 50% 2.2

Err: classification error.

On the HAM10000, ISIC-2019, and ISIC-2020 datasets, a thorough comparison of
testing accuracies is also performed by using various optimizers and various learning
rates. Based on the number of parameters, Table 12 shows the results of several optimizers.
In comparison to other optimizers, SGD and Adam perform exceptionally well, with an
accuracy of approximately 99%. Moreover, Adam took somewhat longer (0.0068) than the
SGD and Adadelta optimizers, but it had the lowest 0.001 learning rate and 6.50 validation
loss. As a result, we have selected the SGD algorithm for the optimization of the ShuffleNet-
Light architecture.

Table 12. Performance of the proposed ShuffleNet-Light model on different optimizers.

Model Adam RMSprop SGD AdaMax Adadelta Nadam

ShuffleNet 2.9 m 3.9 m 2.9 m 3.2 m 3.2 m 3.0 m
ShuffleNet-Light+Inception-v3 2.0 m 2.1 m 1.9 m 2.1 m 2.1 m 2.0 m

ShuffleNet-Light+AlexNet 2.4 m 3.4 m 2.4 m 3.4 m 3.4 m 2.5 m
ShuffleNet-Light+MobileNet 2.5 m 3.5 m 2.5 m 4.5 m 3.5 m 2.7 m

m: millions, SGD: stochastic gradient descent, RMSprop: root mean square propagation, Adagrad: adaptive
gradient algorithm, Adadelta: an extension of Adagrad, Adam: adaptive moment estimation, AdaMax: a variant
of Adam, Nadam: Nesterov-accelerated adaptive moment estimation.

5.6. Generalized Model: No Overfitting or Underfitting

When a TL model overfits, it tries to fit all the training data and ends up remembering
the patterns in the data as well as the noise. The goal of these TL models is defeated
since they do not generalize effectively and perform well in the presence of unseen data
circumstances. Low bias and high variance are two signs of a model that has been adjusted
too much. The training data samples in our suggested ShuffleNet-Light model were
sufficient and the training data were cleaned, which aided the model’s ability to generalize
its learning capabilities. The model was trained with enough data for many epochs and had
a low standard deviation. Underfitting, on the other hand, happens when the TL model is
unable to clearly translate the input to the desired variable. When characteristics are not
seen completely, the inaccuracy in the training and unseen data samples increases. When
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the model is unable to learn from the training data and the training error is sufficiently large,
it can be identified. Low variance and high bias are the most typical signs of underfitting.
With our model, there was no chance of using training data that had not been cleansed, and
the dataset was also not changed through augmentation. We can conclude that there was
no over- or underfitting in our proposed model.

We conduct a preliminary experiment to determine which activation function has the
most impact on model correctness. According to the information in Table 13, the Sigmoid,
Tanh, ReLU, GELU, and Leaky-ReLU have accuracies of 96%, 96%, 97%, 96%, and 99%,
respectively. GELU, which is around 2% more accurate than the original activation function
ReLU, achieves the greatest prediction among these activation functions. As a result, the
GELU function serves as the activation function in our improved ShuffleNet model.

Table 13. Various activation functions compared in terms of accuracy measure.

Model Sigmoid Tanh ReLU Leaky-
ReLU GELU

ShuffleNet 89% 89% 88% 92% 90%
ShuffleNet-Light+Inception-v3 96% 96% 97% 96% 99%

ShuffleNet-Light+AlexNet 90% 91% 89% 89% 90%
ShuffleNet-Light+MobileNet 90% 90% 88% 87% 89%

Tanh: hyperbolic tangent function, ReLU: rectified linear unit, Leaky-ReLU: leaky rectified linear unit, GELU:
Gaussian error linear unit.

5.7. Model Interpretability

The visualization impact of the sample with the greatest prediction probability for each
category among the test set samples is displayed in Figure 15 to confirm the interpretabil-
ity and explainability of the ShuffleNet-Light network based on the classification layer
described in this article. In this study, the GradCAM score [47] was calculated on seven
classes of PSLs. This is the prediction probability value of the test model’s final output in
each class of PSLs. Each row in Figure 15 demonstrates that the images are all derived from
the seven sample classes of PSLs. On a decent heat map, the GradCAM score can show the
lesion areas of pigmented skin lesions. The visual aspect of the image can demonstrate that
the regions the model focused on are comparable to those produced by human experience
after the image has been examined by qualified physicians. The visualization effect of
ShuffleNet-Light, which is superior, demonstrates that the localization area is small and
that all results are contained in the lesion area. This demonstrates that the proposed model
is more interpretable and explicable in seven PSLs classes.
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6. Discussion

The last ten years have seen the emergence of several novel yet superior computer-
aided diagnosis (CAD) systems to classify pigmented skin lesions (PSLs). According to
studies [8], a significant portion of skin cancers may be very well prevented. Early detection
of abnormal changes on the skin can aid in the diagnosis of skin cancer and stop it from
spreading to other organs. The PSLs’ skin lesions should be diagnosed and graded as soon
as possible to protect the patient’s health. Melanoma can infiltrate deeply into the skin if
it is detected too late. As the condition advances, treatment becomes more challenging.
Digital dermatoscopy is being employed for the early detection of PSLs, but even for
dermatologists with experience, it remains a challenging process. Patients have additional
challenges since they must make repeated trips to the doctor to track and detect variations
in skin color [22]. The patient’s life is in danger since this treatment is laborious and prone
to mistakes. In the past, as mentioned in Table 1, several authors developed two-class-based
(melanoma versus nevus) classification systems compared to multiclass PSL lesions. The
majority of the studies required extensive image processing domain knowledge and hand-
crafted feature extraction, which limits detection accuracy, compromises generalizability,
and is computationally expensive.

As a result, a quicker and more precise way of identifying and categorizing skin cancer
is required [9]. The literature has mentioned a variety of methods for detecting cancer
from comparatively small datasets [2,5,9]. However, a thorough investigation of the effect
on a sizable database is still pending. Many classification techniques rely significantly
on manually created feature sets, which in dermatoscopic skin pictures have a limited
capacity for generalization. Lesions exhibit a high degree of visual likeness and are highly
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connected with one another due to their closeness in color, shape, and size, which leads
to poor feature information. Hand-crafted feature-based skin categorization methods are
therefore useless [5,9,10]. In this situation, a deep learning (DL)-based approach has proven
to be effective. Traditional machine learning (ML) techniques require handcrafted features,
while deep learning (DL) systems have a large ability to extract complex, detailed, task-
specific, and effective features, enabling them to develop an elegant model with better
performance [3,11]. Dermatoscopic analysis may be minimized, and DL-based skin cancer
detection is economical. Thus, using the approach outlined above, skin cancer disorders
can be identified early enough.

We suggest innovative designs that pair the channelwise attention (CA) mechanism
with effective pretrained CNN networks to adhere to resource constraints (latency, mem-
ory size, etc.). We have selected ShuffleNet [5] as the backbones because of its effective
topologies, which not only provide tiny networks but also allow for the encoding of more
data. Squeeze-and-excitation (SE) blocks, which are regarded as CA mechanisms, are
combined with backbones to further increase the precision of pigmented skin lesions (PSLs)
categorization. Comparative trials for the categorization of seven categories of PSLs demon-
strate that this proposed lightweight CNN (Light-Dermo) model is more successful than its
alternative structures. This outcome demonstrates that accuracy may be greatly increased.
Finally, the Light-Dermo can handle real-time applications. The Light-Dermo can assist in
reducing overfitting. The ShuffleNet network’s connections created quick pathways from
the bottom layers to the top ones. As a result, the loss function (GELU) gives each layer
more direction. Therefore, the dense connection protects against the overfitting problem
better, especially when learning from small amounts of data. The layers in the light dermis
are thicker. As a result of direct connections between all layers, the network has a very
deep design. Multiple PSL lesions are greatly imbalanced in the HAM10000, ISIC-2019,
and ISIC-2000 datasets. To address this issue, powerful data augmentation techniques are
applied. We used cross-validation to test our model, and the results showed that it worked
much better than the existing methods. The Light-Dermo is a computationally inexpensive
solution for the diagnosis of pigmented skin lesions (PSLs) compared to state-of-the-art
approaches.

The visualizations with numerous major feature maps of enhanced ShuffleNet are
provided to further understand the learning capacity of the channelwise method, as shown
in Figures 8 and 9. The most recent ISIC-2019, ISIC-2020, and HAM10000 datasets are used
in this paper, which show cutting-edge dermoscopy images of the most recent develop-
ments in cancer lesion identification, where our suggested model can preserve more image
information due to important feature reuse. Furthermore, as the network grows, so do the
featured visuals. For the unseen test datasets, it obtains an accuracy of 99.1% and an equiv-
alent score for weighted precision, recall, and f1-score of 98.5%. Several visual examples
of the performance of the proposed Light-Dermo model are displayed in Figures 10–12.
The significant results were attributed to squeeze-and-excitation (SE) blocks, which were
integrated into the ShuffleNet architecture for the development of a lightweight Light-
Dermo model. The Light-Dermo can assist in reducing overfitting. In patients undergoing
dermatoscopy who may have a pathogenic infection, this research proposes a novel, highly
effective, and accurate DL model for quick and non-invasive detection of skin cancer. A
visual example of the proposed ShuffleNet-Light model is shown in Figure 16.

Due to memory access and other overheads, we find that for every four percent
reduction in theoretical complexity, our implementation typically speeds up by 2.6 percent.
Even though the theoretical speedup is 1.8%, our ShuffleNet 0.5 model still gets a 10-fold
real speedup compared to Inception-v3, AlexNet, and MobileNet, which is much faster
than earlier AlexNet-level models or speedup methods. The resulting inference time on the
mobile device is also displayed in Table 8. The outcome demonstrates that ShuffleNet is
significantly quicker than earlier AlexNet-level models or speedup techniques. The next
phase of artificial intelligence will involve implementing neural networks on mobile devices,
and ShuffleNet is very effectively described in this study. The ShuffleNet will become more
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popular in the CNN space for mobile devices with comparable computing costs and greater
performance. ShuffleNet is clearly better than other current models, as shown by the
studies on pointwise group convolution and channel shuffle operations, where ShuffleNet
performs best, and comparisons with other structural units, where ShuffleNet beats other
units by an average of 5%. According to all appearances, there is no discernible difference
when ShuffleNet is implemented using any pre-trained model, but the Inception-v3 model
is the best on actual mobile devices.
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Several TL-based pre-trained models can be used to classify multiclass PSL lesions.
The ShuffleNet [11], SqueezeNet [12], ResNet18 [13], MobileNet [14], Inception-v3 [15],
Xception [16], and AlexNet [17] are the TL architectures. For the development of an
improved ShuffleNet-Light model, we used a better activation function (GELU) and added
an attention mechanism. According to our studies, each of these models can perform
multiclass recognition of PSLs. However, the ShuffleNet serves as the primary baseline
and backbone model. Additional comparisons were also made between the Inception-
v3 and ResNet-18 models. With the information provided above, we recommend using
the attention mechanism SE block as a potential optimization technique. The model was
further improved by adding the activation function. Finally, the GELU performs better
than the ReLU. The models’ final F1 scores (accuracy, precision, and recall) and MCC were
determined. Out of the deep learning models chosen for this investigation, the optimized
ShuffleNet-Light performed the best. In addition, our improved ShuffleNet-Light model
outperformed previously published techniques in terms of multiclass recognition of PSL
lesions.

6.1. Advantages of Proposed Approach

To get correct results, data imbalance is an essential stage in classification tasks. To
accurately identify images, deep learning (DL) algorithms employ multiple layers of
artificial neurons. However, the class imbalance has been adjusted by using the data
augmentation technique, which was applied to (256 × 256 × 3) pixels. If this step is not
performed on datasets, then more memory and processing time are needed. Deep learning
(DL) or machine learning (ML) algorithms are often overfitted due to their convoluted
design. Our job is to provide a less complicated structure and reduce computational
time. Our ShuffleNet-Light architecture with a balanced layer architecture is what we then
suggest. We added various blocks to the architecture with kernel regularizes of 0.001 to
improve performance. The main function of kernel regularization is to address overfitting
problems. Due to the multiclass classification problem, we applied a softmax classifier in
the study to recognize seven classes of PSLs. Consequently, all types of optimizers function
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equally well, except GELU for us, and our model generates results quickly based on it.
Three well-known, publicly accessible datasets are used in the study. On these datasets, the
suggested deep ShuffleNet-Light DL model outperforms others. In short, the following
advantages of the proposed study are described below:

(1) The most important thing that our study adds is the idea of a new, highly optimized,
lightweight CNN model that can find seven types of pigmented skin lesions (PSLs).

(2) The ShuffleNet-Light design minimizes network complexity and increases accuracy
and recognition speed compared to those of currently available deep learning (DL)
architectures. Our model’s ShuffleNet architecture’s SE block adds to its accuracy by
modifying it. It also doesn’t have much of an impact on the model’s complexity or
recognition rate.

(3) The ShuffleNet-Light has a generalized capability with no overfitting or underfitting
problems.

(4) Since the activation function improves accuracy, we replaced the original ReLU
function in the proposed model with the GELU function, which, in our analysis,
improved the model. Therefore, the activation function does influence how well the
model does when it must classify skin lesions.

(5) We think that our research shows that it might be possible to recognize and track PSLs
in real-time when mobile phones are used in outreach settings.

6.2. Limitations of Proposed Approach and Future Works

Different kinds of pigmented skin lesions (PSLs) are possible. There are only seven
different kinds of PSLs included in this study. There are another nine classes of PSLs that
will be included in the future to check the performance of the proposed TL-based model. In
addition, it is well known that every DL-based technique needs a lot of data to effectively
train the model. On the other hand, there are not enough images utilized in the study to
train the suggested model.

In this study, we improved the ShuffleNet model with a channel attention (CA) mech-
anism that achieved acceptable accuracy when compared with other recognition models.
Although we performed well in terms of the model’s complexity and recognition speed, its
accuracy might still use some work. One of the things we discovered was that the size of
the dataset collection we utilized was still insufficient. Furthermore, the nine-class data of
PSLs is not examined by our approach. Regarding the first problem, there are not enough
datasets and research papers on the recognition of multiple classes of PSLs. Unbalanced
sample distribution is a problem that affects all datasets. However, we have performed
a data augmentation technique to balance it. Still, we need a balanced dataset. With the
available dataset, nothing can really be done to change this scenario. A future study may
concentrate on evaluating our suggested model with bigger and more representative PSLs.
Regarding the second concern, it should be noted that when optimizing ShuffleNet, we
considered the fact that enhancing the analysis of timing data will certainly increase the
amount of calculation needed for the model, undermining our desire for it to be lightweight.
Other possible research areas include increasing the dataset’s size and applying lightweight
models to PSLs data analysis. ShuffleNet-Light is a thin neural network, so further research
based on tiny devices, such as tablets and handheld devices with GPU processors, may be
taken into consideration to investigate the viability of developing miniature engagement
detection devices.

In addition, a ShuffleNet-Light model based on a pretrained technique is proposed in
this paper, which has become a dominant idea in recent years. The development model
is computationally efficient and effective for deep feature classification of multiclass PSL
lesions. Recently, a graph-based approach [48] is also utilized to extract representative
image features. However, it is necessary to compare this model with a graph-based
technique to see the comparisons in terms of accuracy and computational efficiency. This
step will be addressed in the future.
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7. Conclusions

This study suggests an enhanced TL-based pretrained model based on the ShuffleNet
architecture. To reduce computational complexity, we adopted the “ShuffleNet v2” model.
The model’s activation function was subsequently enhanced when we included an attention
mechanism utilizing SE blocks. Various pre-trained CNN models were chosen to assess and
contrast the performances. Accuracy, F1-score, MCC, FLOPs, and speed were utilized to
evaluate these models’ performances. According to the outcomes of our test, our improved
ShuffleNet-Light model performed the best. When compared to other published models
or methodologies utilizing the same dataset, our model had the greatest accuracy. The
improved ShuffleNet-Light model is suited for mobile platforms since it is a lightweight
framework. Conventional neural networks are still used in the automatic diagnosis of
pigmented skin diseases, despite lightweight networks’ widespread use in other indus-
tries. In this research, a novel architecture (ShuffleNet-Light) has been suggested for the
categorization of seven classes of PSLs. Several state-of-the-art CNN-based TL models
are tested in our studies. Results reveal that ShuffleNet obtains the maximum accuracy,
which reached 99.01 percent. When it comes to complexity, Inception-v3 performs the best.
The ShuffleNet-Light is better suited to our task when weighing complexity and accuracy.
As a result, we incorporate ShuffleNet into our network design. Experimental findings
show that, when compared to the baseline, our proposed model has better discrimination
capability and classification accuracy in multiclass recognition of PSLs.
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LDA Linear Discriminant Analysis
CNN Convolutional Neural Network
TL Transfer Learning
ML Machine Learning
SVM support vector machine
KNN k-nearest neighbor
NN Neural Network
ResNet Residual Network
DCNN Deep convolutional neural network
FixCaps Improved Capsule network
LSTM Long short-term memory
ACC Accuracy
SE Sensitivity
AUC area under the receiver operating characteristic curve
MCC Matthew’s correlation coefficient
SP Specificity
PR Precision
RC Recall
M millions
SGD Stochastic gradient descent
RMSprop Root mean square propagation
Adagrad Adaptive gradient algorithm
Adadelta An extension of Adagrad
Adam Adaptive moment estimation
AdaMax A variant of Adam
Nadam Nesterov-accelerated adaptive moment estimation
MS Milliseconds
CPU Central processing unit
GPU Graphical processing unit
TPU Tensor Processing units
CA Channel-wise attention
FLOPs Floating-point operations
AKIEC Actinic keratoses
BCC Basal cell carcinoma
BKL Benign keratosis
DF Dermatofibroma
NV Melanocytic Nevi
MEL Melanoma
VASC Vascular Lesion
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