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Abstract: Background: Identifying skeletal remains has been and will remain a challenge for forensic
experts and forensic anthropologists, especially in disasters with multiple victims or skeletal remains
in an advanced stage of decomposition. This study examined the performance of two machine
learning (ML) algorithms in predicting the person’s sex based only on the morphometry of L1–L5
lumbar vertebrae collected recently from Romanian individuals. The purpose of the present study
was to assess whether by using the machine learning (ML) techniques one can obtain a reliable
prediction of sex in forensic identification based only on the parameters obtained from the metric
analysis of the lumbar spine. Method: This paper built and tuned predictive models with two of
the most popular techniques for classification, RF (random forest) and XGB (xgboost). Both series of
models used cross-validation and a grid search to find the best combination of hyper-parameters.
The best models were selected based on the ROC_AUC (area under curve) metric. Results: The L1–L5
lumbar vertebrae exhibit sexual dimorphism and can be used as predictors in sex prediction. Out
of the eight significant predictors for sex, six were found to be particularly important for the RF
model, while only three were determined to be important by the XGB model. Conclusions: Even if
the data set was small (149 observations), both RF and XGB techniques reliably predicted a person’s
sex based only on the L1–L5 measurements. This can prove valuable, especially when only skeletal
remains are available. With minor adjustments, the presented ML setup can be transformed into
an interactive web service, freely accessible to forensic anthropologists, in which, after entering the
L1–L5 measurements of a body/cadaver, they can predict the person’s sex.

Keywords: forensic identification; machine learning; sex identification; lumbar vertebral column

1. Introduction

Identifying skeletal remains has been and will remain a challenge for forensic experts
and forensic anthropologists, especially in disasters with multiple victims or skeletal
remains in an advanced stage of decomposition. In such contexts, forensic experts must
use knowledge from the field of forensic anthropology, a field which takes interest in the
systematic examination of human bones. In order to identify the bones presented for
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examination as accurately as possible, a first step is to build the biological profile, which
involves establishing ethnicity, sex, stature, and age [1,2].

Sex determination is a fundamental step in estimating the biological profile from the
examination of skeletal remains in forensic anthropology. Most human bones have been
used to create various methods of predicting sex. Among the human bones, the coxal bone
and the skull are the most accurate for predicting sex, and the method used is a simple
macroscopic analysis. There are, however, multiple situations in which these skeletal
elements are not available, with the expert being forced to deal with bone fragments or
sometimes only with different bones of the human skeleton [3–5]. In such circumstances, it
is important to develop alternative methods that use other skeletal elements to predict sex.

The literature mentions only a few studies on the involvement of the spine in de-
veloping methods for sex prediction. The spine is a part of the human skeleton used in
forensic identification, primarily because of its ability to resist mechanical forces, as well
as due to the sexual dysmorphism based on the size and shape of certain vertebrae [6].
Regarding the use of the lumbar spine to sex prediction, the literature mentions several
studies on the development of discriminatory functions involving only the L1 and L5
lumbar vertebrae [7–9]. The vertebral column represents an important structure of the
human skeleton, being involved in multiple daily physical activities, providing the ability
to carry various loads. Therefore, the vertebral column has multiple functions and is a
complex anatomical structure. It is well known that as a person gets older, the spine
undergoes degenerative alterations (osteoporotic and osteoarthritis processes). All these
changes lead to morpho-pathological alterations of the spine, translated into a reduced size
of the vertebral bodies [10].

Data regarding the vertebral morphometry can be obtained using cadavers, bone
collection, or by using advanced imaging techniques. The advanced imaging techniques
include lateral X-rays, computed tomography, and magnetic resonance imaging. Usually,
cadavers and bone collection are the main source of data in forensic research in general
and forensic anthropology in particular, but not all the countries have bone collection,
while the use of cadavers to evaluate the vertebral morphometry requires some challenging
dissection techniques of the vertebral column, which is not impossible but is more difficult
and time consuming. The presence of virtual autopsy in some countries makes cadaver
research easier by using advanced imaging techniques instead of invasive dissection. As
mentioned before, the use of different imagistic scans on living people are the most common
and utilized techniques in acquiring data for studies in forensic anthropology. Because
MRI-based vertebral morphometry was reported to be more accurate than lateral X-ray-
based morphometry, in the present study we used magnetic resonance images to assess sex
using machine learning models [8,11–13]. Given data recently collected from 149 Romanian
adults, the main purpose of this paper was to assess whether the person’s sex can be
reliably predicted based only on the metric analysis of the lumbar spine (L1–L5). The
predictive models were built using ML techniques which incorporate methods to avoid
over-fitting (e.g., cross-validations), data leakage, and provide a good tradeoff between
bias and variance. The presented ML setup can further be transformed into an interactive
web service, freely accessible to forensic anthropologists, which might also contribute
to the extension of the data set by including measurements for individuals from other
geographical areas. The interactive web service will be extended, based on this data set,
along with sex prediction for age estimation too; this process will show the applicability
of machine learning regarding the age estimation for these metric measurements of the
lumbar vertebral column for the Romanian population.

2. Materials and Methods
2.1. Selection of the Study Lot, Criteria for Inclusion and Exclusion

This study proposes a machine learning method to determine sex starting from mor-
phometric analysis of L1–L5 lumbar vertebrae in a modern Romanian population. A total
of 745 lumbar vertebrae (L1–L5) from 149 Romanian individuals (56 men and 93 women)
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were analyzed by means of MR (magnetic resonance) images in the incidence of T1-FSE
(fast spin-echo) of the lumbar vertebral spine. The imaging scans were performed in a
Medical Imaging Laboratory in a limited territory in the central region of Romania, with
the full consent of the patients according to the working methodology of the Laboratory.
The type of study was retrospective.

The study was conducted in accordance with the Declaration of Helsinki, and the pro-
tocol was approved by the Ethics Committee of “Grigore T. Popa” Medicine and Pharmacy
University (protocol code 296/30 April 2023).

The inclusion criteria were age over 17 and the unaltered integrity of the vertebral
column. These patients were examined for vertebral pain by neurology and neurosurgery
specialists and the MRI scan was recommended to evaluate a possible vertebral pathology
as the cause for the pain. The exclusion criteria were represented by cases with advanced
scoliotic pathology, traumatic injuries (fractures), or surgery of the lumbar vertebral spine.

2.2. Recording Information in the Database

For the cases included in the present study, regarding the retained personal data, we
noted exclusively the sex and the age of the person to whom the MR scan was performed.

2.3. Working Methodology

A total number of 230 cases were analyzed, of which 149 MRI images of the lumbar
vertebral spine met the criteria for inclusion.

The present study involved performing three measurements on each of the five lumbar
vertebrae, totaling 2235 parameters included in the analysis of sex determination using
machine learning methods.

The measurements performed evaluated the posterior height of the vertebral bodies,
the width of the upper and lower plateau of each vertebral body, respectively; the results
are presented in Table 1.

Table 1. Measurement of the vertebral column L1–L5.

Measurement Abbreviation Vertebrae Definition

Width of superior endplate Width_sup_lx L1–L5 Distance between the most lateral edges
of the superior plate of the vertebrae

Width of inferior endplate Width_inf_lx L1–L5 Distance between the most lateral edges
of the inferior plate of the vertebrae

Posterior height of the
vertebral body Heigth_lx L1–L5

Posterior height of the vertebral body
from the left bisecting plane at the

posterior part of the vertebral body at the
point which can get the largest height

The analysis of MR images and measurements included in the study were performed
using the Radiant Dicom Viewer program, by means of the Ruler function (Figure 1).

2.4. Data Analysis and Machine Learning Methodology

For the 149 MRI images, we collected 15 variables related to L1–L5, as presented
in Table 1. Sex also was collected to estimate the performance of subsequent predictive
models. Distribution of variables was examined with Exploratory Data Analysis techniques
(Figure 2) [14,15]. In machine learning (ML) models, the collinearity of the predictors is not
such a critical concern as in classical statistical analysis (e.g., linear or logistic regression).
Nevertheless, before building ML models, we removed a series of predictors which recorded
large correlations with other predictors (Figures 3 and 4).
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Figure 1. Measurements on vertebral column (exemplification of vertebral body height (a) and 
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Given the nature of the data set (L1–L5 measurement could be recorded from cadavers),
the variable to be predicted (sex) was binary. Among many classifiers used in ML, in this
paper, the models were built and refined with Random Forests (RFs) and Extreme Gradient
Boosting (XGB), two of the most popular ML algorithms [16–22].

Both algorithms grow ensembles of classification or regression trees [23,24]. By build-
ing trees through split-variable randomization, RFs [25] manifest an increased prediction
accuracy and a decreased prediction variance [26].

Boosting processes “weak” learners (e.g., stumps or one-level trees) iteratively using
a gradient learning strategy and thus produces “strong” learners [27]. XGB [28] is a
regularized implementation of a gradient boosting framework [29] with good performance
in both classification and regression [30]. While RF performs better in variance reduction,
XGB excels in bias reduction.

Both RF and XGB have hyper-parameters (or tuning parameters) that cannot be learned
directly from the data, but they need to be refined [31]. Since larger numbers of assembled
trees do not significantly improve the overall performance [32], in this paper, the ntrees
parameter was fixed to 700; only two parameters were tuned for the RF models: mtry
(number of random attributes used for node splitting) and min_n (minimum number of
observations in a node as a requirement to continue the tree splitting).

For the XGB models, six hyper-parameters were tuned:

• learn_rate (learning rate);
• loss_reduction (min reduction in the loss function for continuing the tree split);
• tree_depth (max tree depth);
• sample_size (random samples size);
• min_n and mtry (as for RF models).

Following the recommendation in [30], the number of trees was not tuned but fixed at
1000 for all XGB models.

The RF and XGB classification models were tuned by choosing in advance 100 (RF)
and 300 (XGB) combinations of values for the selected hyper-parameters using a random
grid search [33]. The best combination of hyper-parameters was chosen by the Receiver
Operating Characteristic Area Under the Curve (ROC-AUC) metric [34].

Data leakage was avoided by splitting at random the initial data set into the training
subset (70% of the initial set observations) and the testing subset (30%). Overfitting was
reduced by repeated k-fold cross validation [34] of the training subset.

Both algorithms provide the estimated predictors’ contribution to the outcome vari-
ation (the variable importance). Among the variable selection methods for RF [35], the
permutation-based method was preferred in this study. The importance of variable k is
based on the increase in the prediction error in the test set if the variable k’s values are
permuted at random. In RF models, through permutation, all correlated predictors are
qualified as important if any one of them is important [26]. Of the three scores which gen-
erally provide the variable importance in XGB models—gain, cover, and frequency—the
xgboost engine focuses on gain [36].

The main interest of this paper was to build a model which properly predicts the sex of
a body based solely on the L1–L5 vertebrae measurements. Despite their excellent predic-
tive power, ML algorithms like RF, XGB, or neural networks are opaque. Starting in 2016,
scholars and professionals in many areas (medicine included) required more transparency
and interpretability for the ML models [37,38]. Of the techniques for interpretable machine
learning [39–41], for this paper, we used Variable Importance plots, Partial Dependency
Plots, and Accumulated Local Effects Plots, as described in the literature [42,43].

Partial Dependency Plots (PDPs) and Accumulated Local Effects Plots (ALEs) are
two explanatory tools used for visualization and interpretation of effects that the analyzed
features have on model predictions. The idea behind PDPs is to analyze the behavior of
model predictions based on one or two selected features [42]. A partial dependency profile
is calculated as the mean of ceteris paribus profiles—which is a technique to show the
dependence between prediction and a feature variable at the instance level. The shape of
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the PDP plot will suggest whether the relationship between the output and predictors is
linear, monotonic, or complex [43]. These plots provide a simple method to describe the
influence that a selected feature has on the outcome, but they have a major disadvantage
when the analyzed features are correlated.

This issue is solved by an ALE, which essentially is the same function of one or
two features, but the key difference is how they handle the influence of other features.
PDP plots average the predictions and ALE plots use the difference in predictions and
accumulate them.

While both PDPs and ALE plots aim to visualize the impact of features on model
predictions, ALE plots often provide a more accurate depiction, thus they are the way to go
when choosing between these two options [43].

Data were imported, prepared, explored, and analyzed using R version 4.3.0 [44],
mainly with the tidyverse ecosystem of packages (dplyr, tidyr, ggplot2, etc.) [45]. Descrip-
tive statistics (Table 2) were generated with the gtsummary package [46], and ggplot2
package was the main tool for the graphics.

Table 2. Descriptive statistics for numerical variables.

Variable Min Q1 Median Q3 Max Mean SD

age 17 38 46 60 86 48 15
height_l1 1.62 2.26 2.36 2.47 2.79 2.36 0.17
width_sup_l1 2.74 3.22 3.47 3.78 4.59 3.52 0.43
width_inf_l1 2.90 3.41 3.70 3.98 4.74 3.69 0.40
height_l2 1.90 2.30 2.41 2.55 2.83 2.42 0.18
width_sup_l2 2.93 3.49 3.77 4.05 5.10 3.80 0.44
width_inf_l2 2.93 3.67 3.86 4.18 5.14 3.91 0.40
height_l3 1.95 2.32 2.47 2.56 2.95 2.45 0.19
width_sup_l3 3.13 3.73 4.02 4.32 5.18 4.03 0.43
width_inf_l3 3.12 3.79 4.05 4.34 5.55 4.08 0.45
height_l4 1.92 2.32 2.44 2.57 3.05 2.44 0.20
width_sup_l4 3.12 3.82 4.19 4.48 5.35 4.17 0.48
width_inf_l4 3.01 3.86 4.12 4.49 5.10 4.14 0.44
height_l5 1.72 2.31 2.44 2.56 3.00 2.44 0.22
width_sup_l5 3.01 3.96 4.27 4.59 5.39 4.28 0.47
width_inf_l5 2.93 3.80 4.05 4.41 5.08 4.09 0.42

The tidymodels ecosystem of packages (rsample, recipes, parsnip, yardstick, tune,
dials, workflows) [47–49] was employed for model building and tuning (Figures 5 and 6
were generated with tidymodels and ggplot2 packages). RF models were fitted with the
ranger engine [50], whereas the engine used for building XGB models was xgboost [30].
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The model interpretation (Figures 7–12 included) relied on the DALEX ecosystem [51],
mainly the ingredients package [52].

Diagnostics 2023, 13, 3630 10 of 18 
 

 

For XGB models, the best roc_auc (averaged along the cross-validation folds) was 
recorded for the following combination: mtry = 2, min_n = 7, learn_rate = 0.0002989344, 
loss_reduction = 0.0000000001035262, tree_depth = 9, and sample_size = 0.9337572. 

The “moment of truth” for the predictive models is how they perform on new (“un-
seen”) data. There are models which confound the pattern with the noise, i.e., they found 
non-existing patterns in data (overfitting). This is the role of the testing subset. After iden-
tifying the best combination of hyper-parameters, the best RF and XGB models were ap-
plied for the testing data. Table 3 displays both accuracy and roc_auc performance metrics 
for the selected/best RF and XGB models.  

Table 3. Model performance on new data (the test data subset). 

Algorithm Metric Estimate 
rf accuracy 0.78947 

xgb accuracy 0.81579 
rf roc_auc 0.96308 

xgb roc_auc 0.86770 

Selected models recorded good performance on both metrics. While in terms of ac-
curacy, the XGB selected model overperformed the RF selected model (0.816 vs. 0.789), 
when considering the roc_auc, RF performed better (0.963 vs. 0.868). To summarize, in 
terms of prediction performance, both RF and XGB selected models seem to supply good 
predictions of the person’s sex based on her/his L1-L5 vertebrae measurements.  

3.3. Model Interpretation  
After assessing the predictive power of the ML models built upon RF and XGB, next, 

we were interested in exploring the predictors’ importance in the models and how the 
most important predictors were associated with the outcome (sex) within each selected 
model. Figure 7 mirrors the predictors’ importance for the RF (left) and XGB models 
(right), as estimated by the ingredients package.  

 
Figure 7. Variable importance for the best random forest and xgboost models, as estimated by the 
ingredients package. 

1.04 1.05 1.06

height_l1

height_l2

height_l5

height_l3

width_sup_l2

width_sup_l5

width_sup_l1

height_l4

Root mean square error (RMSE) loss after per mutations

rf

The number of important variables for model_fit's prediction is 6 out of 8. 
 Variables height_l4, width_sup_l1, width_sup_l5 ha ve the highest impor tantance.

1.192 1.193 1.194

height_l2

height_l4

width_sup_l2

height_l5

height_l3

height_l1

width_sup_l1

width_sup_l5

Root mean square error (RMSE) loss after per mutations

xgb

The number of important variables for model_fit's prediction is 3 out of 8. 
 Variables width_sup_l5, height_l1, width_sup_l1 ha ve the highest impor tantance.

Figure 7. Variable importance for the best random forest and xgboost models, as estimated by the
ingredients package.
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Figure 8. Partial Dependence and Accumulated profiles for the most important predictor in RF.
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Figure 9. Partial Dependence and Accumulated profiles for the 2nd most important predictor in RF.
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Figure 10. Partial Dependence and Accumulated profiles for the 3rd most important predictor in RF.
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Figure 11. Partial Dependence and Accumulated profiles for the 4th most important predictor in RF.
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Figure 12. Partial Dependence and Accumulated profiles for the 5th most important predictor in RF.

3. Results

This section starts with data exploration, by examining the data distribution and
correlation among predictors. Subsequently, some details on model building, assessment,
and tuning are provided. Finally, models which recorded the best performance are analyzed
using variable importance and some other techniques related to model interpretation
(explainable AI).

3.1. Data Distribution Correlation among Predictors

Table 2 shows the descriptive statistics for each numerical variable in the data set—the
minimal value, the 1st quartile (Q1 or the 25th percentile), the 3rd quartile (Q3 or the
75th percentile), the median (the 50th percentile), and the maximal value. The average
value (mean) is accompanied by the standard deviation (SD).

As the main interest of this paper was to build models for sex prediction based
on measurements of the L1–L5 vertebrae, Figure 2 displays the distribution of numeric
variables by sex. Despite some differences in between sexes, the shape of the distribution is
generally similar, with males’ measurements appearing to exceed the values for females.
Nevertheless, here, we were not interested in the analysis of the statistical differences
between sexes for the L1–L5 variables.

Before building the ML models, predictors’ collinearity was assessed and fixed.
Figure 3 shows the correlation matrix among all numeric variables in the initial data set.

Classical statistical techniques, such as linear and logistic regression, require removing
large correlations among predictors, since collinearity usually affects model performance.
Even if both RF and XGB models handle collinearity much better, we removed predictors
recording correlation coefficients larger than 0.75. The final data set contains predictors in
Figure 4.

Also, in Figure 4, variable age was removed, since when sex is unknown, a person’s
age could also not be determined. Consequently, the final data set on which the ML models
were built and tuned contains sex (as the outcome variable) and all variables in Figure 4
(as predictors).

3.2. Model Building and Refinement

The 149-observation data set was randomly split into the training data set which
contained 111 records (about 75%) and the testing data set containing 38 records (25%).
All further model training, tuning, and selection were performed only on the training
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data set. The testing data set was used solely for estimating the model performance on
new data (data not “seen” during the training steps). This is a basic prerequisite in ML
model building.

To reduce overfitting, the training subset was further split randomly into five cross-
validation folds. In each training fold, the data was subsequently split into the analysis
subset and the validation subset.

For each cross-validation fold, 100 RF models (each model incorporated 700 trees)
were built and assessed for each combination of (mtry, min_n) hyper-parameters extracted
through a random grid search. Figure 5 shows the values of the two main performance
metrics of classification (accuracy and roc_auc) when mtry (# Randomly Selected Predictors)
and min_n (Minimal Node Size) varied within their value range extracted through a
grid search.

Figure 5 shows that, for both hyper-parameters, larger values generally decrease the
model performance, and the best values of both accuracy and roc_auc for the training
data set were recorded during the first half of hyper-parameters’ range. The best models
were chosen using the roc_auc metric. For RF, the best performance along the five cross-
validation folds was recorded for mtry = 1 and min = 8.

XGB models were built using the same subsets/folds as for RF. But as the number
of hyper-parameters to be tuned was three times higher than in RF models, for the XGB
models, 300 combinations of the hyper-parameter value were selected through a random
grid search (each model incorporated 1000 trees). One of the remarkable features of
the tidymodels ecosystem is that the packages managing the grid search (tune and dial)
automatically extract the appropriate values of the hyper-parameters, according to the data
set characteristics, without any tweaking from the user. This is useful especially for the
XGB hyper-parameters such as learning rate, loss reduction, and sample size.

Figure 6 displays the values of accuracy and roc_auc when varying the XGB hyper-
parameters.

For XGB models, the best roc_auc (averaged along the cross-validation folds) was
recorded for the following combination: mtry = 2, min_n = 7, learn_rate = 0.0002989344,
loss_reduction = 0.0000000001035262, tree_depth = 9, and sample_size = 0.9337572.

The “moment of truth” for the predictive models is how they perform on new (“un-
seen”) data. There are models which confound the pattern with the noise, i.e., they found
non-existing patterns in data (overfitting). This is the role of the testing subset. After
identifying the best combination of hyper-parameters, the best RF and XGB models were
applied for the testing data. Table 3 displays both accuracy and roc_auc performance
metrics for the selected/best RF and XGB models.

Table 3. Model performance on new data (the test data subset).

Algorithm Metric Estimate

rf accuracy 0.78947
xgb accuracy 0.81579
rf roc_auc 0.96308

xgb roc_auc 0.86770

Selected models recorded good performance on both metrics. While in terms of
accuracy, the XGB selected model overperformed the RF selected model (0.816 vs. 0.789),
when considering the roc_auc, RF performed better (0.963 vs. 0.868). To summarize, in
terms of prediction performance, both RF and XGB selected models seem to supply good
predictions of the person’s sex based on her/his L1–L5 vertebrae measurements.

3.3. Model Interpretation

After assessing the predictive power of the ML models built upon RF and XGB, next,
we were interested in exploring the predictors’ importance in the models and how the most
important predictors were associated with the outcome (sex) within each selected model.
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Figure 7 mirrors the predictors’ importance for the RF (left) and XGB models (right), as
estimated by the ingredients package.

Out of eight predictors, six were found to be particularly important for the RF model,
while only three were determined to be important by the XGB model. For RF, height_l4
emerged as the most important feature, followed by width_sup_l1 and width_sup_l5
ranking second and third, respectively. These two features were also identified as the most
important by the XGB model, with width_sup_l5 being the most important variable and
width_sup_l1 being the second (most) important. The top 3 for XGB was completed by
height_l1, which, intriguingly, was the least important in the RF model. The other three
variables that were qualified as important by the RF model were width_sup_l2, height_l3,
and height_l5, filling the fourth, fifth, and sixth positions, respectively.

For the PDP and ALE plot analysis (Figures 8–12), only the variable importance as
estimated by the RF selected model was considered, since its roc_auc metric was the highest
on the test set. From the variable importance plot in the left side of Figure 7, the top 5 most
important predictors were examined. For each top predictor, the figure includes three charts:
the PDP plot, the ALE plot (for checking if the PDP plot is affected by correlation with
other predictors), and the density curve (to identify the ranges where models were fitted
on a small number of predictor values and thus the interpretation needs extra precaution).

Both the PDP (Figure 8—left) and ALE (Figure 8—center) plots for the height_l4
variable suggest that the probability of sex being predicted as “female” drops after a value
of 2.5, i.e., values of height_l4 larger than 2.5 are more likely to be associated with males.
The rather weird jumps on the left and right side of the plots can be explained by the low
number of values in those regions, as can be seen in the density curve for the variable in
Figure 8 (right).

The PDP plot for the second most important feature, width_sup_l1, presented in
Figure 9 (left), and the ALE plot (center) follow a similar pattern. Both of them suggest that
the probability outcome of sex being “female” is higher while the values for width_sup_l1
are low and slowly decreases as the values rise, especially after 3.6.

For the variable width_sup_l5, both the PDP plot (Figure 10—left) and ALE plot
(Figure 10—center) exhibit similar results. A value below 4.2 is strongly associated with
a high probability of the value “female” for the outcome. Notably, the value is also the
starting point of a steep decrease in the probability of a person being a female. The slight
increase after 4.5 can, once again, be explained by the low number of observations in that
range, as seen in Figure 10—right.

The width_sup_l2 feature is associated with a higher probability of sex being female
for values less than 3.6, and the probability starts to lower for values up to 4.6, as can be
seen in Figure 11 (left and middle). Marginal intervals contain outliers which result in steep
increases or decreases in the plot curves.

Finally, as seen in Figure 12 (left and center), the height_l3 feature presents a descend-
ing curve, meaning that values lower than 2.5 are associated with a higher probability
of the outcome being “female”, and values greater than 2.5 decrease the chance of the
“sex” being predicted as “female”, but here, the outcome probability descends in a more
gradual manner.

Generally, larger values of L1–L5 vertebrae measurements are associated with males.

4. Discussion

While artificial intelligence (AI) can be considered an area of research aimed at mimick-
ing human abilities, machine learning is a specific subset of AI that develops a computer’s
ability to learn. The interest in ML is due to various factors such as the increasing volume
and variety of data available on the internet, cheaper and more powerful computer pro-
cessing, and affordable data storage. Advances in ML have led to the development of the
ability to quickly and automatically produce models that can analyze a significant amount
of complex data with faster and more accurate results.
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The purpose of the present study was to observe whether by using the ML method,
there is a good predictability of sex in forensic identification based on parameters obtained
from the metric analysis of the lumbar spine specific to the Romanian population.

Generating a sex prediction model is based on solving a classification task. Classifica-
tion is one of the most commonly used exploratory tasks in ML [53].

In this regard, we used MR images, due to their reliability and performance in visual-
izing the spine, focusing on the lumbar spine, taking into account parameters such as the
height and width of the upper and lower plateau of each lumbar vertebra L1–L5. Of all
the measurements performed, only the heights of the L1–L5 vertebrae, respectively, the
dimensions of the upper plateaus of the first two vertebrae, L1 and L2, and of the fifth
lumbar vertebra, L5, were included in the present study. They were shown to meet all the
characteristics to be entered into the ML classification.

In forensic medicine, and especially in forensic identification, the daily practice of
providing correct and complete answers both for justice and for humanitarian and ethical
reasons leads to the need of developing and creating as many methods as possible adapted
to the new living conditions. Thus, the involvement of machine learning techniques in
determining certain parameters that create the biological profile of an individual, in this
case determining sex, is a primary necessity of research in this field.

Sexual dimorphism can be represented on almost every bone component in the cranial
and postcranial skeleton. In the present study, we chose to highlight the sexual dimorphism
provided by the lumbar spine, describing differences in its morphometry between males
and females and generating a machine learning model to accurately predict a person’s
sex. According to the results, it is observed that the measurements under discussion show
higher values in males compared to females for the Romanian population, which also
follows the results from specific studies of other population groups.

Sexual dimorphism of vertebrae is fundamentally based on size, with male individuals
generally being larger than female individuals. Previous studies have shown different
results on statistically significant differences between sexes in vertebral regions, but all
identify dimorphism in vertebral body measurements [8,54–59]. Studies led by Taylor and
Twomey [54] suggest that these differences may be due to differential growth rates between
males and females during puberty, early growth of vertebrae in female individuals, and a
greater increase in width in male individuals. In addition, bone size, shape, and density
are also influenced by physical activity and mechanical stress [60]. The smaller size of
the vertebral body in female individuals is associated with greater flexibility of the spine
compared to an accentuated lumbar lordosis in response to the biomechanical needs of
pregnancy [8,61,62].

The present study proposes a machine learning model in which, for both sexes, the
selected models performed well, in terms of predictive performance, and both selected
RF and XGB models appear to predict the person’s sex based on L1–L5 measurements.
In a modern African population study [8], significant sex differences were identified in
several metric traits of the lumbar vertebrae, and the multiple discriminating functions
generated from the analyzed data were able to predict sex with satisfactory accuracy.
Other studies using individual postcranial elements such as the femur [63–65], tibia [63,66],
patella [67,68], humerus [69,70], radius and ulna [71], and various hand and foot bones [72]
showed comparable performance to the present study.

This paper offers two models of ML, RF, and XGB, each with its own characteristics,
and presenting different performance, random forest having the best. For both, we used
two metrics (accuracy and roc_auc), the latter being the most used to highlight model
performance.

For both metrics, the selected models recorded good performance. While in terms of
accuracy the XGB selected model overperforms the RF selected models (0.816 vs. 0.789),
when considering the roc_auc, RF performed better (0.963 vs. 0.868). To summarize, in
terms of prediction performance, both RF and XGB selected models seem to predict the
person’s sex based on the L1–L5 measurements.
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Because the identity of individuals must be predicted quickly and accurately in events
such as war, natural disasters, or fires, which profoundly affect society, imaging (virtual
forensic) scanning of cadaveric bodies and MLs used in the present study show that predic-
tion time can be minimized and high accuracy can be achieved depending on the situation.
Given the high accuracy and reliability of results for both RF and XGB algorithms, it is
believed that this study will strengthen and contribute to studies related to sex prediction
and its associations with L1–L5 measurements.

Limits of the Study

Even though with the current data set, the ML models recorded good results, the
number of observations is low by ML standards and needs to be enlarged in future studies.

RF and XGB findings should also be compared with results provided not only by other
statistical techniques, such as logistic regression and discriminant analysis, but also with
other ML classifiers, such as Support Vector Machines, Naïve Bayes, or Neural Networks
(admittedly, some algorithms will require much larger data sets for training).

As the training data set is small and homogeneous, application of the current ML setup
should be carried out with extra caution for people originating in other geographic regions.

Age may prove to mediate the association between L1–L5 measurements and sex, and
this should be addressed by further research.

5. Conclusions

Data collection and data analysis methods and tools presented in this paper provide
reliable information and results with large applicability in the future for sex prediction
based on vertebral column measurements for the Romanian adult population. This is even
more important when only skeleton parts are available for anthropological analysis. Future
research may consider more measurements, describing larger segments of the vertebral
column, as extracted from CT and MR images. Also, future research will be carried out
regarding the age estimation based on this data set; this aspect will be important to show
the importance of and the impact of vertebral column on age estimation.

The present work could serve as a good starting point in the introduction and develop-
ment of machine learning models in Romanian forensic anthropology. Based on the setup
deployed for this study, a digital interface may be implemented and made available to all
practitioners of the forensic network in Romania. This interface could be developed by
including additional parameters for supporting forensic identification, such as parts of the
biological profile, postmortem interval, etc. Such an interface would contribute to forensic
medicine in Romania.
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