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Abstract: Recent advancements in PET/CT, including the emergence of long axial field-of-view
(LAFOV) PET/CT scanners, have increased PET sensitivity substantially. Consequently, there has
been a significant reduction in the required tracer activity, shifting the primary source of patient
radiation dose exposure to the attenuation correction (AC) CT scan during PET imaging. This study
proposes a parameter-transferred conditional generative adversarial network (PT-cGAN) architecture
to generate synthetic CT (sCT) images from non-attenuation corrected (NAC) PET images, with
separate networks for [18F]FDG and [15O]H2O tracers. The study includes a total of 1018 subjects
(n = 972 [18F]FDG, n = 46 [15O]H2O). Testing was performed on the LAFOV scanner for both datasets.
Qualitative analysis found no differences in image quality in 30 out of 36 cases in FDG patients, with
minor insignificant differences in the remaining 6 cases. Reduced artifacts due to motion between
NAC PET and CT were found. For the selected organs, a mean average error of 0.45% was found for
the FDG cohort, and that of 3.12% was found for the H2O cohort. Simulated low-count images were
included in testing, which demonstrated good performance down to 45 s scans. These findings show
that the AC of total-body PET is feasible across tracers and in low-count studies and might reduce
the artifacts due to motion and metal implants.

Keywords: LAFOV; PET/CT; attenuation correction; deep learning; motion correction

1. Introduction

Recent developments in PET/CT detectors have introduced SiPM-based detectors,
pushing the limit for time of flight (TOF) towards 200 ps [1], thereby increasing the signal-to-
noise ratio and increasing the image quality and lesion detection [2,3]. With the emergence
of long axial field-of-view (LAFOV) PET/CT scanners such as the Siemens Biograph Vision
Quadra, Siemens Healthineers [4], and the uEXPLORER, United Imaging [5], the combi-
nation of detector coverage of the whole body and the high TOF resolution has increased
PET sensitivity markedly allowing for a drastic reduction in the injected tracer dose by a
factor of ten or more [6]. This has potential implications for easing the path to scanning
subjects where a reduced radiation dose is desired: pediatric patients, pregnant women,
patients in repeated control schemes such as malignant melanomas, or research projects
with healthy controls. Several corrections are required for the accurate quantification of
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PET images, including random coincidence events, detector dead time, crystal efficiency
normalization, and correction for Compton scatter events and attenuation. Scatter and
attenuation correction relies on a knowledge of object geometry and the electron density
of tissue commonly acquired by an attenuation correction CT scan (AC CT) as part of the
PET/CT examination [7]. Moving towards PET scanning with a very low patient radiation
dose (<0.5 mSv) [8,9], the associated AC CT scan will become the primary source of ionizing
radiation for the patient as even a low dose CT routinely used for attenuation correction
and localization contributes by more than a factor of 10 (5–7 mSv) [10].

Artificial intelligence has shown great potential for synthesizing high-quality CT data
(sCT) from Magnetic Resonance Imaging (MRI) using deep learning based on convolutional
neural networks (CNNs) or generative adversarial networks (GANs) [11–15]. While initial
work targeted synthesizing sCT for the brain, recent works have addressed the more com-
plex tissue composition and geometry of whole-body imaging [16,17]. For total body PET
imaging using a LAFOV PET/CT scanner, MRI data are typically not available or would
pose a challenge due to differences in patient positioning during scanning. Therefore, a
solution to attenuation correction where generated attenuation maps and emission data
are positioned alike is desired [18]. One approach is the direct estimation of attenuation
and scatter-corrected PET images from the non-attenuated emission data (NAC PET) using
CNNs [19,20] or cycle-consistent GAN (CycleGAN) networks [21], thereby bypassing the
normal iterative PET reconstruction pipeline. This approach shows impressive results, but
it might be difficult to assess whether the transformation from NAC PET to the final PET
images is indeed correct on an individual basis since GAN networks can be prone to mode
collapse, causing them to generate the same output from different inputs [22]. Another
approach would be to synthesize AC CT images from the NAC PET. This approach in-
creases explainability as the PET reconstruction is still handled by the vendor-implemented
reconstruction method of choice, and artifacts in the sCT can be assessed before PET recon-
struction, which allows for a quality assurance check by scanner staff and physicians that
fits well into a routine clinical pipeline. A number of studies have used this approach [23],
showing promising results towards accurate attenuation correction without CT. These
previous studies typically have datasets in the range of 25–220 that might be adequate for
training a CNN, but increased sample size should increase robustness towards variation in
body shapes, artifacts, and rare anatomy, as new patients are more likely to be represented
in the training cohort [15]. Challenges are reported especially in the lung region where
little NAC PET signal is present [21,24]. Furthermore, deriving sCT from NAC PET has
the advantage of addressing movement artifacts due to differences in homologous tissue
during PET and CT acquisition. This is often observed as the so-called banana artifact
around the diaphragm related to differences in the breathing cycle, but also related to
bowel motions as well as gross body motion. Finally, artifacts due to streaking and beam
hardening artifacts from metallic implants that might influence PET quantification [25]
could be addressed by deriving the attenuation map from the PET emission data.

We propose a deep learning-driven synthetic CT generation procedure where sCT
images are produced directly from the non-attenuation corrected PET images, thereby
eliminating the need for a separate CT scan on LAFOV PET/CT scanners. We furthermore
validate the robustness of the derived model for variation in PET radiotracer and count rate
to address the need for differences in clinical protocols and pave the way for ultra-low-dose
(<0.5 mSv) PET scanning.

2. Materials and Methods
2.1. Patient Cohort

This retrospective study consists of five cohorts with 1018 subjects in total. The
proposed algorithm was developed using 858 consecutively included subjects injected with
[18F]FDG and scanned on one of four separate Siemens Vision 600 PET/CT scanners. The
algorithm was evaluated using a separate cohort of [18F]FDG-PET/CT data acquired after
the training data acquisition period on either the same scanner (n = 78) or on a LAFOV
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Siemens Vision Quadra PET/CT (n = 36). We also included 46 subjects injected with
[15O]H2O and scanned on the LAFOV PET/CT. We used 34 of these subjects to transfer-
learn the original algorithm to the new radiotracer and the remaining 12 subjects to evaluate
the algorithm. All patient-specific data were acquired at Rigshospitalet (Copenhagen,
Denmark) and were handled in compliance with the Danish Data Protection Agency Act
no. 502, including full anonymization. The cohorts are listed in Table 1.

Table 1. Five cohorts are presented for Siemens Vision 600 PET/CT and Siemens Vision Quadra
PET/CT with a tracer split of [18F]FDG and [15O]H2O.

Cohort Radiotracer PET/CT Scanner Inclusion Period

Train (n = 858) [18F]FDG Siemens Vision 600 January 2021 to May 2022
Test (n = 78) [18F]FDG Siemens Vision 600 May 2022 to September 2022

Test (n = 36) [18F]FDG
LAFOV Siemens
Vision Quadra November 2021 to August 2022

Train (n = 34) [15O]H2O
LAFOV Siemens
Vision Quadra November 2021 to Marts 2023

Test (n = 12) [15O]H2O
LAFOV Siemens
Vision Quadra October 2022 to June 2023

2.2. Data Acquisition

The data acquisition differed between and within the cohorts but always consisted of
an NAC PET and CT pair. The [18F]FDG training cohort was made up of n = 858 subjects
scanned with (n = 620) or without (n = 238) IV contrast. All subjects in the [18F]FDG test
cohorts were scanned with CT without IV contrast. Data were acquired using CarekV at
120 ref. kVp, and with dose modeling using careDose at 170 ref. mAs. The CT images
were reconstructed at 512 × 512 matrices. [18F]FDG images were acquired according to the
European guidelines, with [18F]FDG administered at 3 MBq/kg body weight 60 min prior
to scanning. Subjects were scanned with either arms up or arms down. NAC PET images
were reconstructed without attenuation correction using 3D ordinary Poisson OSEM (3D-
OP-OSEM). No point spread modeling (PSF) was applied, and post-filtering was set at
4 mm. All PET images had a voxel size of 1.65 × 1.65 × 2 mm3 (440 × 440 matrices). The
training cohorts and Vision 600 test set were reconstructed at the PET/CT scanner. The test
LAFOV cohorts were reconstructed offline using e7tools (Siemens Healthineers, Knoxville).
In addition, we simulated the effect of reduced scanning time by reconstructing the LAFOV
[18F]FDG test set in frames of 30 s, 45 s, 90 s, 180 s, and 300 s.

The [15O]H2O cohorts consisted of patients examined with two different protocols:
a clinical cerebral blood flow (CBF) dynamic imaging protocol for patients with steno-
occlusive disease and an ongoing protocol evaluating multi-organ perfusion in patients
with thyroid disease (Protocol no. H-21034679). CT scans were acquired with a slice
thickness of 3 mm (initial 7 subjects at 1.5 mm). Furthermore, eight of the training subjects
were acquired with a low-dose CT (ref. mAs 30) before switching to an ultra-low-dose
CT protocol (ref. mAs 7). Data were acquired from the start of [15O]H2O injection for
a duration of 4–12 min. In the clinical CBF protocol, scans were repeated both prior to
and after the injection of acetazolamide (Diamox, Amdipharm, Helsingborg, Sweden), i.e.,
2–4 datasets were available for each subject. For the thyroid perfusion examination, two
datasets were available for each subject. Thus, the total number of datasets for training and
testing was n = 106 and n = 41, respectively. We used a static 3 min reconstruction no-PSF,
from 1 to 4 min post-injection to exclude the initial vascular phase of [15O]H2O NAC PET.
The reconstructions were performed offline using e7tools.

2.3. Pre-Processing

Pre-processing steps were identical for [18F]FDG and [15O]H2O images: CT images
were resampled to have pixel dimensions 2 × 2 × 2 mm3. To unify the input to the model
and reduce the computational load, the CT images were cropped before resampling in
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order to exclude air outside the patient using a threshold of −400 HU for air. The NAC PET
images were resampled to the cropped 2 × 2 × 2 mm3 CT images. The CT images were
then normalized by Equation (1), and the NAC PET images were normalized by Equation
(2) where p0.5% and p99.5% are the 0.5% and 99.5% percentile of the image.

CTnorm =
CT + 1024

2000
(1)

PETnorm =
PET − p0.5%

p99.5% − p0.5%
(2)

2.4. Synthetic CT Generation

We proposed a 3D parameter transferred conditional GAN (PT-cGAN) network ar-
chitecture. We trained a PT-cGAN model for each tracer. In both models, the generator
was first pre-trained using the large cohort of [18F]FDG training patients (with and without
IV contrast, n = 858). The PT-cGAN model was then trained using tracer-specific cohorts.
The FDG model included the same patients used during pretraining, but only the patients
without IV contrast were included (n = 238). For the H2O model, this included the training
H2O cohort (n = 34).

We utilized an all-convolution 3D U-net with filters (64, 128, 256, 512), which was
trained with a mean absolute error (MAE) loss using the Adam optimizer and a learning
rate of 2 × 10−4 for 300 epochs with batch size 8. In each epoch, a total of 12 random
patches (128 × 128 × 32) were extracted for each patient. Random data augmentation
(rotation, translation, scaling) was subsequently performed using TorchIO [26]. The final
model was chosen as the model with the best validation loss.

The discriminator network in the PT-cGANs is a binary classifier consisting of
5 convolutional layers. The discriminator is conditioned on the NAC PET patch and
was trained to determine if the given CT and NAC PET pair represented a real or synthetic
CT. The output of the network indicates whether the input CT is real or fake (synthetic). To
balance out the performance of the generator and discriminator, the discriminator was set
to train separately for 50 epochs, after which the pre-trained generator and discriminator
were trained in turn in an adversarial manner. The discriminator was trained using binary
cross entropy as a loss function using the Adam optimizer. The learning rate was initially
set to 2 × 10−3 and then dropped to 2 × 10−4 after 25 epochs.

The generator was trained using a combination loss function consisting of MAE loss,
LMAE, for the entire image; the discriminator loss for synthetic input, Ldisc; and a dice loss
for bone with bone defined as values above 100 HU. This loss function, genloss, is defined
as Equation (3).

Genloss = Ldisc + 150 · LMAE + 1 · Ldice(bone) (3)

The motivation behind this loss function was to optimize the generator on three
parameters: the image quality of the generated images, the network’s ability to trick the
discriminator, and the network’s ability to segment bones. The generator learning rate was
set to 1 × 10−4. The cGAN framework was trained for 1500 epochs with a batch size of 8.
The final model was then chosen using a combination of visual inspection and evaluation
metrics based on dice value for tissue and bone, RMSE, and MAE. The PT-cGAN trained
using the [15O]H2O cohort was trained using an increased generator learning rate (1 × 10−3

instead of 1 × 10−4) for a longer period (4000 epochs instead of 1500) to account for the
change in tracer. Fewer patches were extracted per subject (4 instead of 12) to accommodate
for the smaller cohort.

The synthesis steps for both models were identical. First, overlapping patches from the
NAC PET image were sampled and given to the trained generators, which outputted the
corresponding sCT patches. The sCT patches were then combined, where the average was
taken whenever the patches overlapped. The complete sCT image was then de-normalized,
padded, and resampled such that the combined sCT image had the size and dimensions of
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the original CT input. Finally, the bed from the original CT image was superimposed onto
the sCT image.

The proposed models were implemented in Python 3.9.7 using PyTorch Lightning
(v 1.5.10) and trained on four NVIDIA V100 32GB GPUs. Synthesis was performed using a
single NVIDIA Titan RTX 24 GB GPU, Nvidia, Santa Clara, CA, USA.

2.5. PET Reconstruction

Two PET reconstructions of each LAFOV test set patient were performed for evaluation of
both tracers. The sCT was used for attenuation correction to generate sPET, and the standard
CT was used to generate a standard PET image for reference. Reconstruction parameters were
in line with our clinical routine settings using e7tools with 3D-OP-OSEM: 2 mm post filter
and PSF for [18F]FDG and no-PSF, 4 mm post filter, static 1–3 min for [15O]H2O.

In addition, the LAFOV [18F]FDG subjects were reconstructed for the full acquisition
period (300 s) but using sCT from each of the time-reduced NAC PET images (sPET30,
sPET45, sPET90, sPET150) to simulate shorter acquisitions.

Due to the retrospective study design, PET raw data were not available for reconstruc-
tion for the Vision 600 [18F]FDG test cohort.

2.6. Data Analysis
2.6.1. Synthetic CT Analysis

For quantitative evaluation of the model predictions of accurate CT HU values, mean
absolute error (MAE) and structural similarity index measure (SSIM) between sCT and
CT were computed at the Vision 600 test set. This allows for a comparison of the sCT
performance between the Vision 600 (used for training) and the LAFOV Vision Quadra
used for test. We evaluated performance of each dataset using a t-test.

2.6.2. Qualitative Analysis

The [18F]FDG sPET images were evaluated using the test LAFOV cohort. Qualita-
tive evaluation was performed by visual inspection by an experienced nuclear medicine
specialist who was presented with PET and sPET images blinded to the AC method. For
each subject, the PET data were presented in Microsoft PowerPoint side by side in random
order. All transaxial slices were available by scrolling, as were the maximum intensity
projection (MIP) image with manual rotation. For each reconstruction, it was noted whether
attenuation artifacts due to motion between PET emission and the attenuation map were
present or if metal-induced artifacts could be seen in the PET data. Artifacts were rated
using a Likert scale of 0 = none, 1 = minor (no clinical impact), 2 = medium, and 3 = major
(potential clinical impact). Furthermore, it was noted if there were any differences in image
quality and, if so, which image was superior. The image quality was further assessed on
a 0–2 scale: (0 = same quality, 1 = insignificant difference without clinical impact, and
2 = significant difference with potential clinical impact).

2.6.3. Quantitative Analysis

Images were evaluated quantitatively by computing the relative mean difference
between the sPET and the reference PET in different organs for both tracer cohorts. This was
performed by deriving organ masks from CT using the segmentation prototype MIWBAS
from Siemens Healthineers [27]. The liver, lungs, kidneys, heart, aorta, spleen, brain, and
bones were evaluated.

2.6.4. Robustness towards Reduced Count-Rate

Finally, we evaluated each sCTx and corresponding sPETx, where x refers to the
reconstructed acquisition time (30 s, 45 s, 90 s, 150 s, 300 s), with a quantitative comparison
to the full-count sCT/sPET and reference CT/PET pairs. Evaluation was performed for
selected organs using the MIWBAS derived masked from the CT.
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3. Results
3.1. Qualitative Evaluation

The visual inspection of [18F]FDG-PET vs. sPET showed no differences in image
quality in 30/36 cases. Six cases showed minor insignificant differences, and no cases
showed significant differences, see Table 2. Six patients showed motion artifacts near the
liver. In all cases, these artifacts were removed or reduced in the sPET. Two subjects had
artifacts deemed due to metal affecting the PET images, one due to a metal implant with no
changes in clinical PET and one due to a hip implant where two small lesions were easily
seen on sPET.

Table 2. Artifact score: 0 = none, 1 = minor (no clinical impact), 2 = medium, 3 = major (potential
clinical impact). Overall image quality score: 0 = same image quality, 1 = insignificant difference,
2 = large difference with potential clinical impact.

Patient No. Artifact Overall Image Quality Score: Quality Notes

2 Metal implant in tooth (1) 0 No significant impact

5 1 Possible metal artifact. Two Lesions
on left flank easier seen on sPET

7 Tiny banana artifact on both recons (1) 0

10 Banana artifact on PET (2) 1 sPET best

16 Arm movement, both recons score (1) 0 No clinical impact

19 Banana artifact on PET (2) 1 PET best

20 Tiny banana artifact on PET (1) 0

22 Banana artifact on both recons (PET (2)
sPET (1)) 1 PET best

25 Streaking across abdomen on sPET (2) 1 No significant impact. PET best (1)

32 Lacking detail and streak in PET (1) 1 No significant impact. Very obese
patient. sPET best (1)

A sample patient is shown in Figure 1, illustrating the banana artifact in the PET
data (Figure 1b) due to the mismatch between the CT scan (Figure 1a) and emission data
(Figure 1f). The synthetic CT (Figure 1c) was synthesized from emission data, and therefore,
no mismatch was found, and the sPET appeared correct in the liver region (Figure 1d). This
motion due to breathing affected the whole region around the diaphragm and resulted in
markedly different PET values when using the anatomically matching synthetic CT for
attenuation correction, visualized in Figure 1i. Figure 2 shows an example patient with
severe CT streaking artifacts due to a double shoulder implant. We noted that the sCT
did not have these artifacts. The same observation was seen in patients with hip or dental
implants. The voxel-wise relative difference image (Figure 2c) visualizes the effect on the
PET image.
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and sPET, respectively, and the voxel-wise relative difference between PET and sPET (b–d) is shown 
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ning and PET emission. 

 

Figure 2. This patient has a double shoulder implant resulting in severe streaking artifact in he CT 

image (a). The synthetic CT (b) does not express these artifacts. This artifact propagates by attenua-

tion correction to the PET data. Panel (e) illustrates this by showing the relative difference between 

PET (c) and sPET (d). 

Figure 1. Illustrative sample patient with large banana artifact presented. Panels (a,b) show the
normal CT (soft tissue window) and corresponding PET. The synthetic CT (sCT) and corresponding
sPET are seen in (c,d). NAC PET is fused on top of the CT scan in (e), illustrating the mismatch
between CT and emission data. The blue line represents the superior part of the liver at the time of
CT scanning. Panel (f) shows the NAC PET used for synthesizing the sCT. (g,h) are MIPs of PET and
sPET, respectively, and the voxel-wise relative difference between PET and sPET (b–d) is shown in (i).
Note that the big deviation around the diaphragm is likely due to motion between CT scanning and
PET emission.
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Figure 2. This patient has a double shoulder implant resulting in severe streaking artifact in he
CT image (a). The synthetic CT (b) does not express these artifacts. This artifact propagates by
attenuation correction to the PET data. Panel (e) illustrates this by showing the relative difference
between PET (c) and sPET (d).
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3.2. Quantitative Evaluation

For the quantitative comparison between CT and sCT images for the [18F]FDG test
cohorts, an MAE value of 21.28 ± 4.01 HU and an SSIM value of 0.95 ± 0.01 was obtained
for the sCT images generated from the Vision 600 data. For the LAFOV cohort, MAE
was 19.51 ± 3.62 HU and SSIM 0.96 ± 0.01. This difference was not significant at a 5%
significant level.

The quantitative PET analysis of the [18F]FDG test cohort is shown in Figure 3. The
mean relative error was below 5% for all organs except the brain at 8%. We found a mean
relative error across organs at 1.18% including the brain and 0.45% excluding the brain.
As the [18F]FDG training cohort was selected from the clinical routine production, most
patients are scanned below the eyes only, and the scan did not include the full brain. This
might affect the results from the brain region.

Diagnostics 2023, 13, x FOR PEER REVIEW 8 of 13 
 

 

3.2. Quantitative Evaluation 

For the quantitative comparison between CT and sCT images for the [18F]FDG test co-

horts, an MAE value of 21.28 ± 4.01 HU and an SSIM value of 0.95 ± 0.01 was obtained for the 

sCT images generated from the Vision 600 data. For the LAFOV cohort, MAE was 19.51 ± 3.62 

HU and SSIM 0.96 ± 0.01. This difference was not significant at a 5% significant level. 

The quantitative PET analysis of the [18F]FDG test cohort is shown in Figure 3. The mean 

relative error was below 5% for all organs except the brain at 8%. We found a mean relative 

error across organs at 1.18% including the brain and 0.45% excluding the brain. As the 

[18F]FDG training cohort was selected from the clinical routine production, most patients are 

scanned below the eyes only, and the scan did not include the full brain. This might affect the 

results from the brain region.  

 

Figure 3. These Seaborn boxplots show the mean relative difference between PET and sPET for selected 

organs for [18F]FDG (a) and [15O]H2O (b) scans for the two respective test cohorts. * Note that the [18F]FDG 

training data did not include the brain in most of the scans. In contrast, the [15O]H2O training data from 

the LAFOV scanner always included the brain. 

The evaluation of the static PET water scans is summarized in Figure 3. The relative mean 

error was below 3.12% for all organs. Note that the brain was performing well on these LAFOV 

[15O]H2O scans, which might be due to the brain always being included in the training scans. 

Outliers were observed and expected as the motion between CT and PET can have a large 

impact at the patient level. An example patient is presented in Figure 4. 

For the analysis of robustness towards the reduced count rate, Figure 5 shows the 

mean relative deviations for the chosen organs for each acquisition time. Excluding the 

brain that, as mentioned, was not systematically represented in the training data, we ob-

tained good performance down to the 45 s scan, and even at 30 s performance, the mean 

relative error at the organ level is below 5% when further excluding bones. An example 

patient is shown in Figure 6 with varying frame sizes. 

The performance of subjects with abnormal anatomy could be a concern. We refer to 

a sample subject in Supplementary Material, Figure S1, showing a WB [18F]FDG PET from 

the LAFOV test cohort from a patient with an amputated right leg. This is an extreme case; 

PET quality is well recovered, including the scoliosis and dislocation of internal organs. 

Figure 3. These Seaborn boxplots show the mean relative difference between PET and sPET for
selected organs for [18F]FDG (a) and [15O]H2O (b) scans for the two respective test cohorts. * Note
that the [18F]FDG training data did not include the brain in most of the scans. In contrast, the
[15O]H2O training data from the LAFOV scanner always included the brain.

The evaluation of the static PET water scans is summarized in Figure 3. The relative
mean error was below 3.12% for all organs. Note that the brain was performing well on
these LAFOV [15O]H2O scans, which might be due to the brain always being included in
the training scans. Outliers were observed and expected as the motion between CT and PET
can have a large impact at the patient level. An example patient is presented in Figure 4.

For the analysis of robustness towards the reduced count rate, Figure 5 shows the mean
relative deviations for the chosen organs for each acquisition time. Excluding the brain
that, as mentioned, was not systematically represented in the training data, we obtained
good performance down to the 45 s scan, and even at 30 s performance, the mean relative
error at the organ level is below 5% when further excluding bones. An example patient is
shown in Figure 6 with varying frame sizes.
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Figure 4. Representative patient scan using NAC PET from [15O]H2O for sCT synthesis. Panel (a,b)
shows a sample coronal slice from the CT and PET images, respectively. Panel (c) presents the NAC
PET used for synthesis of sCT (d). The PET image reconstructed using sCT for attenuation correction
is shown in (e), with the relative differences in PET (b) shown in panel (f). Note the motion artifact
between CT and NAC PET resulting in a shadow above the liver in (b), also seen in (e) as a change in
reconstructed activity in the lower lungs due to breathing.
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Figure 5. Robustness towards different acquisition times can be observed for most organs down
to 45 s and stay below 5% deviation on average even for 30 s. The exception is the brain, which is
not well represented in the training data. The deviation in bone is also higher, most likely due to
the big impact on bone values due to motion, e.g., in the rib cage. The training cohort noise level
corresponded to the 90 s test data in image quality (red line).
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Figure 6. Sample patient illustration CT (a), sCT derived from [18F]FDG PET NAC for 30 s, 45 s, 90 s,
180 s, and 300 s (b–f) and reconstructed sPET data using the derived sCT with increasing frame sizes:
30 s, 45 s, 90 s, 180 s, and 300 s (g–k).

The performance of subjects with abnormal anatomy could be a concern. We refer to a
sample subject in Supplementary Material, Figure S1, showing a WB [18F]FDG PET from
the LAFOV test cohort from a patient with an amputated right leg. This is an extreme case;
PET quality is well recovered, including the scoliosis and dislocation of internal organs.

4. Discussion

In this study, a deep learning approach for synthetizing CT images directly from PET
emission data was implemented and evaluated with the purpose of eliminating the need
for a separate attenuation scan. This will achieve two goals: (1) lower the radiation dose
to patients where a clinical CT is not required and (2) address the artifacts related to the
mismatch between PET and CT scans due to motion, most commonly respiratory or cardiac
motion. The latter is a problem that was already pointed out with the introduction of
the PET/CT scanner in 2001 [28]. Similarly, artifacts may arise from a mismatch of air
in the stomach or bowel, which is displaced due to peristalsis between the PET and CT
acquisitions [29]. By generating the attenuation map from the emission data, we ensured
that PET and attenuation data were time-wise aligned and, at the same, in a homologous
position. The proposed model was trained on 858 subjects injected with [18F]FDG and
scanned on a Siemens Vision 600 PET/CT. The model was evaluated on 114 subjects from
a separate cohort, which were either scanned on the same scanner (n = 78) (CT vs. sCT
evaluation only) or on an LAFOV PET/CT (n = 36) (full PET vs. sPET evaluation). To
evaluate robustness towards lower count rates, we tested the performance by stepwise
shortening the reconstruction time. We found a mean relative error of 1.2% across all organs
(liver, lung, kidney, heart, aorta, spleen, brain, and bone) included in the LAFOV dataset.
When excluding the brain that was not systematically present in the training data, the
error dropped to 0.5%. This is in line with results reported by other groups; Hu et al. [30]
reported a mean error of 3.2% using a similar approach with a Wasserstein-based loss
function, and Xue et al. [31], similar to our approach, trained a 2D GAN on short-axis FOV
PET/CT data (n = 165) and obtained a normalized mean squared error of 0.5% across seven
test subjects scanned on a LAFOV scanner. For the reduced count rate simulation, we found
a slight decrease in performance when reducing frame size with optimal performance at
90 s corresponding to the noise level for the training data. Performance was found to be
below 5% mean error (excluding the brain) down to 30 s with clinical [18F]FDG dosage
(3 MBq/kg bw), indicating robustness towards variation in count rate due to variation in
injected activity or scanning time.
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To assess the model’s ability to perform on tracers other than [18F]FDG, we applied
transfer learning to a cohort of subjects examined using 15O-water PET scanning. Forty-six
subjects injected with [15O]H2O were scanned on a LAFOV PET/CT and split into a training
(n = 34) and test (n = 12) set. Despite the small cohort, we found the mean error stayed
below 5% except for bones (5.9%). In this model, the brain was included in all training
scans, and this is apparent with a mean error of just 2.5%. Based on this, we would expect
the [18F]FDG model to perform on par with the [15O]H2O-water model by including brains
in the training.

Quantitative results for the sCT analysis showed low MAE for both the Vision 600 and
the LAFOV [18F]FDG cohorts at 21.3 and 19.5 HU, respectively. The SSIM was 0.95 and
0.96, respectively, which is slightly below the result (0.98–0.99) reported by Hu et al. [30].
The CT image metrics showed no significant difference between the two cohorts, indicating
that the Vision 600 model was suitable for inference of LAFOV NAC PET data.

The qualitative results demonstrated no significant difference between all 36 cases
when rated by an experienced nuclear medicine physician. More specifically, 30/36 showed
no qualitative difference at all. For the six cases with minor differences, half were rated
with PET superior and half with sPET superior. In all cases with the banana artifact
in the CT-based PET, the physician observed a reduction of the artifact in sPET. This
qualitative assessment is a strong indication that the method is feasible and ready for
clinical testing. Furthermore, case inspection (Figure 1) showed a large variation around the
lower lung/diaphragm. Even though a ground truth is not available, the logical conclusion
here is that the emission-derived sPET is quantitatively more accurate than the CT-based
PET in an area of motion. Generating a synthetic CT for attenuation correction has the
benefit of allowing for validation of AI-derived data before reconstruction and intervention
if image artifacts are found. This is apparent in the case shown in Supplementary Figure S1,
where abnormal anatomy can be confirmed in the attenuation map and where an artifact in
the form of an air pocket can be identified and addressed in the interpretation. We believe
this leads to improved trust in an AI-based approach to CT-less PET scanning.

This study has some limitations. Firstly, due to the retrospective setup, no PET raw
data were available for the large Vision 600 cohort. Furthermore, whole-body [18F]FDG PET
was typically scanned below the brain in our institution; therefore, model performance at
the brain level is challenged. For the [15O]H2O model, the sample size was only 12 subjects
for testing. Even then, the results are promising and suggest that cross-tracer transfer
learning from the large [18F]FDG cohort might be feasible. Furthermore, the reliability of
the clinical output of [15O]H2O PET, namely the quantitative estimation of CBF and the
flow response to acetazolamide [32], was not estimated per se.

5. Conclusions

In this manuscript, we have demonstrated that attenuation maps can be synthesized
from [18F]FDG PET emission data, thereby eliminating the need for an attenuation CT
scan. This has the benefit of reducing patient dose, even below 1 mSv, but also suppressing
common artifacts in PET due to motion or metal implant artifacts in CT. Robustness towards
variation in scanning time was shown, thereby accommodating variations in scanning
protocols. Finally, transfer learning from the [18F]FDG model to a LAFOV [15O]H2O
model was feasible even with a small sample size and good accuracy of the final PET
reconstruction. This suggests that the proposed model can reduce the need for independent
imaging of anatomy with application to CT-less scanning.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics13243661/s1, Figure S1. Sample patient illustration with
abnormal anatomy.
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