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Abstract: Lung cancer (LC) stands as the foremost cause of cancer-related fatality rates worldwide.
Early diagnosis significantly enhances patient survival rate. Nowadays, low-dose computed to-
mography (LDCT) is widely employed on the chest as a tool for large-scale lung cancer screening.
Nonetheless, a large amount of chest radiographs creates an onerous burden for radiologists. Some
computer-aided diagnostic (CAD) tools can provide insight to the use of medical images for diagnosis
and can augment diagnostic speed. However, due to the variation in the parameter settings across
different patients, substantial discrepancies in image voxels persist. We found that different voxel
sizes can create a compromise between model generalization and diagnostic efficacy. This study
investigates the performance disparities of diagnostic models trained on original images and LDCT
images reconstructed to different voxel sizes while making isotropic. We examined the ability of our
method to differentiate between benign and malignant nodules. Using 11 features, a support vector
machine (SVM) was trained on LDCT images using an isotropic voxel with a side length of 1.5 mm
for 225 patients in-house. The result yields a favorable model performance with an accuracy of 0.9596
and an area under the receiver operating characteristic curve (ROC/AUC) of 0.9855. In addition, to
furnish CAD tools for clinical application, future research including LDCT images from multi-centers
is encouraged.

Keywords: lung cancer; isotropic voxel reconstruction; lung nodule classification; radiomics;
computer-aided diagnosis

1. Introduction

According to the 2023 World Cancer Statistics [1], although the overall mortality rate of
lung cancer (LC) has experienced a decline in 2023 compared to previous years, it remains
the second most prevalent cancer globally in terms of both overall cancer-related deaths
and new cases. Approximately 230,000 individuals are newly diagnosed with LC each year
globally, and among them about 120,000 suffer malignancy. Clinically, LC can be broadly
classified into non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC).
NSCLC is the most prevalent, accounting for approximately 85% of LC cases [2], and can
further be categorized into adenocarcinoma and squamous-cell carcinoma subtypes [3]. The
early detection and treatment of NSCLC typically leads to better prognoses and increases
survival rates by five years P [3].

Currently, low-dose computed tomography (LDCT) is commonly used in early LC
screening, enabling rapid and large-scale diagnoses for individuals with high risk factors [4].
However, these screenings generate a large number of images that require interpretation
by radiologists. This not only results in a substantial burden on human resources but also
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introduces variations in experience and subjective awareness among different radiologists,
leading to a lack of unified diagnostic criteria [5]. Within LDCT images, pulmonary nodules
(PNs) represent areas of suspected lesions and can be preliminarily categorized into three
types: solid nodules (SN), part-solid nodules (PSN), and ground glass nodules (GGN) [6].
Typically, radiologists rely on visible characteristics such as the PN’s size, edge shape, and
nodule pattern for diagnosis [7], similar to Lung-RADS™ [8]. However, this approach often
yields a high rate of false positives [9], which ultimately creates the need for a pathological
biopsy for a final confirmation. This process often poses unnecessary and invasive risks to
patients [10].

The use of machine learning (ML) and deep learning (DL) for pulmonary nodule
detection and diagnosis from chest CT images has been studied for decades. In particular,
radiomics [11] is a feature-extraction technique, that is usually combined with classifiers to
establish models, which can provide physicians with an alternative opinion beyond visible
characteristics. A previous study indicates that such models significantly enhance reading
speed and diagnostic precision for physicians [12]. Numerous studies that focused on PN
detection and classification found that these models can achieve promising results [13–23].
For example, Kumar et al. [16] proposed an approach utilizing autoencoders to extract fea-
tures from raw images and employ a decision tree for binary classification, which achieved
an accuracy of 0.7501. Shen et al. [22] introduced a method using multi-scale convolu-
tional neural networks (MCNN) to distinguish a PN’s malignancy, capturing differently
sized patches of each PN and simultaneously using convolutional neural networks (CNN)
for discrimination, which achieved an accuracy of 0.8612 on the LIDC-IDRI dataset [5].
Mehta et al. [19] (2021) presented a model that utilizes 3D CNNs in combination with volu-
metric radiomics and imaging biomarkers to diagnose a PN’s malignancy. By incorporating
3D PN images, radiomics, and LIDC-IDRI biomarkers, they achieved an ROC/AUC of
0.8659. In 2021, Lu et al. [18] introduced a method that integrated the Marine Predators
Algorithm with CNN for the diagnosis of PNs. This approach was impressive, achieving an
accuracy of 0.934 and a sensitivity of 0.984. Halder et al. [24] attained the best PN diagnostic
model performance using the LIDC-IDRI dataset in 2021. They employed morphology and
two CNN networks and achieved an accuracy of 0.9610 and an AUC of 0.9936.

However, the above-mentioned studies face some common challenges. First, most
patients in the LIDC-IDRI dataset lack pathological biopsy results on nodule malignancy
diagnosis, which are considered to be the gold standard. The LIDC-IDRI data provides
suspicion scores of nodule malignancy, ranging from 1 to 5, which were made by radi-
ologists. Most previous studies classify nodules with scores of 1 and 2 as benign and
those with scores of 4 and 5 as malignant, however, the actual malignancy of PNs remains
uncertain. Second, previous studies typically used raw LDCT images as inputs to their
models. They ignored the fact that images undergoing LDCT imaging may have had differ-
ent modality settings such as pixel spacing (PS) and slice thickness (SK). This ignorance
raises the question of whether the uniformity of a voxel size would affect model diagnostic
performance or not. For instance, Kim et al. [25] (2019) reviewed factors that could impact
the quantification of CT image features, highlighting the significant influence of PS and
SK on feature quantification. Most features demonstrate different impacts before and after
normalization of PS and SK. Lu et al. [26] (2017) improved model diagnostic performance
by reconstructing positron emission tomography (PET) images into uniform voxel sizes.
Their study offers valuable insights by investigating the impacts of different voxel sizes on
PET image quantification and diagnosis. The above-mentioned studies focused on a tradi-
tional machine learning method, therefore they could examine feature impact accordingly.
Recent studies often used neural networks (NN) and deep learning [27], which is outside
of this study’s scope. This study design was motivated by the above-mentioned problems;
therefore, we did not consider using NN and DL. Furthermore, DL models demand large
datasets for training, which is not suitable the small dataset used in this study.
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2. Materials and Methods
2.1. Dataset in House and Annotation

LDCT image data are collected from Kaohsiung Veterans General Hospital (KVGH),
including 160 malignant and 81 benign PNs from a total of 241 patients. The data collection
process has been approved by the Institutional Review Board (IRB) of KVGH with the IRB
number VGHKS18-CT5-09. The malignancy status of each PN is defined by pathological
biopsy and the boundary of the PN is annotated by an experienced radiological technician.
LifeX (Version 6.2.0, C. Nioche, Inserm, Paris, France) is open-source software that was first
published in 2018 [28]. Its application involves reading DICOM images and synchronizing
the display and annotation of medical images in the coronal, sagittal, and axial slices. It also
concurrently supports users in the extraction of radiomics features within regions of interest
(ROIs). We use LifeX as an annotation tool, which allows us to output nearly raw raster
data (NRRD) files for image feature extraction. However, due to technical problems with
LifeX, we had ROI annotation errors in 3 benign and 13 malignant patients. Therefore, these
16 patients’ data were excluded for the following process. The final images (for following
training and test usage) have a size of either 512 × 512 or 768 × 768, depending on the
raw data. Notably, the radiomics features are extracted only in ROIs in the reconstructed
images, not directly from LDCT raw images. In these LDCT images, 73 patients were
scanned using equipment from TOSHIBA, 7 patients were scanned using equipment from
SIEMENS (Munich, Germany), 143 patients were scanned using equipment from GE
MEDICAL SYSTEMS (Barrington, IL, USA), and 2 patients were scanned using equipment
from Philips (Amsterdam, The Netherlands) for contrast imaging. Figure 1 illustrates PNs,
where benign and malignant nodules appear to be strikingly similar, rendering precise
diagnoses challenging. In this study, all nodule contours are manually delineated by an
experienced radiological technician.
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Figure 1. PNs Presentation. The red contours are manual delineations on nodules. (A) and (B) depict
benign PNs, while (C) and (D) show malignant PNs.

For ease of understanding, Figure 2 shows the flowchart of this study. The details of
every block in the flowchart are described in the following paragraphs.
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Figure 2. Experimental flowchart of this study.

2.2. Isotropic Voxel Normalization and Image Reconstruction

To explore the reproducibility and model performance of PN malignancy diagnoses
using the ML method, we normalized the PS and ST of all of the LDCT images using bicubic
interpolation. This reconstruction aims to achieve consistent spatial resolution across all
LDCT images, making them isotropic in three axes. Furthermore, to evaluate the influence
of different voxel sizes and spatial resolutions on the model and features, we reconstructed
all images to various voxel sizes, including images with side lengths of 0.5, 0.625, 0.75, 1,
1.25, 1.5, 1.75, and 2 mm. We utilized bicubic interpolation to achieve isotropic voxels.

2.3. Radiomics and Feature Selection

We employed radiomics to extract 2112 features from the PN regions of the recon-
structed images. Radiomics encompass various quantitative image feature extraction
methods, including first-order statistics, shape-based, and texture-based methods [11]. Not
all extracted features contribute significantly to PN malignancy diagnosis; therefore, feature
selection is necessary and crucial. Given that PN malignancy is often related to its size [10],
we intentionally excluded features with size information. Before feature dimension re-
duction, 14 features related to shape and size were manually excluded (see Table A1 in
Appendix A). Moreover, 123 features with identical feature values and no discriminability
were also manually excluded. The remaining 1975 features underwent further feature
dimension reduction; this process it outlined in the following paragraph.

The image analysis problem could induce a feature selection problem. In order to select
significant features for classification in our model, we employed various methods. Firstly,
to identify features with significant differences in mean and mode among benign and
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malignant PNs, we initially utilized the following two statistical methods: the independent
t-test [29] and the Wilcoxon rank-sum [30] test. Features without significant differences
were then excluded, with the goal of reducing the number of input features for the model.
To perform an independent t-test, the data must be normally distributed and have equal
variance. Meeting these criteria is crucial for using the independent t-test. Therefore, we
first examine normality tests [31] and Levene tests [32] to assess the equality of variances
and the type of distribution for both benign and malignant pulmonary nodule groups. If
the data met the criteria of a normal distribution and equal variance, we proceeded to
use an independent t-test for analysis, otherwise, we employed the Wilcoxon rank-sum
test. Features between two classes with p-values less than 10−20 are considered to be
significantly different, which means they have good and distinguishable features. Second,
we employed the well-known LASSO [33] algorithm. The LASSO algorithm effectively
reduces coefficients to zero for those features with less contribution to classification, thus
achieving feature selection. Third, we applied t-distributed stochastic neighbor embed-
ding (t-SNE) [34] for dimension reduction of selected feature combinations to visualize
the distribution of patients in a two-dimensional space. t-SNE, belonging to manifold
learning, achieves dimension reduction and meanwhile preserves the local structure of
data distribution. This t-SNE can be found for data visualization and dimension reduction
in recent publications. The reason that LASSO can be used in feature selection is explained
in Appendix B.

2.4. Support Vector Machine (SVM) and Hyperparameter Optimization

SVM is a classic classifier [35] known for its strong performance in various classification
tasks, particularly in dealing with small datasets. It exhibits a better generalization ability
compared to DL models when dealing with small dataset [36]. In our study, we compared
four combinations of feature selection: (1) all features without exclusion, (2) features with
a p-value less than 10−20, (3) features selected by LASSO, and (4) features selected by
the t-SNE algorithm. Before inputting all features into the SVM model, we performed a
Min-Max Normalization on all features to ensure that different features had comparable
numeric ranges. This is a basic feature-normalization process. In SVM, the choice of
kernel function, which determines the decision boundary, is crucial. We employed the
Gaussian Radial Basis Function (RBF) kernel function for our SVM model because most
feature distributions have a normal distribution after feature selection. In ML models,
hyperparameter optimization is highly correlated with final model performance. We used
Gaussian Bayesian optimization [37] to tune the hyperparameters of the SVM model to
achieve a better performance.

2.5. K-Fold Cross-Validation and Model Performance Evaluation

To measure the model performance, we manipulated data for training and tested it
as follows: We randomly sampled 80% of the benign and malignant data as training data,
with the remaining 20% serving as test data. This sampling and test process was repeated
4000 times. We then evaluated the model’s performance on different voxel sizes and feature
selection methods using various metrics including Balanced Accuracy, Weighted Sensitivity,
Weighted Precision, Weighted F-score, and Weighted AUC. Equations (1)–(5) represent the
formulas for these metrics. Finally, we conducted a 10-fold cross-validation to assess the
model performance and plot ROC curves.

Balanced Accuracy =
1
k

k

∑
i=0

TPi
(TPi + FNi)

(1)

Weighted Sensitivity =
∑k

i=0 wi × TPi

∑k
i=0 wi ∗ (TPi + FNi)

(2)
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Weighted Precision =
∑k

i=0 wi × TPi

∑k
i=0 wi ∗ (TPi + FPi)

(3)

Weighted F1 score =
∑k

i=0 wi × ( 2×TPi
2×TPi+FPi+FNi

)

∑k
i=0 wi

(4)

One− vs−All AUC =
∑k

i=0 wi ×AUCi

∑k
i=0 wi

(5)

3. Results

In Figure 3, we demonstrate the distribution of p-values for features extracted at
different voxel sizes reconstructed from the raw image data (LDCT). The value started
from 0.5, and 0.625 to 2 is the side length of the isotropic voxel in mm. The word ‘original’
means there is no reconstruction, it is raw LDCT data. The value started from 200, and
400 to 1600 is the number of features. We categorized p-values into four groups: less than
0.05, 1 × 10−10, 1 × 10−20, and 1 × 10−28. Interestingly, Figure 3 shows that the majority
of features have p-values in the range: [0.05, 1 × 10−10]. However, a p-value in this range
is not capable of distinguishing or classifying. Therefore, for the most part, features are
useless. We also found that features extracted from the original LDCT images without
uniform voxel sizes had the least useful features. Here the useful features are indicated
by the purple part of the circle in Figure 3 (p-value < 1 × 10−28). This indicates that voxel
normalization indeed affects feature extraction. Through this voxel normalization process
using image reconstruction, the extracted image features exhibit significant statistical
differences between benign and malignant nodules. This result confirms our hypothesis.
Notably, features extracted from reconstructed data normalized to a side length of 2 mm
performed poorly compared to other side lengths. The exact quantity of features plotted in
Figure 3 can be seen in Table 1.
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Table 1. The quantity of p-value of radiomics features distribution plotted in Figure 3.

Voxel Size 0.5 0.625 0.75 1 1.25 1.5 1.75 2 Original

p < 0.05 1617 1650 1657 1694 1690 1663 1661 1692 1680
p < 1 × 10−10 863 850 913 1016 1081 1100 1134 1135 959
p < 1 × 10−20 480 501 531 568 590 578 578 549 485
p < 1 × 10−28 166 168 175 227 187 198 206 91 67

In Table 2, we illustrate the number of features before (the baseline) and after feature
selection. In Figure 4, we demonstrate the model performance for comparison using
5 metrics illustrated in Equations (1)–(5). The results shows that the best feature selection
method is LASSO, which used only 11 features. Surprisingly, the second-best performance
was achieved by reducing the dimensionality of 11 LASSO-selected features to 2 ‘features’
(i.e., 2 directions in the feature space) using t-SNE, resulting in an outstanding performance.
The feature distribution of these 2 directions are shown in Figure 5.

Table 2. Number of features after feature selection and raw LDCT images.

Unfiltered Features Statistically Filtered Features LASSO t-SNE

Feature Number 2061 480 11 2
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Figure 6 depicts the performance of features extracted from different voxel sizes’
reconstructions. Here, we used LASSO to select features. From the figure, it is clear that
the model has better performances with voxel normalization with side lengths less than
2 mm. The best model was one with features extracted from LDCT images with a side
length of 1.5 mm.
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In Figure 7, we show ROCs using ten-fold cross-validations with radiomic features
selected by LASSO from image reconstruction with a side-length of 1.5 mm. The model
average AUC reached 0.982, indicating a stable diagnostic performance. This is clinically
acceptable for PN diagnoses. In Figure 5 we demonstrate the distribution of 2D feature
space, with two dimension directions. After dimensionality reduction, only 2 features were
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selected by t-SNE. From this distribution, it is clear that these 11 features can effectively
classify benign and malignant nodules.
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Finally, in Table 3 we compare different results with different voxel sizes. These re-
sults are the averaged values of various metrics in different voxel sizes of reconstruction
repeated over 4000 times. We also compare our results to previous state-of-the-art models.
Our best result outperforms most previous methods and is comparable to the best pre-
vious study [24]. Indeed, deep learning approaches need more time in training than the
traditional method.

Table 3. Comparison of test results averaged from 4000 times; 80% training and 20% test in partition.
The values in the first column denote different side lengths of voxels after image reconstruction.

Accuracy AUC Sensitivity Precision F1 Score

0.5 0.9409 0.9891 0.9514 0.9533 0.9509
0.625 0.9431 0.9887 0.9535 0.9551 0.9530
0.75 0.9350 0.9890 0.9481 0.9501 0.9473

1 0.9531 0.9890 0.9624 0.9640 0.9620
1.25 0.9467 0.9866 0.9532 0.9548 0.9530
1.5 0.9596 0.9855 0.9619 0.9633 0.9619

1.75 0.9371 0.9844 0.9452 0.9468 0.9449
2 0.9073 0.9747 0.9156 0.9197 0.9159

Original 0.9223 0.9731 0.9357 0.9381 0.9349
Halder et al., 2021 [24] 0.9610 0.9936 0.9685 - -
Mehta et al., 2021 [19] - 0.8659 - - -
Shen et al., 2017 [22] 0.8612 - - - -
Lu et al., 2021 [18] 0.934 0.984 - -

Table 4 presents the 11 radiomic features selected by the LASSO in this study. Notably,
7 of the 11 selected features are texture-related, demonstrating their important role in
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discriminating between benign and malignant PNs. Therefore, voxel normalization is
essential and has a profound impact on reproducibility.

Table 4. Description of the 11 Features Utilized by the Model.

Feature Description Types

original_gldm_SmallDependenceLowGrayLevelEmphasis Texture
log-sigma-2-0-mm-3D_glcm_DifferenceEntropy Texture

log-sigma-2-0-mm-3D_gldm_SmallDependenceEmphasis Texture
log-sigma-3-0-mm-3D_glszm_ZonePercentage Texture

lbp-2D_gldm_DependenceNonUniformityNormalized Texture
lbp-3D-m1_gldm_DependenceNonUniformityNormalized Texture
lbp-3D-m2_gldm_DependenceNonUniformityNormalized Texture

log-sigma-2-0-mm-3D_firstorder_Mean First order
lbp-3D-m1_firstorder_Skewness lbp-3D- First order

wavelet-LLH_firstorder_Mean First order
wavelet-LHL_firstorder_Mean First order

4. Discussion

Due to the diversity of patients in clinics and orders from physicians, radiographers
use various parameter settings to acquire LDCT images. If these parameter settings are
not consistent, it is difficult to compare them due to vacancy on baseline. Particularly, we
are referring to texture features; different pixel-size on images can cause different results,
such as features extracted from Gray Level Co-occurrence Matrix (GLCM), Gray Level Run
Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), and other texture features.
Many previous studies have indicated that texture features are crucial for distinguishing
the benign and malignant nature of PNs.

In this research, normalizing the voxel size from LDCT images to 1–1.5 mm yields
good model performance. Typically, CT has a spatial resolution ranging from 0.5 mm to
0.625 mm in the x-y axis; our collected data fall in the range of 0.6 mm to 0.8 mm. The
resolution on the z-axis depends on the temporal resolution. Most images on the z-axis
resolution fall in the range of 1 mm to 5 mm in our in-house dataset. We do not have data
in the z-axis measuring less than 1 mm. The image reconstruction must consider the spatial
and temporal resolution of the raw data; otherwise, it can lead to a partial volume effect and
subsequently impacts the model performance. Further, reconstructing images with a voxel
larger than 1.5 mm of side length will significantly decrease spatial resolution, making it
impossible to capture fine texture of PNs. Therefore, we recommend that future studies
consider voxel reconstruction within the range of 1–1.5 mm, based on a prerequisite that
data has higher spatial and temporal resolution than 1 mm in the x-y-z axis, i.e., ≤1 mm.

In 2023, Fischbach et al. [38] conducted a study on the diagnosis of nodules with
respect to slice thickness (SK). In [38], they mention that as the SK decreases, the image
noise decreases, and contrast increases. The authors tested SKs of 0.625 mm, 1.25 mm,
2.5 mm, 3.75 mm, 5 mm, 7.5 mm, and 10 mm. They found that a slice thickness of 0.625 mm
yielded the best image quality. However, the best diagnostic quality was achieved with
a slice thickness of 1.25 mm. Their finding aligns with our research findings, once again
demonstrating that voxel normalization to an appropriate range (1.25–1.5 mm) can yield
the best diagnostic benefits, while excessively small or large SK can lead to a decline in
diagnostic performance.

One advantage of our study compared to previous studies is that all of our patients
had pathological diagnoses to confirm the PN’s nature, i.e., benign or malignant. This
advantage is not present in large open datasets such as LIDC-IDRI. Research limitations
regarding this study are discussed below. This study mainly analyzed Asian ethnic groups,
and most malignant lesions are adenocarcinoma spectrum. Therefore, the predictive ability
for other pathological types of lung cancer may be lower. Particularly, this study mainly
distinguishes lung adenocarcinoma spectrum lesions from other benign lesions. Therefore,
we did not conduct any further analysis on the clinical management of these nodules.
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In this study, PN contours are manually drawn by experts. However, if the PN regions
could be automatically segmented on the LDCT images, together with the proposed system,
this could create a potential for in-clinic utilization. This will contribute to the futural
development of a comprehensive end-to-end diagnostic system. Many previous studies
are devoted to pulmonary nodule detection such as competitions using the LUNA2016
dataset [39]. LUNA2016 is a subset of LIDC-IDRI [5]. We also performed a study [40] on
nodule detection using the complete LIDC-IDRI dataset. In the future, we will combine
these two systems to form one comprehensive system.

In our study, a significant limitation arises from the relatively small dataset obtained
from a single center. The exclusive collection of patient imaging data with pathology
verification posed challenges in the data acquisition process. Furthermore, the need for
experienced personnel to manually delineate Regions of Interest (ROIs) for each case added
complexity to dataset acquisition. To overcome this limitation, our future efforts will focus
on the continuous collection of imaging data with pathology verification and uniform voxel
sizes from various centers. Our aim is to establish a comprehensive database tailored to the
Asian population, providing a substantial resource for subsequent researchers conducting
studies on PNs recognition.

5. Conclusions

This study used a ML method combined with radiomic features extracted from recon-
structed images with voxel normalization from LDCT. We mainly explored the impact of
voxel normalization to predict performance between benign and malignant pulmonary nod-
ules. Our study offers a recommendation: before using radiomics, the voxel normalization
is important and crucial to texture-related studies. The reconstruction must consider the
limitation on raw data temporal resolution. According to our finding, the best prediction of
nodule classification, benign or malignant, is achieved using an isotropic voxel with a side
length of 1.5 mm.
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Appendix A

Table A1. Description of the 14 manually excluded features.

Feature Description Types

original_shape_Elongation Shape-Based
original_shape_Flatness Shape-Based
original_shape_LeastAxisLength Shape-Based
original_shape_MajorAxisLength Shape-Based
original_shape_Maximum2DDiameterColumn Shape-Based
original_shape_Maximum2DDiameterRow Shape-Based
original_shape_Maximum2DDiameterSlice Shape-Based
original_shape_Maximum3DDiameter Shape-Based
original_shape_MeshVolume Shape-Based
original_shape_MinorAxisLength Shape-Based
original_shape_Sphericity Shape-Based
original_shape_SurfaceArea Shape-Based
original_shape_SurfaceVolumeRatio Shape-Based
original_shape_VoxelVolume Shape-Based

Appendix B

X and Y are known, where X is an n by p matrix; X ∈ Rn×p, and Y is a vector; Y ∈ Rn×1.
To solve a linear system problem defined by Y = Xβ, where unknown β ∈ Rp×1, using
the least square error one obtains the solution β̂ =

(
XTX

)−1XTY. Here β̂ is the least
square (LS) estimator. The problem of this regression is singular or near singular, since
the computation of LS estimator depends on

(
XTX

)−1. To solve this problem, a penalty

term can be added. We rewrite the estimator to be β̂ridge =
(
XTX + λIp

)−1XTY, where
Ip is an identity matrix with a rank p and λ > 0. Since λIp is non-singular, the singular
problem is solved. This is so-called ridge regression. β̂ridge is chosen to minimize the LS
error (Y− Xβ)T(Y− Xβ) + λβT β. The penalty coefficient λ forces the estimator β̂ridge to
be small in order to get an optimal solution, which is a similar form to minimize the LS
error (Y− Xβ)T(Y− Xβ). However, the over-fitting problem is relieved but not solved,
because the ridge regression is still using an L2 norm, i.e., βT β.

The over-fitting causes the L2 norm regression to fit well to the training data but not to
the test data. LASSO is a regression using L1 norm. It is necessary to minimize the error
(Y− Xβ)T(Y− Xβ) + λ|β|. This mechanism forces some elements in estimator β̂LASSO
to be zero, which are corresponding to large values. Therefore, LASSO is a method of
feature selection.
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