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Abstract: This review aims to analyze different strategies that make use of artificial intelligence
to enhance diagnosis, treatment planning, and monitoring in orthodontics. Orthodontics has seen
significant technological advancements with the introduction of digital equipment, including cone
beam computed tomography, intraoral scanners, and software coupled to these devices. The use
of deep learning in software has sped up image processing processes. Deep learning is an artificial
intelligence technology that trains computers to analyze data like the human brain does. Deep
learning models are capable of recognizing complex patterns in photos, text, audio, and other data
to generate accurate information and predictions. Materials and Methods: Pubmed, Scopus, and
Web of Science were used to discover publications from 1 January 2013 to 18 October 2023 that
matched our topic. A comparison of various artificial intelligence applications in orthodontics
was generated. Results: A final number of 33 studies were included in the review for qualitative
analysis. Conclusions: These studies demonstrate the effectiveness of AI in enhancing orthodontic
diagnosis, treatment planning, and assessment. A lot of articles emphasize the integration of artificial
intelligence into orthodontics and its potential to revolutionize treatment monitoring, evaluation, and
patient outcomes.

Keywords: artificial intelligence; deep learning; machine learning; orthodontics; diagnosis; treatment
planning; treatment monitoring

1. Introduction

Orthodontics has had an incredible development in terms of available technologies
with the advent of digital systems: cone beam computed tomography (CBCT), the intraoral
scanner, and the software connected to these devices [1]. The integration of deep learning
(DL) into software has further accelerated image processing processes [2]. DL is an artificial
intelligence (AI) method that teaches computers to process data in a way that is inspired by
the human brain. DL models can recognize complex patterns in images, text, sounds, and
other data to produce accurate information and predictions [3]. The use of AI by clinicians
leads to improved diagnosis, treatment planning, assessment of growth and development,
assessment of treatment progress and results, maintenance phase, monitoring at a distance,
and long-term follow-up. The term improvement means the possibility of integrating the
data collected and selected by the clinician with greater effectiveness and depth [2,4]. As
these technological advancements are now widely available, clinicians must be trained and
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competent in the use of AI-based orthodontic imaging tools. It is essential to know how
to orient yourself in the use of AI while considering it a tool to support and not replace
the critical and planning skills of humans [5]. One of the orthodontic sectors where the
combination of digital images, software, and AI has truly made enormous leaps forward in
terms of effectiveness without making the clinician lose his role as the ultimate decision
maker is cephalometry, both traditional (2D), based on teleradiograph images in lateral–
lateral projection, and 3D cephalometric analysis (CA), developed on 3D rendering models
of the skull obtained from scans with CBCT machinery [6–16]. In computer graphics,
rendering refers to a process in which special software transforms a two-dimensional
image into one that appears more realistic and three-dimensional. This is achieved through
precise calculations of perspective, along with the enhancement of the image by adding
colors, lights, and shadows, thus giving it depth and a lifelike quality [17]. Analyses
have been proposed to identify specific anatomical points and measure different distances,
angles, and ratios. For decades, the manual identification of anatomical points was the only
option available for cephalometric tracing, but at present, the technological development
of AI represents a real and important alternative. Recent software development allows
them to collect digital or scanned lateral cephalometric images into their databases to
perform automatic identification of cephalometric points (CPs) and CA with tracing and
measurements (Figure 1) [18]. This article review attempts to examine several approaches
to using artificial intelligence to improve diagnosis, treatment planning, and monitoring in
the field of orthodontics.
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Figure 1. Example of the identification of cephalometric points by AI from a lateral–lateral teleradio-
graphic image required for orthodontic purposes.

In terms of positioning of CPs, the use of AI has been evaluated in several studies
which, after analyzing 400 to 500 teleradiographs in lateral–lateral projection, have shown
an encouraging accuracy in terms of CP positions, ranging between 88.43% and 92%,
making the use of AI tools in 3D evaluations of CBCT scans in the field of orthodontics a
reality [19,20]. CBCT imaging provides a more complete view of craniofacial structures
than traditional 2D X-rays, but manual analysis of CBCT scans can be complex and time-
consuming. AI tools have been introduced to simplify and accelerate this process. AI is
instrumental in several areas, such as accurately positioning CPs in 3D CA, enabling skele-
tal diagnoses and growth predictions, and segmenting skeletal structures and teeth. These
aspects are crucial in planning maxillofacial surgery [6]. Three-dimensional cephalometry
is the analysis of skeletal relationships applied to 3D renderings of the facial mass. To date,
there are numerous types of 3D analyses, few of which are accompanied by an exhaustive
supply of comparative standard values that allow for not only the linear and angular
measurement of bone structures or soft tissues but also the development of a diagnostic
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meaning of skeletal malocclusion [21]. Here, too, AI has enabled automatic CP positioning
and processing skeletal diagnoses in real time. With the rapid advancement of technology,
machine learning (ML) (development of specific algorithms) has gained importance in
the prediction and classification of pathologies through medical images. This technolog-
ical expansion in medical imaging has made the automated recognition of anatomical
landmarks in radiographs possible, as mentioned above [22]. In this context, ML must
be able to not only perform tracings but also develop diagnostic meaning. The potential
of ML evolves and grows depending on the data that is made available to the algorithm.
AI and ML are used in software dedicated to designing orthognathic cases [23]. AI is
used for the segmentation of skeletal tissues and real-time modifications of cephalometric
values when designing osteotomy cuts. Even in the field of airway assessment, image
processing software has been implemented and speeded up with the help of AI-related
technologies. The software can calculate the number of changes in airway volume and
plays a key role during the process of planning an orthodontic or orthodontic–surgical
treatment [24]. This is because soft tissues exert continuous force due to their inherent
flexibility, which could affect the stability of the structural changes achieved. The analysis
of airway volume is necessary to determine oral and pharyngeal adaptations to changing
respiratory conditions and to evaluate the airway before and after functional orthopedic
treatment and orthognathic surgery [25,26]. The use of automated segmentation signif-
icantly reduces the time required for airway segmentation and meets the requirements
of clinical practice by eliminating the need for manual intervention, which is a laborious
and time-consuming process in routine clinical practice and is subject to variations from
one operator to another [27]. As regards transparent aligner systems, in addition to highly
effective design software, some of these have used DL in treatment plan processing. In this
context, DL uses a base of big data that, inserted into algorithm systems, can plan the steps
of orthodontic movements necessary for the resolution of a malocclusion [28]. The use of
AI can also create a clinical simulation of the patient’s smile after potential orthodontic
treatment, creating a previsualization of the result for the patient [29]. This simulation,
which takes place using a smartphone app, is an extremely effective tool in emotionally
involving the patient in the decision-making process [9]. Some software is equipped with
AI techniques that automatically classify permanent (adult) teeth versus primary (baby)
teeth and detect the need to compensate for eruption. AI develops automatic segmentation
of teeth, starting not only from dicom files but also from .stl files of scans obtained with
intraoral scanners, which use ML or DL to predict tooth shapes [2].

2. Materials and Methods
2.1. Protocol and Registration

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) proto-
cols were followed when conducting this review [30], and it was submitted to PROSPERO (The
International Prospective Register of Systematic Reviews) with the number CRD42023475421.

2.2. Search Processing

We searched PubMed, Scopus, Web of Science, and ScienceDirect with a constraint on
English-language papers published from 1 January 2013 to 18 October 2023 that matched
our topic. The following Boolean keywords were utilized in the search strategy: “artificial
intelligence” AND “orthodont*”. These terms were chosen because they best described
the goal of our inquiry, which was to learn more about the impact of AI evaluation on the
effectiveness of diagnosis, treatment plan, and treatment monitoring.

2.3. Inclusion Criteria

All appropriate studies were assessed by three reviewers using the following selected
criteria: (1) only studies with human subjects; (2) full text; (3) scientific research evaluating
the positive beneficial effects of AI on orthodontic diagnosis, treatment plan, and treatment
monitoring. The PICO model was developed in the following manner:
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• Population: human subjects;
• Intervention: orthodontic diagnosis, treatment plan, and treatment monitoring;
• Comparison: groups with AI intervention and groups with manual intervention;
• Outcome: diagnosis, treatment plan, and pre- and post-treatment with AI evaluation.

2.4. Exclusion Criteria

Exclusion criteria included articles in non-English languages; ineligible research design;
ineligible outcome measure; ineligible population; case reports, reviews, and animal studies.

2.5. Data Processing

Author differences over article selection were discussed and resolved.

2.6. Article Identification Procedure

Two reviewers (F.I. and F.P.) completed the suitability evaluation separately. A manual
search was also performed to expand the pool of articles for full-text examination. Articles
published in English that fit the inclusion requirements were considered, whilst duplicates
and disqualified articles were labeled with the reason for exclusion.

2.7. Study Evaluation

The article data were independently evaluated by the reviewers using a special elec-
tronic form designed according to the following categories: authors, year of study, type of
AI, materials and methods, and results.

2.8. Quality Assessment

The quality of the included papers was assessed by two reviewers, R.F. and E.I., using
the ROBINS-I tool. ROBINS-I was developed to assess the risk of bias in the results of
non-randomized studies that compare the health effects of two or more interventions.
Seven points were evaluated and each was assigned a degree of bias. A third reviewer
(F.I.) was consulted in the event of disagreement until an agreement was reached. The
reviewers were trained in using the ROBINS-I tool and followed the guidelines to evaluate
the risk of bias across seven domains: confounding, selection of participants, classification
of interventions, deviations from intended interventions, missing data, measurement of
outcomes, and selection of reported results. To enhance the objectivity and consistency
of the assessments, any discrepancies or disagreements between reviewers were resolved
through discussion and consensus. In cases where consensus could not be reached, a third
reviewer was involved to make the final determination. Bias assessment using ROBINS-E
provided a comprehensive evaluation of potential biases in the non-randomized studies
included in this review. It helped to identify the strengths and limitations of the evidence
base, contributing to the overall assessment of the quality and reliability of the findings.
By considering the risk of bias, this review’s authors were able to make more informed
interpretations and draw conclusions based on the available evidence.

3. Results

A total of 1693 publications were retrieved from the databases PubMed (935), Scopus
(385), and Web of Science (373), producing 1209 articles after deleting duplicates (484). The
analysis of their titles and abstracts resulted in the exclusion of 969 items. The remaining
169 papers were successfully retrieved and verified for eligibility by the writers. This
process resulted in the elimination of 136 items for being off topic. This review comprises
the qualitative analysis of the final 33 articles (Figure 2). The items included are schematized
in tables at the end of each subsection of the discussion.
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4. Discussion
4.1. Diagnosis

Accurate diagnosis is critical in the field of orthodontics since it is linked to treatment
planning and subsequent outcomes. Recently, AI-based diagnosis has been used in treat-
ment planning, which has captured the interest of orthodontists [31]. Ho-Jin Kim et al.’s
study aimed to explore the use of a deep convolutional neural network (DCNN)-powered
AI model with cephalometric images for categorizing sagittal skeletal relationships [31]. It
also aimed to compare the performance of this newly developed DCNN-based AI model to
that of an automated tracing AI program. The study included a total of 1574 cephalometric
images, which were classified based on the A-point, Nasion (Na), B-point, and ANB angle,
with Class I representing 0–4◦, Class II > 4◦, and Class III < 0◦ [31]. A test set of 120 images
was employed to make comparisons between the AI models. In terms of classifying sagittal
skeletal relationships using cephalometric images, the DCNN-based AI model demon-
strated superior performance compared to the automated tracing AI software (V-ceph,
version 8.3, Osstem, Seoul, Korea) [31]. AI can be also used to evaluate the facial beauty and
apparent age of orthognathic patients [32]. The goal of the observational study conducted
by R. Patcas et colleagues was to apply AI to describe the influence of orthognathic therapy
on facial attractiveness and age appearance [32]. Using specialized convolutional neural
networks (CNN) trained on a large dataset of over half a million photos for estimating age
and more than 17 million attractiveness ratings, facial attractiveness scores (ranging from
0 to 100) and apparent age were determined for each image [32]. The results were then
averaged for each patient, separately for both pre- and post-treatment photographs and
in comparison to the actual age (apparent vs. real age) [32]. According to the algorithmic
assessments, a significant majority of patients (66.4%) showed improvements in their ap-
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pearance after treatment, resulting in an average perceived age that was nearly one year
younger [32]. AI can also guide the clinician in choosing the most appropriate treatment
plan for the patient; Ye-Hyun Kim et al.’s study aimed to explore the use of CNNs for
the diagnosis of orthognathic surgery [33]. The research involved 640 patients needing
non-surgical orthodontic treatment and 320 requiring surgical treatment. Among these,
150 patients were designated as a test set, and the remaining 810 patients were divided into
five groups for fivefold cross-validation. CNN models, including ResNet-18, 34, 50, and
101, were used and evaluated for accuracy, sensitivity, and specificity [33]. In the test set,
ResNet-18 performed the best, with an average success rate of 93.80%, followed by ResNet-
34 at 93.60%, ResNet-50 at 91.13%, and ResNet-101 at 91.33% [33]. The study provides
insights into the ideal characteristics of an AI model’s structure for medical image-based
decision-making [33]. Skeletal maturity is vital in determining when and how to proceed
with orthodontic treatment. In 2023, Harim Kim and colleagues developed and tested an
automated system for evaluating skeletal maturity indicators (SMI) in orthodontics [34].
This system incorporates AI to assess SMI, improving upon existing methods like Greulich
and Pyle and Tanner–Whitehouse [34]. It involves three main steps: automated region
of interest (ROI) detection, automated SMI evaluation for each region, and mapping SMI
stages [34]. The results demonstrate the system’s clinical reliability and its potential to en-
hance the efficiency and consistency of SMI prediction in clinical practice [34]. Craniofacial
development is frequently characterized in terms of magnitude, direction, and velocity [35].
The mandible is the skeletal component with the greatest potential for expansion within
the craniofacial complex [35]. ML techniques analyze longitudinal craniofacial cephalo-
metric input data in predicting male postpubertal mandibular length and the Y axis of
growth [35]. Tyler Wood et al. employed ML approaches to those using cephalometric data
from 163 individuals with Class I Angle malocclusion in their second research study [35].
According to the findings of their study, all of the ML algorithms examined predicted it
accurately [35]. The characteristics of the studies are listed in the table below (Table 1).

Table 1. Characteristics of the studies.

Authors/Years Type of Study Type of AI Materials and Methods Results

R. Patcas et al.,
2018 [32] Observational study ANN

Photographs of
consecutive orthognathic

patients were taken
before and

after treatment.

According to the algorithmic
assessments, a significant

majority of patients (66.4%)
showed improvements in their

appearance after treatment,
resulting in an average

perceived age that was nearly
one year younger.

Ye-Hyun Kim
et al., 2021 [33] Observational study

ANN (ResNet-18,
ResNet-34, ResNet-50

and ResNet-101)

The study included
individuals who needed
non-surgical orthodontic

therapy and surgical
orthodontic treatment.

ResNet-18 is the best model for
orthognathic surgery
diagnosis, providing

important insights into the
ideal characteristics of an AI

framework for medical
image-based decision-making.

Harim Kim et al.,
2023 [34] Observational study AI-based automated

assessment system

The dataset used for
primary verification of

the AI-based automated
assessment system for

Fishman’s SMI
consisted of

hand–wrist radiographs.

AI-based automated
assessment system has proven

to provide highly accurate
SMI prediction with

minimal errors.
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Table 1. Cont.

Authors/Years Type of Study Type of AI Materials and Methods Results

Tyler Wood et al.,
2023 [35] Retrospective study ML

Cephalometric data with
Class I Angle

malocclusion were
utilized to train several
ML methods. ANOVA

was used to analyze
the differences.

All of the ML systems tested
properly predicted

postpubertal mandibular
length and Y axis of growth.

Ho Jin-Kim et al.,
2022 [31] Retrospective study DCNN

A total of 1574
cephalometric pictures

were included in
the study.

The micro-average values of
the DCNN-based AI model
surpassed the automated

tracing AI program in terms
of performance.

4.1.1. CA and AI

Identifying anatomic landmarks from a lateral cephalogram is critical for accurate CA
to analyze patient growth and occlusion. The use of AI enables the evaluation of lateral
radiographs [36].

Bulatova et al. compared a senior orthodontist’s CA of 110 radiographs through
Dolphin Imaging® and CA of the same radiographs using AI software Ceppro DDH Inc.
Sella (Seoul, Korea) was used as reference landmark to extract x- and y-coordinates for
16 CPs: Nasion (Na), A point, B point, Menton (Me), Gonion (Go), Upper incisor tip,
Lower incisor tip, Upper incisor apex, Lower incisor apex, Anterior Nasal Spine (ANS),
Posterior Nasal Spine (PNS), Pogonion (Pg), Pterigomaxillary fissure point (Pt), Basion
(Ba), Articulare (Art) and Orbitale (Or). There was no statistical difference between CLs
analyzed manually by the expert and by AI [37].

Two experts manually identified 13 cephalometric landmarks (CLs) that were used as
indicators for their detection by a proposed DL model. It analyzed 950 lateral cephalometric
images and it was able to perform a fully automatic identification of CLs with an average
radial error between the landmarks assigned by one expert and those assigned by the
proposed model of 1.84 mm, thus achieving excellent results [38].

Sixty-six CLs and ten linear and angular measurements featured in Arnett’s analysis
were considered by an expert and by CEFBOT (RadioMemory Ltd., Belo Horizonte, Brazil)
on thirty radiographs. CLs and measures were replicated with a 15-day delay between
measurements for both procedures, and there was no statistically significant difference in
results [39].

An automated CA based on a customized DL algorithm was comparable to measure-
ments made by 12 examiners [5].

Kim et al. had 3150 lateral cephalograms analyzed by a DL model taking into account
the gold standard values of CLs obtained by two orthodontists on 100 lateral cephalograms
using the V-ceph software((V-ceph, version 8.3, Osstem, Seoul, Korea). It was noted that its
accuracy of CL recognition was comparable with that of two orthodontists with more than
10 years of clinical experience [40].

Jeon et al. found that automatic CA performed using a CNN had admissible diag-
nostic results but it needed careful attention and additional manual control to achieve
higher accuracy [41]. Another study found AI in combination with manual analysis to be
useful [42].

Gökhan Çoban et al. compared the values of CLs obtained by cephalometry using
Dolphin® v. 11.5, Chatsworth, CA, USA, and those obtained using the WebCeph platform
(AI). Differences were detected in some CL measurements [43]. Ioannis A Tsolakis et al.
compared the values of CLs obtained by cephalometry using the semi-automated software
Dolphin 3D Imaging program® version 11.0 and those obtained using CS imaging V8
software (AI). They found that all cephalometric measurements were accurate [44]. Britta
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Ristau et al. compared the values of CLs obtained by cephalometry using AudaxCeph®’s
automatic tracing software (version 6.3.11.4346) and those obtained by a semi-automated
approach by human examiners using the same software [45]. There was no statistical
difference between the results obtained by the orthodontists and AudaxCeph®’s automatic
tracing software, except for Porion and L1 apex [46].

In another study, three methods were used to execute cephalometric measurements:
WebCeph software (AssembleCircle Corp., Gyeonggi-do, Republic of Korea), WebCeph soft-
ware after manual modification of LM, and manual CL detection and digital measurement
generation using OnyxCeph software (https://onyxceph.eu/en/programmversionen/
accessed on 14 November 2023) AI followed by hand CL adjustment might be an accurate
strategy in CA [47].

In yet another study, three methods were used to execute cephalometric measurements:
Dolphin Imaging 13.01® (Dolphin Imaging and Management Solutions, Chatsworth, CA,
USA), app-aided tracing using the CephNinja 3.51 app, and fully automated web-based
tracing with CephX [48]. CephX analysis with manual correction had the potential to
be employed in clinical practice because it was equivalent to CephNinja and Dolphin®

and required little time [49]. The characteristics of the studies are listed in the table
below (Table 2).

Table 2. Characteristics of the studies.

Authors/Years Type of Study Type of AI Materials and Methods Results

Galina Bulatova
et al., 2021 [37] Retrospective study

AI software Ceppro
DDH Inc.

(Seoul, Korea)

Lateral cephalograms
were analyzed by a

calibrated senior
orthodontic resident

using Dolphin Imaging®

and the same images
were uploaded to the AI
software Ceppro DDH.

There was no statistical
difference in manually

analyzed CLs and those
obtained by AI.

Young Hyun Kim
et al., 2021 [38] Retrospective study

The developed DL
model has a

two-step structure.

Two examiners manually
identified the 13 most

important CLs to set as
references. The
landmarks were

automatically measured
using the proposed

model in lateral
cephalometric images.

The proposed DL model can
perform fully automatic

identification of CLs.

Thaísa Pinheiro
Silva et al.,
2022 [39]

Retrospective study

CEFBOT
(RadioMemory

Ltd., Belo
Horizonte, Brazil)

An expert and CEFBOT
evaluated the 66

landmarks and 10 linear
and angular measures

featured in Arnett’s
analysis on the

radiograph.

CEFBOT (https:
//www.radiomemoryglobal.
com/#h.r8d6r24868b accessed

on 14 November 2023)
software can be considered

a promising tool.

Felix Kunz et al.,
2020 [5] Retrospective study

A customized
open-source CNN DL
algorithm (Keras and
Google TensorFlow)
is directed toward
analyzing visual

imagery and has an
input layer, multiple
hidden layers, and an

output layer.

Both AI and each
examiner analyzed

12 orthodontic
parameters based on

cephalometric images.

No clinically relevant
difference was noticed

between the two analyses.

https://onyxceph.eu/en/programmversionen/
https://www.radiomemoryglobal.com/#h.r8d6r24868b
https://www.radiomemoryglobal.com/#h.r8d6r24868b
https://www.radiomemoryglobal.com/#h.r8d6r24868b
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Table 2. Cont.

Authors/Years Type of Study Type of AI Materials and Methods Results

Jaerong Kim et al.,
2021 [40] Retrospective study

A cascade network
consisting of ROI

detection and
landmark prediction.

Two orthodontists
evaluated 100 lateral

cephalograms and the
mean of these values was

considered the gold
standard. The DL model

evaluated 3150
lateral cephalograms.

The overall automated
detection error was 1.36 ± 0.98.
The accuracy of CL recognition

was comparable with that
made by two orthodontists
with more than 10 years of

clinical experience.

Sangmin Jeon
et al., 2021 [41] Retrospective study CephX for the

AI analysis.

The cephalograms were
analyzed with V-ceph for
the conventional CA and

with CephX for the
AI analysis.

Variations were found in
saddle angle, linear

measurements of maxillary
incisor to NA line, and

mandibular incisor to NB line.

Mehmet Uğurlu
et al., 2022 [42] Retrospective study

AI system
(CranioCatch,

Eskisehir, Turkey).

A CNN-based AI
algorithm for automatic

CL detection was
developed and used to

detect CLs.Then, an
orthodontist with 9 years
of experience analyzed

the CA of the AI.

There were no statistical
differences between manual

identification and AI groups in
11 out of 16 points. AI

increased the efficiency of
CL identification.

Gökhan Çoban
et al., 2022 [43] Retrospective study WebCeph was used

for AI-based CA.

Differences between
using the

semi-automated software
Dolphin® (v. 11.5,

Chatsworth, CA, USA)
and WebCeph

(WEBCEPH™, Artificial
Intelligence Orthodontic
& Orthognathic Cloud
Platform, South Korea,

2020) software for
each CL.

It was determined that there
was a noticeable change
between SNB, ANB, and

SN.PP, U1.SN, U1-NA, U1.NA,
L1-APog, IMPA, L1-NB,

and ULE.

Ioannis A Tsolakis
et al. [44] Retrospective study

CS imaging V8
software was used for

AI-based CA.

The difference between
using semi-automated
software Dolphin® 3D

Imaging program
(version 11.0) and CS
imaging V8 software

for each CL.

There were no significant
differences between the two
methods (p > 0.0027) for the
SN-MP, U1-SN, SNA, SNB,
ANB, L1-NB, SNPg, ANPg,
SN/ANS-PNS, SN/GoGn,

U1/ANS-PNS, L1-APg,
U1-NA, and

L1-GoGn landmarks.

Britta Ristau et al.,
2022 [46] Retrospective study

AudaxCeph®’s
automatic

tracing software.

The difference between
AudaxCeph®’s automatic

tracing and a
semi-automated

approach by human
examiners using the

same software.

AudaxCeph® was a reliable
resource for clinicians in

analyzing orthodontic cases,
even if there were unreliable

points, such as Porion,
Orbitale, U1 apex, and L1 apex.
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Table 2. Cont.

Authors/Years Type of Study Type of AI Materials and Methods Results

Mostafa
El-Dawlatly et al.,

2023 [47]
Retrospective study

WebCeph software
and OnyxCeph

software.

Lateral cephalometric
radiographs

were evaluated.

Fewer differences were
obtained with the modified
WebCeph software method

than with the
OnyxCeph method.

Pamir Meriç et al.,
2020 [49] Retrospective study

Dolphin Imaging®

13.01, app-aided
tracing using the

CephNinja 3.51 app,
and fully automated
web-based tracing

with CephX.

Three methods were used
to execute cephalometric
measurements: Dolphin

Imaging® 13.01,
app-aided tracing using
the CephNinja 3.51 app,

and fully automated
web-based tracing

with CephX.

Manual correction of CephX
landmarks gave similar

outcomes to digital tracings
using CephNinja

and Dolphin®.

4.1.2. AI-Guided Assessment of Vertebral Maturation

The assessment of skeletal maturity is very important in treatment planning for optimal
treatment timing. A custom-design CNN model consisting of two parts, feature extraction
and classification, was used to classify CVM into six maturation stages (CS1–CS6) [50,51].
AggregateNet was utilized in the model for feature extraction, and as the preprocessing
layer, it used directional filters to enrich the information. The AggregateNet output feature
was coupled with age input to produce conclusions as well as to boost network perfor-
mance [51]. Hatice Kök et al. [52] used seven algorithms to determine CVS: k-nearest
neighbors (k-NN), naive Bayes (NB), decision tree (DT), artificial neural network (ANN),
support vector machine (SVM), random forest (RF), and logistic regression (LR). These
algorithms showed low and high values for each stage. The ANN algorithm was a steadier
algorithm than others in determining cervical vertebrae stages [52]. In 2021, Seo et al.
assessed and compared the performance of six cutting-edge CNN-based DL models for cer-
vical vertebral maturation (CVM) using lateral cephalometric radiographs [53]. A dataset
of lateral cephalometric radiographs was collected from patients aged 6–19 years, and six
pretrained CNN architectures were used for CVM stage classification. Data augmentation
techniques were applied to mitigate overfitting, and model performance was evaluated
using accuracy, recall, and precision. The models successfully achieved over 90% accuracy
in classifying CVM stages. Grad-CAM visualization revealed that different models focused
on distinct areas of the cervical vertebrae for classification. Overall, this study demonstrated
the potential of DL models using lateral cephalometric radiographs in aiding clinicians in
accurate diagnosis and treatment planning related to skeletal maturity [53]. Seo et al. [54]
delved into the critical area of bone age assessment, an essential tool in pediatrics, en-
docrinology, and orthodontics for evaluating child and adolescent development. Their
article provides an overview of a novel approach, known as the “Deep Focus Approach”
(DFA), which employs DL techniques to improve the accuracy and efficiency of bone age
estimation using lateral cephalograms. Bone age assessment is a vital diagnostic tool used
to evaluate an individual’s skeletal development in comparison to chronological age. Accu-
rate assessments are crucial in diagnosing and treating various growth-related conditions,
such as growth hormone deficiencies or precocious puberty. Traditionally, radiologists and
clinicians have relied on manual assessment methods, which are time-consuming, subject
to interobserver variability, and may not always provide precise results. Therefore, the inte-
gration of DL techniques for automated bone age estimation is a significant step forward
in this field. The DFA appears to offer several notable advantages in bone age estimation.
One of its key features is the use of DL algorithms, specifically CNNs. These networks
have shown remarkable potential in image recognition tasks and have been successfully
applied in medical image analysis [55]. In this context, CNNs are trained to detect and
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evaluate specific features related to bone development in lateral cephalograms, enabling the
system to provide more accurate and consistent assessments. The article suggests that this
approach minimizes the subjectivity associated with manual readings, as the DL model fol-
lows a standardized methodology [56]. It is critical to note that this method is not intended
to replace the expertise of a trained radiologist or clinician but rather to augment their
capabilities, improve accuracy, and save time. Additionally, the article discusses the DFA’s
potential for scalability and broader applicability. This approach could be integrated into
radiology departments and orthodontic practices to streamline the bone age assessment
process. It may also be used in telemedicine scenarios, where remote consultations require
accurate and consistent assessments. The article’s focus on DL techniques in the context of
bone age estimation aligns with the broader trend of leveraging AI in medical imaging and
diagnostics [57]. AI has shown great promise in automating repetitive and time-consuming
tasks, thus allowing healthcare professionals to focus on more complex and critical as-
pects of patient care. While the DFA holds considerable promise, it is critical to address
certain challenges and limitations. For instance, the quality of lateral cephalograms can
vary significantly, and the model’s performance may be affected by artifacts or unusual
anatomical features. Moreover, the need for a substantial dataset for training the DL model
is an important consideration. The quantity and diversity of images used for training can
greatly influence the model’s generalization to new data. In conclusion, it represents a
significant advancement in the field of pediatric and orthodontic diagnostics. By harnessing
the power of DL, this approach has the potential to enhance the accuracy and efficiency of
bone age assessments, benefiting both patients and healthcare professionals. As medical
imaging and AI continue to advance, innovative approaches like this will likely play an
increasingly important role in improving healthcare delivery and patient outcomes. Further
research and validation studies will be crucial to determine the reliability and accuracy of
this approach in clinical settings [54]. Studies on AI in orthodontics have been carried out
to evaluate the processes of cervical vertebral maturation (CVM). In 2023, Gülsün Akay
et al. evaluated 588 lateral cephalometric x-ray images using a DL-based CNN model.
Patients ranged in chronological age from 8 to 22 years [58]. The CVM stages in the images
were divided into six subgroups based on the bone maturation process. With this study, it
was demonstrated that the developed model achieved a classification accuracy of 58.66% in
the evaluation of CVM stages [59]. The primary objective of Hakan Amasya’s study was to
create five distinct supervised ML classifier models using AI techniques to assess CVM and
then compare their performance [60]. Additionally, the researchers developed a clinical
decision support system (CDSS) to enhance the objectivity of the results [60]. A custom
software was employed to manually label the samples, and an integrated CDSS was created
after evaluating 100 radiographs. Each radiograph was marked with 26 points, and the
CDSS provided suggestions based on these points and the CVM analysis conducted by a
human observer [60]. Subsequently, 54 features for each sample were saved in text format
and classified using various models, including LR, SVM, RF, ANN, and DT [60]. The results
indicated that the best performance was achieved with the ANN model. For cervical verte-
brae morphology classifier models, the LR model yielded the best results for determining
the presence of concavity, while the DT model performed well in identifying vertebral body
shapes [60]. The characteristics of the studies are listed in the table below (Table 3).
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Table 3. Characteristics of the studies.

Authors/Years Type of Study Type of AI Materials and Methods Results

Salih Furkan Atici
et al., 2023 [51] Retrospective study

A DL network is
shown, and a parallel

structured DCNN
with a preprocessing
layer that uses X-ray
pictures and age as
input is proposed.

A custom CNN model with
two sections, feature

extraction and classification,
was employed to categorize

CVM into six maturation
phases (CS1–CS6).

AggregateNet was utilized in
the model for feature

extraction, while directional
filters were employed as the

preprocessing layer to
improve the information.

AggregateNet, when
combined with adjustable

directional edge filters,
outperformed other
models with fully
automated CVM

stage determination.

Akay et al.,
2023 [59] Retrospective study DL-based CNN

Digital lateral cephalometric
radiographs of patients
between 8 and 22 years

were evaluated.

The study demonstrated
that the developed model

achieved moderate success.

Seo et al.,
2022 [54] Retrospective study

DeepLabv3, a
semantic

segmentation
network for

delimited cervical
vertebral region, and
Inception-ResNet-v2,

a classification
network converted to

a regression model
for age estimate,

were used.

The study included 900
people between the ages of
4 and 18 who had a lateral

cephalogram and a
hand–wrist radiograph on

the same day. First, the
cervical vertebrae were

segmented from the lateral
cephalogram using

DeepLabv3 architecture.
Second, after isolating the
region of interest from the

segmented picture for
preprocessing, bone age was

estimated using transfer
learning and an

Inception-ResNet-v2
architecture-based
regression model.

Using the
gradient-weighted

regression activation map
methodology, key regions

were visualized on cervical
vertebral imaging to
create a prediction.

Seo et al., 2021
[54]

Retrospective
observational study CNN

600 lateral cephalometric
radiographs of patients aged
6–19 years; CNNs were used

for CVM classification.

Achieved more than 90%
accuracy in classifying

CVM phases.

4.2. AI-Guided Treatment Plan

AI is proving to be a valuable ally in the design of customized orthodontic treatment
plans. Numerous research studies have investigated the use of ML-based clinical decision
support models in this context.

One study of particular interest focused on the application of AI and ML in orthodon-
tics to predict diagnoses and treatment plans. This research study involved a large sample
of 700 patients undergoing orthodontic treatment, analyzing clinical, cephalometric, and
photographic data [61]. The research team developed four separate ML models aimed at
identifying jaw bases, suggesting the appropriateness of dental extractions and proposing
solutions to correct protruded or retruded jaw bases. The results demonstrated an average
accuracy of 84% in predicting treatment plans, highlighting the robustness of these models.
Furthermore, the study identified significant correlations between diagnostic parameters
and key factors in orthodontic planning [62].

In the same manner, research has been conducted on the issue of variability in deci-
sions regarding extractions in orthodontic treatment. The lack of a standard formula for
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such decisions, often based on the experience and clinical assessment of orthodontists,
has led to divergent results among practitioners, undermining the standardization of the
treatment planning process. In response to this problem, a study conducted by Mason
employed ML to predict tooth extraction decisions, demonstrating the effectiveness of this
approach, especially when using SVM [63]. Similarly, Etemad et al. trained an ANN to
assist in orthodontic extraction treatment decisions, achieving significant improvements in
the consistency and effectiveness of treatment choices [64]. A further study conducted by
Jung exploited ANN for similar purposes, using clinical data, radiographs, and measure-
ments to take into account aspects such as the need for extractions, their type (identical or
differential), and the amount of retraction required [65].

In summary, these studies highlight the extraordinary potential of AI in orthodontic
treatment planning. AI can reduce variability in practitioners’ decisions and improve the
consistency and effectiveness of treatment choices. However, it is crucial to emphasize that
AI should be seen as a valuable tool to support human experience, rather than a complete
surrogate for orthodontists’ clinical judgment.

In addition, other researchers have aimed at developing predictive models for orthog-
nathic surgery planning in patients with skeletal class III. For example, a study conducted
by Lee et al. involved a sample of 196 patients selected based on specific skeletal and
orthodontic characteristics, using a wide range of cephalometric and demographic data
to train ML models such as random forest (RF) and logistic regression (LR). Both models
achieved high accuracy of up to 90% in treatment planning [66]. Furthermore, a study by
Chaiprasittikul used an ANN to classify patients according to the need for orthognathic
surgery, achieving a remarkable 96.3% diagnostic agreement rate in surgical decisions [67].

Overall, this review highlights the potential of AI as a complementary tool in or-
thodontic treatment planning, promoting a more evidence-based clinical practice that is
targeted to the specific needs of the patients. The characteristics of the studies are listed in
the table below (Table 4).

Table 4. Characteristics of the studies.

Authors/Years Type of Study Type of AI Materials and Methods Results

Taylor Mason
et al., 2023 [63]

Retrospective
observational study

ML (LR, RF,
SVMs, ANN)

393 patients, a diverse
population. Trained LR, RF,
SVM, and ANN on 70% of

data, and tested on 30%.
Evaluated accuracy and

precision for
extraction decisions.

High accuracy in
predicting tooth

extraction decisions.

Etemad et al.,
2021 [64]

Retrospective
observational study ANN, RF

838 orthodontic patient
records. Split into extraction
and non-extraction samples.

Used 117 clinical and
cephalometric variables for
ML (RF and MLP) for tooth

extraction prediction.

High accuracy in
predicting tooth

extraction therapy.

Lee et al.,
2022 [66]

Retrospective
observational study ML (RF, LR)

196 skeletal class III patients,
136 training, 60 tests.

Estimated neural network
success rate. Binary classifier
for surgical case prediction.

AI is useful for successfully
classifying patients up to

90% of candidates
for surgery.
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Table 4. Cont.

Authors/Years Type of Study Type of AI Materials and Methods Results

Chaiprasittikul
et al., 2023 [67]

Retrospective
observational study ANN

Analysis of
538 cephalometric
radiographs using

Detectron2 and ANN.
Developed neural network

decision support system
for orthognathic

surgery prediction.

AI is useful for successfully
classifying up to 90% of
candidates for surgery.

Prasad et al.,
2022 [62]

Retrospective
observational study

ML (extreme gradient
boosting, RF,
decision tree)

Analyzed 700 orthodontic
cases with 33 inputs and 11

outputs. Developed ML
models and compared their

predictions with expert
orthodontist decisions.

The overall accuracy of
the models was 84%.

Jung et al.,
2016 [65]

Retrospective
observational study ANN

Analyzed 156 patients with
12 cephalometric variables, 6
indexes, and 3-bit extraction
pattern diagnosis. Created

and evaluated ANN.

Effectiveness in assisting
professionals in
decision-making

with success rates
of 84–93%.

4.3. Orthodontic Treatment Monitoring

Caruso et al. [68] discussed the Dental Monitoring System (DMS), a knowledge-
based algorithm designed for the automatic monitoring of orthodontic treatment. They
provide two examples of how this technology was used. To provide a thorough and
automated method of tracking the progress of orthodontic treatment, the DMS makes use
of a variety of technologies, including AI [69]. An important innovation in orthodontics
is the application of AI since it allows for precise and continual treatment monitoring. To
assess data from orthodontic patients and effectively track development, the algorithm
makes use of knowledge-based methods. The DMS can improve the precision and efficacy
of orthodontic treatment by automating the monitoring procedure [68]. Lee et al. [70]
delve into the accuracy of integrated dental models utilizing DL by combining intraoral
scans and CBCT scans. Since it permits precise and continual treatment monitoring, the
application of AI in orthodontics represents a considerable advancement [71]. To assess
data from orthodontic patients and effectively track development, the algorithm makes
use of knowledge-based methods [26]. The DMS can improve the precision and efficacy
of orthodontic treatment by automating the monitoring procedure [70]. Ferlito et al. [72]
investigate the effectiveness of utilizing AI in remote monitoring of clear aligner therapy,
a popular orthodontic treatment method [4]. Their paper offers a future assessment,
analyzing the advantages and results of remote monitoring powered by AI. A useful
technique for remotely monitoring patients receiving clear aligner treatment is AI. It can
perform data analysis, monitor development, and spot any treatment plan deviations. By
giving orthodontists quick information, this technology enables them to make the necessary
modifications remotely [73]. The research demonstrates the probable potential of AI in
enhancing patient compliance and treatment effectiveness in clear aligner therapy [72].
Patcas et al. [32] explore the application of AI to assess how orthodontic treatment impacts
facial attractiveness and estimated age. Here, orthodontics and aesthetics come together,
intriguingly, with AI being crucial in assessing treatment effectiveness and analyzing face
traits. The results of orthodontic therapy may be objectively measured in terms of changes to
the appearance of the face [74]. Offering useful insights for both practitioners and patients,
it offers a systematic method for assessing the influence of therapy on attractiveness and
apparent age [20]. This use of AI brings a fresh perspective to the evaluation of orthodontic
treatment, emphasizing not just functional advancements but also the improvement of
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overall face attractiveness [32]. The characteristics of the studies are listed in the table
below (Table 5).

Table 5. Characteristics of the studies.

Authors
Years Type of Study Type of AI Materials and Methods Results

Patcas et al.,
2019 [32] Observational study

AI to explain how
orthodontic therapy
affects facial beauty
and apparent age.

Every photograph has
patient-related information

(patient age, sex,
malocclusion, and surgeries

performed) tagged on it.
With specialized CNNs
trained on >0.5 million

photos for age estimation
and with >17 million

attractiveness ratings, face
attractiveness (score: 0–100)

and apparent age were
determined for each image.

The algorithms discovered
that the vast majority of

patients’ looks improved
following therapy (66.4%),

leading to a roughly
one-year younger

appearance, especially
after profile-altering

surgery. Similar positive
effects of orthognathic

therapy on beauty were
seen in 74.7% of cases,
particularly following

lower jaw surgery.

Caruso et al.,
2021 [68] Case report

Correct biomechanics
were guaranteed by

the software’s
analysis of the

aligner’s fit
and retention.

Depending on the chosen
protocol, guided scanning

will transmit 20–30 photos to
the servers for processing,

which may be broken down
into four steps:

Step 1: The system processes
the raw photos. They are

evaluated for quality to see if
the patient requires another

scan or not;
Step 2: Using a prediction
score (% of certainty), the
algorithm can locate teeth

and identify them. In some
orthodontic extraction

situations, the technology is
so sophisticated that it can

sometimes tell if a tooth is a
first or second premolar.
Additionally, the gingiva

is shown;
Step 3: Finding the various

clinical parameters;
Step 4: The AI will review

the data and, using the
selected strategy, will

provide instructions to the
patient and the team.

The patient demonstrated
exceptional compliance

with and confidence in the
DM system on receiving
nearly all “GO” signals

during his therapy. Up to
the completion of all

clinical objectives,
monitoring was activated.
Therefore, it was just put

on hold while awaiting the
new aligners.
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Table 5. Cont.

Authors
Years Type of Study Type of AI Materials and Methods Results

Lee et al.,
2022 [70] Clinical Study

To compare the
creation of integrated
tooth models (ITMs)

with the manual
method and to assess

the accuracy of
DL-based ITMs by

combining intraoral
scans and CBCT

scans for
three-dimensional
(3D) root position

evaluation during or-
thodontic treatment.

15 patients who underwent
orthodontic treatment with

premolar extraction had
intraoral scans and related

CBCT scans taken before and
after treatment.

The procedure times taken
to obtain the

measurements were longer
in the manual method than

in the DL method.

Ferlito et al.,
2023 [72] Prospective study

Clear aligner
treatment has lately
gained popularity

due to the use of AI
for remote

monitoring. DL
algorithms on a
patient’s mobile

smartphone were
used to decide

readiness to move to
the next aligner

(i.e., “GO” versus
“NO-GO”) and detect

places where the
teeth do not match
the clear aligners.

Thirty patients under
treatment with clear aligners

at an academic clinic were
scanned twice using a

remote smartphone
monitoring software, and the

results were compared.

A 44.7% gauge
compatibility was

observed. Between Scan 1
and 2, 83.3% of patient

instructions agreed;
however, 0% agreed on

whether and/or how many
teeth had tracking
difficulties. In the

mesiodistal, buccolingual,
occlusogingival, tip, torque,
and rotational dimensions,

patients who received a
“GO” instruction exhibited

mean differences of
1.997 mm, 1.901 mm,

0.530 mm, 8.911, 7.827, and
7.049, respectively. These

differences were not
statistically significant

when patients were given
“NO-GO” instructions.

4.4. Quality Assessment and Risk of Bias

The risk of bias in the included studies is reported in Figure 3. Regarding bias due to
confounding, most studies have a high risk. Bias arising from measurement is a parameter
with a low risk of bias. The majority of studies have a low risk of bias due to participant
selection bias. Bias due to postexposure cannot be calculated due to high heterogeneity. Bias
due to missing data is low in the majority of studies. Bias arising from the measurement
of outcomes is low. Bias in the selection of the reported results is high in the majority of
studies. The final results show that ten studies have a low risk of bias, ten studies have a
high risk of bias, four have a very high risk of bias, and the remainder have a questionable
risk of bias.
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 Figure 3. Quality assessment of bias [5,31–35,37–44,46,47,49,51,53,54,59,62–68,70,72].
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5. Conclusions

AI has revolutionized the orthodontic field and continues to improve it through mul-
tiple applications, from analyzing skeletal relationships to assessing facial attractiveness
and predicting postpuberty mandibular growth. This review has shown that numerous
experiments evaluate the validity of AI in the diagnosis phase, in treatment planning, and
in the choice of the most appropriate therapy for the patient, achieving results compara-
ble to those obtained manually by experts. Integrating AI into orthodontic assessments
enhances treatment monitoring, especially with algorithms such as DMS, which provide
precise automatic analysis. The possibility of integrating intraoral scans and CBCT offers
new perspectives for the 3D evaluation of root position, which is useful for predicting
the displacement of the entire tooth and not just the dental crown. The DMS and similar
algorithms showcase the power of knowledge-based approaches, DL, and AI in providing
automated and precise monitoring of orthodontic treatment progress. Furthermore, the ap-
plication of AI in remote monitoring and assessment of clear aligner therapy demonstrates
how technology can enhance treatment efficiency and patient compliance. The capacity
of AI to objectively measure the influence of orthodontic treatment on facial appearance
and predicted age gives a more comprehensive view of treatment outcomes. Overall, these
publications illustrate the exciting advances that AI offers in the area of orthodontics, which
have the potential to change the way orthodontic treatments are monitored, assessed, and
tailored. Despite the immense potential offered by AI, it remains crucial to emphasize that
the execution of orthodontic therapy remains firmly in the hands of the clinical expert.
These innovations, although revolutionary, are complementary tools that assist and enrich
the work of orthodontic professionals, contributing to a more precise and personalized
approach to patient care.
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