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Abstract: Machine Learning (ML) is an algorithm based on big data, which learns patterns from
the previously observed data through classifying, predicting, and optimizing to accomplish specific
tasks. In recent years, there has been rapid development in the field of ML in medicine, including
lung imaging analysis, intensive medical monitoring, mechanical ventilation, and there is need for
intubation etiology prediction evaluation, pulmonary function evaluation and prediction, obstructive
sleep apnea, such as biological information monitoring and so on. ML can have good performance
and is a great potential tool, especially in the imaging diagnosis of interstitial lung disease. Idiopathic
pulmonary fibrosis (IPF) is a major problem in the treatment of respiratory diseases, due to the
abnormal proliferation of fibroblasts, leading to lung tissue destruction. The diagnosis mainly
depends on the early detection of imaging and early treatment, which can effectively prolong the
life of patients. If the computer can be used to assist the examination results related to the effects of
fibrosis, a timely diagnosis of such diseases will be of great value to both doctors and patients. We also
previously proposed a machine learning algorithm model that can play a good clinical guiding role
in early imaging prediction of idiopathic pulmonary fibrosis. At present, AI and machine learning
have great potential and ability to transform many aspects of respiratory medicine and are the focus
and hotspot of research. AI needs to become an invisible, seamless, and impartial auxiliary tool to
help patients and doctors make better decisions in an efficient, effective, and acceptable way. The
purpose of this paper is to review the current application of machine learning in various aspects of
respiratory diseases, with the hope to provide some help and guidance for clinicians when applying
algorithm models.
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1. Introduction

Machine learning (ML) is a subfield of artificial Intelligence (AI) and is based on a
big-data-based algorithm that classifies, predicts, and optimizes according to previously
observed data, using data to identify trends and complete specified tasks. ML contains
two types of learning: supervised learning and unsupervised learning, and the range
of techniques has gradually developed from simple linear models for complex neural
networks with a large number of parameters. Multiple layers of “neurons” make up
artificial neural networks (ANNs), which are based on the human brain and continuously
process input data until they reach the output layer. Deep learning (DL), also known as
convolutional neural networks (CNNs), is a recently developed variant of ANN that outputs
data in a hierarchical manner, with successive layers evolving in between, processing
incoming data in a fashion that includes both abstract high-level qualities, such as distinct
objects, and simple low-level features, such as linearity [1].
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A paradigm change in artificial intelligence is present along with CNN. In the early
stages of AI research, the aim was to incorporate supervised learning into rule-based “expert
systems” that could classify chest radiograph images as “normal” or “abnormal”. CNNs
can more quickly distinguish between data availability and accuracy from large training
datasets, for example, as the extensive usage of picture archiving and communication
systems and electronic health records (EHRs). As an auxiliary tool for clinicians, machine
learning has developed rapidly in medicine, especially in the application of respiratory
diseases. Pulmonary imaging analysis can help distinguish normal lung tissue from ground
glass opacities and honeycomb-like lung tissue changes, and assist in the differentiation
of benign and malignant pulmonary nodules. Machine learning can assist in assessing
indications for mechanical ventilation and the timing of weaning. In chronic respiratory
diseases, it can assist in the assessment of pulmonary function to predict prognosis and
treatment effect. In terms of respiratory biological information monitoring, it can help to
monitor the early diagnosis of obstructive sleep apnea syndrome and reduce the occurrence
of complications.

Early lung imaging of idiopathic pulmonary fibrosis (IPF) lacks evident specificity;
thus, the accuracy of the diagnosis depends on the appropriate high-precision radiological
imaging technology and is also constrained by the experience and expertise of radiolo-
gists and doctors. IPF is a chronic progressive inflammatory disease caused by a variety
of reasons, with diffuse pulmonary parenchyma, alveolar inflammation, and interstitial
fibrosis as the basic pathological lesions. In particular, the main clinical diagnostic methods
of IPF include pulmonary imaging examination, lung biopsy, and pulmonary function
test [2–4]. If the computer can help with the findings of an examination for fibrosis, it will
aid in the early detection of such diseases, which is very beneficial to both patients and
medical professionals.

Clinically, the situation of chest X-ray alone is complex, and it is difficult to effectively
diagnose fibrotic lesions. High-resolution CT (HRCT) is usually characterized by “non-
specific interstitial pneumonia”, which shows honeycomb-like or stretch bronchiectasis or
bronchiectasis in the bilateral subpleural base. Peripheral opaque ground-glass changes
were most prominent in small nodules in the lower lobes. However, these are atypical
lesions, which need to be differentiated from a variety of clinical disease-related factors, to
further exclude autoimmune or drug factors, and exclude diseases other than interstitial
pneumonia. In the past, based on artificial intelligence, we aimed to improve the diagnostic
efficiency of patients with pulmonary fibrosis in a noninvasive way, and constructed a
prediction model for pulmonary fibrosis, which achieved good clinical guidance.

At present, AI and ML have great potential and ability to change many aspects of
respiratory medicine, which are the focus and hotspot of research. This article reviews the
current application of machine learning in various aspects of respiratory diseases, hoping
to provide some help and guidance for clinicians when applying algorithm models.

2. Application of Artificial Intelligence in the Respiratory System
2.1. Imaging Analysis of Pulmonary Nodules

Imaging analysis plays an integral role in the diagnosis and treatment of pulmonary
diseases. DL and CNN are mainly used in medical imaging and have achieved promising
results in lung nodule detection, as well as excellent performance in segmentation and
classification of pulmonary nodules [5]. According to Siegel et al. [6], the 5-year survival
rate is exceedingly dismal, and 55% of lung cancer patients have distant metastases at the
time of initial diagnosis. Therefore, accurate classification and diagnosis of pulmonary
nodules are essential to reduce the morbidity and mortality of early lung cancer. During
image processing, CNN segments the image and isolates the analyzed object from the
surrounding environment for analysis to evaluate the nodule size as a predictor of benign
or malignant tumor. The volume method evaluates the sensitivity of nodule growth by
reproducing and 3D-analyzing the size detection of nodules, and it is now regarded as the
best technique for determining nodule size and growth [7].
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Since 1980, several attempts have been made to develop computer-aided detection
(CAD) algorithms for nodule segmentation. In the early 2000s, CAD for the identification of
lung nodules began. Nodule segmentation, feature extraction, and classification of lesions
into nodules and non-nodules are all aspects of conventional methods such as support
vector machine (SVM). However, the traditional algorithm has a complex process and relies
more on manual input, which limits the performance of CAD system to a certain extent [8].
However, DL algorithms do not need to rely on complex human dominant factors and
may eliminate the innate barriers in traditional CAD systems. In 2015, Hua et al. [9] first
published the detection results of lung nodules with a sensitivity of 73% and a specificity of
80% using DL algorithm on CT. Subsequently, a number of studies have shown that CAD
and DL are superior to the traditional CAD algorithm. The sensitivity of nodule detection
reached 85.4% [10]. In a study in 2018, LUNA16 and Ali Tanchi databases developed
for detecting pulmonary nodules had a sensitivity of 81.7% and 85.1%, respectively [11].
The goal of CAD is to have low false positives while having high sensitivity. According
to certain research, the sensitivity of nodule detection can reach 95%, but there are also
various false positive rates [11]. In order to categorize nodules in 2019, Teramoto et al. [12]
employed conventional CT in conjunction with early and delayed phase PET/CT. The
findings revealed that 94.4% of malignant nodules were correctly detected. When compared
to CT images alone and CT images plus early PET images, the accuracy of CT plus two-
phase PET images in detecting benign nodules was greater by 11.1% and 44.4%, respectively.
In a study by Hwang et al. [13], an algorithm that was trained on a dataset of 54,221 normal
and 35,613 abnormal chest radiographs was able to differentiate between normal and
tumor, active tuberculosis, pneumothorax, and pneumonia. This proved the superiority of
the DL algorithm. The median area under the curve (AUC) for image classification and
lesion identification was 0.979 and 0.972, respectively. When compared to several thoracic
radiologists, the proposed algorithm performed noticeably better.

The prospective prediction of lung malignancy has been extensively fused and val-
idated by radiomics and DL. DL models have been used to stratify patients, based on
the likelihood of local and distant recurrence, to automate the segmentation of organs at
risk in lung cancer radiation and identify individuals who would benefit from molecular
targeted therapy and immunotherapy. The DL algorithm improves the performance under
the influence of radiomics, and it is significantly better than the prediction based on clinical
stage alone in the prospective cohort prognostic stratification test. This could help identify
patients at higher risk of lung malignancy who could benefit from intensive treatment
and/or more frequent follow-up after treatment [14].

2.2. Application of Racial Intelligence in Respiratory Monitoring in Critical Care Medicine

Mechanical ventilation is an important area of intensive care units (ICUs). It is a
lifesaving tool that provides respiratory support to patients with respiratory failure in
the ICU, and it is the focus of research in ML. Inappropriate mechanical ventilation may
worsen lung injury, prolong the duration of mechanical ventilation, increase the risk of
infection, and increase mortality. By collecting clinical parameters and laboratory results of
critically ill patients, ML helps clinicians to predict the necessity of intubation within 24 h
of admission to critically ill patients [15].

Hagan et al. [16] developed a personalized clinical prediction tool that can predict the
respiratory support alert one hour in advance, increase the precision of clinical judgment,
and reduce the incidence of inappropriate mechanical ventilation. In the study of patients
receiving mechanical ventilation in ICU, based on the observation of an MIMIC study [17],
whether mechanical ventilation patients need prolonged mechanical ventilation and further
tracheotomy were predicted, with AUC of 0.82 and 0.83, respectively. The model may
improve the prognosis of mechanical ventilation patients by performing tracheotomy as
early as possible.

Prediction of infectious etiology is also an important direction of ML research. Sepsis
and septic shock in severe infection are also one of the major life-threatening problems in
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intensive care. In many stages of sepsis, including early detection, prognostic assessment,
mortality prediction, and clinical management, machine learning methods can be applied.
Every hour of delay increases patient mortality, making early care in sepsis crucial. Initial
sepsis prediction systems relied heavily on empirical clinical decision rules (CDRS), often
using vital signs collected at the bedside. In 2018, Nemati et al. [18] developed an artificial
intelligence sepsis expert (AISE) based on more than 27,000 and 42,000 intensive care unit
patients from two hospitals. By removing data from electronic medical records and time
series of high-resolution vital indicators, EHR data were combined with high-resolution
blood pressure and heart rate measurements. For 12-h, 8-h, 6-h, and 4-h prediction of
sepsis, the AI sepsis expert achieved an AUC in the range of 0.83–0.85. It was 0.85 at 4 h
and 0.83 at 12 h before sepsis met the diagnostic criteria. In 2020, Akram et al. [19] retrieved
five physiological markers from bedside monitors every minute in order to forecast the
incidence of sepsis using a minimum collection of real-time physiological data. SVM
classifiers categorize these data streams, which comprise heart rate, respiration rate, and
blood pressure (systolic, diastolic, and mean blood pressure). With an average detection
accuracy of 83.0% and an AUROC of 0.781, the model was able to predict the incidence of
sepsis with high accuracy.

Since 2020, COVID-19 has spread around the world. Infected patients have developed
severe respiratory symptoms, and may develop a variety of complications such as severe
acute respiratory syndrome, sepsis, septic shock, and multiple organ failure. Effective
methods to save costs and time are needed to reduce the burden of disease. In the search for
potential treatments for COVID-19 among all available drugs, a study combined systems
biology and artificial intelligence-based approaches. By using the GUILDify v2.0 Web
server as an alternative approach, the effects of pirfenidone and melatonin on SARS-CoV-2
infection were confirmed. It also predicts the potential therapeutic effect of combination
drugs on respiratory-related diseases [20].

Other applications of ML in the field of critical care medicine are also developing
rapidly [21]. The incidence of postoperative pulmonary complications is high. In a study
on high-risk chest patients, two machine learning models were produced through the
identification, analysis, and fusion of respiratory failure risk factors. While the second
model’s high sensitivity made it acceptable for clinical decision-making, the first model’s
high accuracy and specificity made it suitable for performance evaluation [22]. In another
study predicting pulmonary complications after gastrointestinal surgery [23], the ML
algorithm was applied; the logistic regression model showed an AUC of 0.808, and the Gbm
model showed an AUC of 0.814, which provided targeted support for clinical treatment.

There are also some machine learning models based on ready-made clinical data that
can accurately and quickly identify ARDS phenotypes at the bedside [24]. For patients with
initial blood parameters to further distinguish venous embolism from elevated D-dimer,
machine learning models can improve the prediction rate of acute pulmonary embolism,
help to narrow the indications of enhanced CT [25], and gain more rescue time.

2.3. Artificial Intelligence in Lung Function Assessment and Prediction of Chronic
Respiratory Diseases

Chronic airway diseases mainly refer to asthma and chronic obstructive pulmonary
disease, and the incidence and economic burden of developing countries are among the
highest in the world [26]. It is characterized by ongoing inflammation, airway remod-
eling, obstruction, and recurrence, which significantly lowers quality of life and raises
the possibility of hospitalization and death. For accurate prevention and individualized
therapy, asthma is a diverse illness with numerous phenotypes and genotypes that must
be appropriately differentiated. In recent years, various ML algorithms have employed
genetic data in conjunction with clinical information, such as laboratory test results, to
identify asthma phenotypes [27]. Spirometry and bronchial provocation tests, as well as
eosinophil count analysis and fractional exhaled nitric oxide measurement, are employed
in clinical practice to evaluate airflow restriction and hyperresponsiveness, allowing the
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identification of certain asthma phenotypes [28]. To identify asthma phenotypes realistically
and precisely, additional research is still required.

A range of AI and ML methodologies have been applied to create affordable, secure,
and efficient ways for the diagnosis of COPD. For instance, an “expert system” was built,
employing the stages of questionnaire creation, network code development, pilot verifica-
tion by expert panels, and clinical verification as an artificial intelligence diagnostic tool.
The demographic, symptom, environment, and diagnostic test information was included
in the questionnaire. This “expert system” obtained an overall accuracy of 97.5% in 241
patients during the clinical validation phase [29]. Subsequently, similar studies were con-
ducted to construct artificial-intelligence-based software for the diagnosis of COPD from
the clinical information of 1430 subjects [30]. According to the study, the developed soft-
ware’s accuracy in diagnosing 50 COPD patients could reach 82%, which was much better
than pulmonologists’ diagnostic performance (44.6 ± 8.7%). As a result, AI methods can
significantly help clinicians when deciding how to diagnose COPD patients. ML was also
used to mine and analyze transcriptional data extracted from human bronchial epithelial
cells, reducing the reliance on lung function testing for early diagnosis of COPD. This led
to the identification of aberrant expression of 15 genes in the disease, 10 of which were not
previously reported as COPD biomarkers. In a recent study, five ML classifiers were used to
separate healthy participants and COPD patients using 39 breath sound parameters, three
lung function features, and data from 30 COPD patients and 25 control subjects. Diagnostic
sensitivity, specificity, and accuracy of support vector machine and logistic regression were
about 100% [31].

To investigate patterns related to respiratory outcomes in data gathered by remote
monitoring devices, machine learning (ML) offers a potent answer. The oxygen desaturation
index (ODI) and apnea–hypoxia index (AHI) were precisely calculated by an ANN (Nikko-
nen et al. [32]), utilizing only fingertip pulse oxygen saturation data as input. Using the
manual event score as the gold standard, the median absolute error was 0.78 events/hour
for AHI and 0.68 events/hour for ODI. Musavi et al. [33] created a DNN to label different
stages of sleep using publicly available accelerated electroencephalogram (EEG) datasets to
84% reachable levels. Based on waveform analysis, Gholami et al. [34] created a random
forest machine learning model with positive and negative predictive values of more than
90% to identify cyclic asynchrony. In 2020, Ma et al. [35], using an SVM-based strategy, used
these features to create a classification model. The resulting model was used to diagnose
OSAS. The system enables the collection of physiological data from a smartphone, data
processing in the cloud, and real-time delivery of diagnostic findings to the smartphone.
The results showed that the preliminary evaluation of the algorithm using real patient
data found that its sensitivity, accuracy, and specificity were, respectively, 87.6%, 90.2%,
and 94.1%.

Before a healthcare practitioner makes the initial diagnosis of possible apnea occur-
rences, several ML algorithms have successfully decreased the cost of diagnosis while
enabling storage of physiological data from an Internet-based sleep monitoring device. A
rising number of studies have shown that ML algorithms can successfully detect OSAS
based on actual clinical data and pre-existing data, and the monitoring system’s ability to
perform real-time diagnosis and remote monitoring makes it simple to use.

Notably, the AI program will also be able to use the currently developed features
in combination with clinical data, medical records, past medical history, and patient de-
mographic data to explore and predict the future role of OSA monitoring, which could
significantly reduce disability rates and healthcare costs.

3. Application of Artificial Intelligence in IPF

IPF is a chronic progressive destruction of the lung disease. The average survival time
is less than 5 years, and the early clinical manifestations of patients are not obvious, mainly
manifesting as shortness of breath after activity, dry cough, recurrent lower respiratory
tract infection, no obvious specificity, in the middle and late stage of progressive dyspnea,
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irreversible respiratory failure, and eventually death. The pulmonary function of the
patients is delayed, usually with restrictive ventilation dysfunction, especially the reduction
of forced vital capacity, total lung capacity, functional residual capacity, and diffusion
capacity of the lungs for carbon monoxide (DLCO) [36]. Imaging plays a crucial role in the
diagnosis of IFP. Chest X-ray is usually used as the initial means of imaging diagnosis of
interstitial lung disease, but in some underdeveloped areas, chest X-ray is an indispensable
part of imaging evaluation when critical patients are examined at the bedside. As a more
sensitive imaging technique, high-resolution computed tomography (HRCT) is considered
to be the core diagnostic tool for interstitial lung disease [37]. Abnormal lesions, such as
irregular linear shadows, honeycombing, and reticular changes, observed on continuous
HRCT can help radiologists and clinicians to identify specific interstitial lung disease
lesions and assess the progression of the disease. However, at present, the assessment of
the progression of interstitial lung disease mostly relies on the doctor’s visual analysis,
which has certain subjective factors. Due to the limitation of clinical level, its accuracy and
sensitivity are low. The detection rate of bronchoscopic lung biopsy for interstitial lung
disease is also extremely low, and surgical lung biopsy is undoubtedly the gold standard
for diagnosis. However, surgical lung biopsy has certain risks. For young patients with
good lung function tolerance, it may have a certain guiding effect on their future treatment
and prognosis. The risks of lung biopsy are so great that it may even increase the risk
of death.

Deep learning approaches are used to identify, categorize, and segment ILD pictures
on HRCT. At present, the most commonly used interstitial fibrosis mode CNN segmen-
tation is U-Net [38]. Park et al. [39] analyzed 647 patients with lung segmentation by
HRCT in ILD, and the accuracy reached 98%. Data augmentation is used in image pro-
cessing to increase the amount of training data available. Common operations include
image flipping, rotation, cropping, and scaling. Combined with data enhancement, the
accuracy of fibrosis morphological classification can be improved to 78–91%. Using the
2011 ATS/ERS/JRS/ALAT criteria and the 2018 Fleischner Society criteria [36,40], Walsh
et al. [41] developed a model to classify 1307 HRCT images of pulmonary fibrosis. Use of
the UIP-HRCT model for pathological classification of fibrosis tissue can avoid the need
for lung biopsy to a certain extent. Two studies [41,42] showed good performance in
the diagnosis of IPF, which was close to expert level, and the diagnostic accuracy of the
research tool was 78.9%, but there is also a high risk of bias due to the limited number of
retrospective studies. Therefore, the value of current artificial intelligence technologies for
the evaluation of ILD can only be reliably assessed by well-designed prospective controlled
trials, and better evaluation algorithms and tools need to be further developed. Sikandar
et al. [43] developed and trained the Forest model to evaluate 2424 subjects to predict the
severity of pulmonary fibrosis patients, and the model achieved sensitivity and accuracy
of 0.71 and 0.64, respectively. This model will help clinicians to diagnose IPF patients and
assess the severity of the disease at an early stage, and make timely positive measures
related to the treatment of IPF.

It has been demonstrated that certain CT-sensitive characteristics, such as reticulation
and honeycomb, can accurately predict death in IPF patients. However, as prolonged
progressive fibrotic ILD death is frequently unachievable End points, such as IPF, have
the potential to be used as a substitute for therapy evaluation by changing the extent of
the disease on high-resolution CT. In response, CALIPER has proven useful for tracking
and forecasting disease [44–46]. Emphysema estimations based on threshold algorithms in
a recent CALIPER-derived CT study [47] were considerably impacted by radiation dose,
whereas the impact of dose reduction on texture-based algorithms was less thoroughly
studied. There was a substantial association between CALIPER-derived CT characteristics
and lung function results (FVC and FEV1%) in patients receiving treatment for pulmonary
fibrosis, according to this study, which was the first to assess the impact of CT dosage
adjustments on CALIPER performance. These results are in line with those of earlier
retrospective investigations, but bigger prospective studies with longer follow-up times
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would undoubtedly be required to confirm the present results. Similar to PFT, CALIPER
may be impacted by variations in lung volume; hence, it is crucial to have an experienced
radiologist double-check the data. The use of conventional machine learning quantification
software may be seen as a limitation given the increasing availability and complexity of
deep learning algorithms; however, the datasets necessary to train such algorithms would
require hundreds of thousands of cases, a difficult threshold to reach given the relatively
low prevalence of this disease in the general population. When evaluating pulmonary
fibrosis in IPF patients taking antifibrosis therapy, CALIPER parameters corresponded well
with lung function, and CT dosage decrease had no effect on the software’s performance.
When evaluating pulmonary fibrosis in treated patients, CALIPER can be a potent and
objective addition to traditional lung function proxies in the absence of confounding factors
affecting lung function.

We also proposed a prediction model for IPF [48]. By combining public datasets with
clinical data, we were able to forecast X-ray models using the divide and conquer technique
(Figure 1). We offered the upstream Attention-U-Net segmentation and downstream
Inception-Res Net evaluation models, and their precision was in line with that of clinical
specialists. In addition, the data processing speed was faster than that of clinical experts,
which can significantly improve the diagnosis rate of diseases in areas where medicine
is underdeveloped or there is a lack of experts. Based on the framework of upstream
segmentation and downstream classification task, the complexity and final performance
of the pulmonary fibrosis CT prediction model still need to be optimized (Figure 2). Our
model classifies and segments the patient’s lung imaging images, and then quantifies the
imaging images, which has certain generalization and application value, and objectively
evaluates the degree of pulmonary fibrosis to achieve the best effect.
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Although our model demonstrates predictive ability to a certain extent, machines can
never completely replace humans. Previous studies also showed that neural networks have
errors in distinguishing honeycomb-like changes from emphysema, and some imbalance
training data can also lead to errors in imaging judgment of interstitial lung disease [39,49].
Deep learning requires training on a large number of samples, and training on larger
datasets can help reduce misinterpretation of normal tissue as abnormal. Multicenter
collaboration and publicly available image sets may help increase the data available for
training. For further medical annotation, exhaustive and time-consuming input from
experts is also required [50]. Although our model achieved good results in Doron training,
it still needs to be further clinically validated with a large number of datasets to achieve
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objective and quantitative imaging evaluation of interstitial lung disease, and become a
powerful tool for respiratory physicians and radiologists.
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4. Challenges and Prospects

Since 2015, medical artificial intelligence research has been significantly accelerated,
and respiratory medicine is a well-established profession. CNNs are becoming important
resources for creating imaging biomarkers that can be used for diagnosis, prognosis, and
treatment response prediction, and for the process of development and incorporation of
machine learning models in the near future into regular clinical practice. The potential of
CNNs beyond imaging in the field of lung function and physiological biosignal prediction
remains enormous. However, a major limitation of this computational approach is the lack
of a sufficiently large medical training dataset. Some application results still need to rely on
clinical practice to confirm that medical institutions lack the ability to integrate information
technology. To overcome these situations, large-scale digital information cooperation is
needed, so that applications relying on large datasets can function more effectively with
lower packet loss and higher packet retransmission rates.

ML can effectively and accurately improve the ability of diagnosis and treatment in
pulmonary imaging analysis, pulmonary monitoring in critical care medicine, chronic res-
piratory diseases, and physiological and biological signals. The common goal is to improve
the prognosis of patients and improve the quality of life. At present, interdisciplinary
cooperation is a hotspot in the field of medical research, and the cooperative relationship
between various medical sciences is crucial to the design of ML algorithms, because it will
eventually bring new progress and changes to intelligent medical care [37,51]. We may
see the potential for AI advice and assistance in the treatment of patients with complex
diseases, such as those who have a number of ongoing health issues, or in the choice
to have major surgery for critically ill, complex patients. Instead of whether computer
algorithms can execute tasks better than people, how people will embrace and use new AI
skills in the practice of medicine is the real concern. In the process of implementing ML,
we need to conduct high-quality machine algorithm research on the premise of ensuring
patient information security and efficacy, and explore the potential of ML in medicine to
better work for the progress of the medical field. To assist patients and doctors in making
better decisions in an effective, efficient, and acceptable manner, AI must develop into an
undetectable, seamless, and impartial adjunct.
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5. Conclusions

In conclusion, ML and AI have the potential to revolutionize many facets of respiratory
care, particularly in the area of medical imaging, and they are already having a significant
impact on the identification and classification of interstitial lung disorders. It is hoped that
this brief review of artificial intelligence and machine learning in this article will be helpful
to clinicians.
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