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Abstract: Heart diseases is the world’s principal cause of death, and arrhythmia poses a serious risk to
the health of the patient. Electrocardiogram (ECG) signals can be used to detect arrhythmia early and
accurately, which is essential for immediate treatment and intervention. Deep learning approaches
have played an important role in automatically identifying complicated patterns from ECG data,
which can be further used to identify arrhythmia. In this paper, deep-learning-based methods for
arrhythmia identification using ECG signals are thoroughly studied and their performances evaluated
on the basis of accuracy, specificity, precision, and F1 score. We propose the development of a small
CNN, and its performance is compared against pretrained models like GoogLeNet. The comparative
study demonstrates the promising potential of deep-learning-based arrhythmia identification using
ECG signals.

Keywords: arrhythmia detection; deep learning; ECG; healthcare; machine learning

1. Introduction

Arrhythmias, irregular heart rhythms, are a major health concern, affecting millions
globally. The status of arrhythmia can range from benign, with a minimal impact on health,
to severe, which can be fatal by causing cardiac arrest, stroke, etc. Hence, its early detection
can aid in effective clinical management [1]. An electrocardiogram (ECG) is the principal
procedure employed for effective arrhythmia detection, but diagnosis can be challenging
because of the subtle disposition of symptoms. Lately, advancements in deep-learning
algorithms have offered a promising solution for automation and accurate diagnosis in
medical applications [2].

The early detection of arrhythmias is crucial, as timely treatments, like medications and
lifestyle changes, can be initiated, thus preventing further complications. Also, the detection
of certain arrythmia types, like ventricular tachycardia or atrial fibrillation, is essential
and can prevent the occurrence of severe events like cardiac arrest or stroke. This can aid
doctors in instigating preventive procedures such as implantable cardioverter defibrillators
(ICDs) or anticoagulant therapy, reducing the risk of life-threatening events. Furthermore,
arrhythmia detection plays a vital role in personalized treatment [3,4]. Arrhythmias can
have various underlying causes and may require different treatment approaches. The
accurate detection and classification of arrhythmias using ECG signals can aid in identifying
the specific type of arrhythmia and tailoring treatment plans accordingly. This personalized
approach ensures that patients receive the most effective therapies.

In addition, the ability to remotely monitor arrhythmias has transformative potential
in healthcare. Arrhythmias often occur sporadically or intermittently, making their detec-
tion challenging using traditional methods that rely on short-term ECG recordings. EEG
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signals, on the other hand, can be continuously monitored over extended periods, allowing
for the detection of transient arrhythmias that may go unnoticed in standard clinical assess-
ments [5]. Remote monitoring and telemedicine, facilitated by continuous EEG monitoring,
enable patients to receive timely medical attention regardless of their physical location,
enhancing access to healthcare services and improving patient care. Moreover, arrhythmia
detection has implications for reducing healthcare costs. The timely detection and effective
management of arrhythmias can help decrease healthcare costs associated with emergency
department visits, hospitalizations, and long-term complications. By implementing auto-
mated arrhythmia detection systems, healthcare providers can optimize resource allocation,
streamline patient care, and potentially alleviate the financial burden on individuals and
healthcare systems [6].

Although traditional methods, such as ECG, have been the standard for arrhythmia
detection, they possess certain limitations that motivate the exploration of alternative
approaches. ECG recordings provide valuable information about heart activity, but they are
primarily focused on measuring electrical signals directly from the heart. Additionally, ECG-
based arrhythmia detection heavily relies on human interpretation, which can introduce
subjectivity and variability in diagnoses. The accuracy of traditional methods is dependent
on the expertise of the interpreting healthcare professional, and the misinterpretation or
misclassification of arrhythmias can occur, potentially leading to incorrect treatment plans
or missed opportunities for intervention. Moreover, traditional methods may struggle with
the detection of certain types of arrhythmias that exhibit complex or atypical patterns. For
instance, detecting arrhythmias during exercise or under specific physiological conditions
may pose challenges due to the dynamic nature of heart rhythms. Traditional methods
may not capture these variations adequately, potentially leading to missed diagnoses or
delayed treatment.

These limitations of traditional arrhythmia detection methods highlight the need for
alternative approaches that can enhance accuracy, objectivity, and efficiency in detecting
and classifying arrhythmias. Thus, there is huge potential for applying deep learning for
the accurate and automated recognition of arrythmias by ECG signals.

Deep learning, a subset of artificial intelligence, has demonstrated remarkable success
in various fields, including computer vision, knowledge engineering, and medical image
analysis [7]. Its ability to automatically learn multifaceted patterns and characteristics from
raw information makes it suitable for examining ECG signals and detecting arrhythmias.
Deep learning algorithms can capture intricate temporal and spatial relationships within
the ECG signals, enabling the accurate classification of different arrhythmia types. The
integration of deep learning algorithms with ECG signals offers several advantages for
arrhythmia detection. Firstly, deep learning models can handle the inherent complexity
and variability of ECG data, capturing the subtle patterns and features associated with
different arrhythmias. These models can learn from large-scale datasets, encompassing
diverse arrhythmia cases, to generalize well and improve detection accuracy.

Furthermore, deep learning models can provide automated and real-time arrhyth-
mia detection, reducing reliance on human interpretation and increasing efficiency. Once
trained, these models can analyze ECG signals in real time, rapidly identifying abnormal
heart rhythms and alerting healthcare professionals for further assessment and interven-
tion. This automation streamlines the detection process, enabling quicker diagnosis and
timely treatment. Additionally, the integration of deep learning with ECG signals allows
for continuous monitoring, capturing transient or intermittent arrhythmias that may go
unnoticed in short-term ECG recordings. Continuous monitoring enhances the ability to
detect and characterize arrhythmias, providing a comprehensive assessment of a patient’s
heart rhythm over an extended period. This continuous monitoring capability, coupled
with deep learning algorithms, facilitates remote monitoring and telemedicine applications,
empowering patients and improving access to healthcare services.

The objective of the proposed work was to investigate the potential of deep learning
techniques for accurate and automated arrhythmia detection using ECG signals as inputs.
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Specifically, the study aimed to develop and compare deep learning models for classifying
arrhythmias using ECG data, ultimately evaluating their performance.

The paper will be structured as follows: The introduction highlights the significance
of arrhythmia detection and the potential of ECG signals and deep learning for accurate
and automated detection. This is followed by a review of previous studies in the literature.
Additionally, the methodology section will describe the dataset used, the deep learning
model architecture, and the evaluation metrics employed for assessing the performance.
This is followed by the results and discussion sections, where the performance of the small
CNN is contrasted with that of GoogLeNet. The findings exhibit that the proposed small
CNN performed better than GoogLeNet in detecting arrhythmia using ECG signals. The
small CNN model exhibited a high accuracy of 91.2%. This indicates that the presented
approach has the capacity to be used as an effective means for automated arrhythmia
detection. The discussion also highlights the advantages of the small CNN model, such as
its simplicity and efficiency compared to the more complex GoogLeNet models.

2. Literature Review

The variation in heart activity can be captured by an ECG, a type of non-invasive
technology. Through the placement of electrodes on the patient’s body, an ECG machine
is able to monitor the heart’s rhythm [8]. ECG analysis is a challenging undertaking due
to the variation in heartbeats, the tiny amplitude of the collected signal, and the difficulty
of recognizing its components. The challenge here is to precisely identify and classify
various types of arrhythmias [9]. The precise study of ECG reports requires a proficient
doctor, which may lead to manual errors. These errors can be overcome by designing an
intelligent automated system using the current attractive technology of machine learning
and deep learning.

Although there are several methods in the literature for detecting arrhythmia, studies
have concentrated more on noise filtering from ECG signals [10–15]. Various machine
learning models have been put forth based on signal segmentation [16,17], manual feature
extraction [18], and support vector machines (SVMs) [19,20]. Further, higher-order statistics
and Hermite functions have been employed along with a variety of machine-learning-
based methods to extract more features [21–23]. The above-mentioned methods have
certain limitations, such as the considerable cost, the time required, and the manual pre-
processing of the signals. To overcome these limitations, researchers have used deep
learning models like CNNs [24,25] and recurrent neural networks (RNNs) [26,27] to study
ECG signals, but their work still relies on the pre-processing of the signals, which can result
in information loss.

Recently, deep learning has revealed an astonishing improvement in the domain
of medical diagnosis. Some of the recent important literature relevant to this field has
exploited this technology for automatic heart detection. DL-based ECG classification can
more effectively characterize the nature of ECG signals when compared to conventional
machine-learning-based classification methods like clustering and SVMs. This is possible
because of the effective multi-level abstraction of the feature extraction capability [28].
Therefore, the classical neural-network-based methods and SVM classifiers have been
superseded by DL or DNNs in arrhythmia classification [29]. In [30], a DNN with raw
ECG data as the input signal was proposed. This did not require prior handcrafted feature
extraction. The research in [24,25] demonstrated that DNNs perform better when some
temporal variables are used along with raw data inputs. In the literature, many studies have
used different datasets: some have used freely accessible ones like the MIT-BIH Arrhythmia
Database [17,31] and the PhysioNet Challenge datasets [32], while others have collected
and annotated their own data [33]. The authors of [34] used the MIT-BIH Arrhythmia
Database, which was created using a Holter device to capture long-term ECG data. This
database captures the infrequent events in the heart that may also lead to arrhythmia
disease. The authors of [35] validated the proposed strategy by using three databases: the
MIT-BIH Arrhythmia Database, INCART, and the SVDB. From the conclusions of these
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studies, it can be demonstrated that deep learning techniques hold potential in achieving
the high-accuracy and early identification of arrhythmias. This could pave the way for more
precise and effective clinical decision support systems in the area of arrhythmia diagnosis
and therapy.

A comparative study of the methodologies used in the literature identifies a variety
of deep learning methods for the detection of arrhythmias. CNNs have demonstrated
remarkable performance in feature extraction from raw ECG signals [24,25]. RNNs excel at
modeling temporal relationships, although they can be noise-sensitive and may need a lot
of data per-processing step [26,27]. Hybrid architectures of deep learning [35,36] appear to
include the advantages of both CNNs and RNNs.

3. Materials and Methods

Here, the various methodologies employed in the current study are discussed.

3.1. Dataset

The work considered the use of 3 PhysioNet databases, namely the MIT-BIH Arrhyth-
mia Database, the MIT-BIH Normal Sinus Rhythm Database, and the BIDMC Congestive
Heart Failure Database, to classify ECG samples of subjects with cardiac arrhythmia (ARR),
normal sinus rhythm (NSR), and congestive heart failure (CHF), respectively. The MIT-BIH
ARR Database contains 48 samples of 30 min excerpts from two-channel ECH recordings of
47 subjects. The MIT-BIH NSR Database contains 18 long-term ECG recordings for subjects
with no arrythmia from the Arrhythmia Laboratory at Boston’s Beth Israel Hospital. The
BIDMC CHF Database contains long-term ECG recordings from 15 subjects with severe
congestive heart failure (NYHA class 3–4). In total, the study used 162 ECG recordings
from these 3 PhysioNet databases, of which 96 ECG records belonged to subjects with ARR,
30 NSR, and 36 CHF. Table 1 provides an overview of the databases for arrhythmia research.
This table presents the key attributes and details of three databases commonly applied in
arrhythmia research, namely the MIT-BIH ARR Database, MIT-BIH NSR Database, and
BIDMC CHF Database. The attributes covered include the type of database, data collec-
tion methods, number of subjects, recorded parameters, annotations, location, technical
specifications, sampling rates, purpose, challenges, use cases, and relevant references.

Table 1. Comparative overview of arrhythmia databases.

Attribute MIT-BIH ARR
Database

MIT-BIH NSR
Database

BIDMC CHF
Database

Type of Database Arrhythmia (ARR) Normal sinus rhythm (NSR) Congestive heart failure (CHF)

Source MIT-BIH MIT-BIH Beth Israel Deaconess Medical
Center (BIDMC)

Data Collection Method Holter monitoring, ECG
signals ECG signals Clinical records, ECG signals

Number of Subjects 96 records 36 records 30 records
Recorded Parameters ECG signals ECG signals Clinical parameters, ECG signals

Annotation Annotations for arrhythmias Annotations for normal sinus
rhythm

Annotations for heart failure
events, clinical annotations

Location MIT, Massachusetts, USA MIT, Massachusetts, USA Boston, Massachusetts, USA

Technical Specifications
Holter monitors, ECG devices
with various sampling rates

and resolutions

ECG devices with various
sampling rates and

resolutions

ECG devices, clinical monitoring
equipment with varying

specifications
Sampling Rate Typically, 360 Hz Typically, 128 Hz Typically, 125 Hz

Purpose Arrhythmia research Normal sinus rhythm research Heart failure research and
clinical studies

Challenges Presence of arrhythmias Limited arrhythmias, focus on
normal cases

Complex clinical data, diverse
conditions

Use Cases Arrhythmia detection
algorithms, cardiac research

Normal sinus rhythm analysis,
baseline for comparison

Heart failure prediction,
clinical studies
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3.2. Pre-Processing Steps Applied to ECG Signals

Pre-processing and signal transformation steps are applied to ECG signals in the
databases to prepare them for training purposes. This paper explores the representation
of ECG signals as scalograms. These scalogram images are obtained by applying the
continuous wavelet transform to the ECG signals. This transformation allows for the
extraction of time–frequency information from the signals, which can then be visualized
as scalograms. These scalogram images provide a more comprehensive representation of
the ECG signals, capturing both their temporal and spectral characteristics. Scalograms
offer a better representation than the traditionally used spectrograms as they provide a
more detailed and localized view of the signal’s frequency content over time. This can be
particularly useful in analyzing ECG signals, as it allows for the identification of specific
frequency components that may be indicative of certain cardiac conditions or abnormalities.
Additionally, the use of scalograms can aid in the detection and classification of various
signal artifacts or noise, enhancing the accuracy and reliability of ECG analysis.

The various pre-processing steps implemented to generate the scalograms were
as follows:

1. Filtering the ECG signals to remove any unwanted noise or artifacts.
2. Applying a time–frequency analysis technique, such as the continuous wavelet trans-

form, to obtain the scalogram representation.
3. Adjusting the parameters of the time–frequency analysis, such as the wavelet type

and scale range, to optimize the visualization of specific frequency components.
4. Visualizing the scalogram to observe any patterns or abnormalities in the frequency

content over time.
5. Using automated algorithms or artificial intelligence to analyze the scalogram and

detect any abnormal ECG patterns, such as arrhythmias.

The visualization of ECG signals for ARR, NSR, and CHF is presented in Figure 1. In
Figure 1, it can be observed that all three ECG patterns have their own characteristic curve
shapes. The ARR pattern exhibits irregular and abnormal waveforms, indicating an irregu-
lar heart rhythm. In contrast, the NSR pattern shows a regular and consistent waveform,
indicating a healthy heart rhythm. Lastly, the CHF pattern displays a distorted waveform
with varying amplitudes, representing the compromised function of the heart due to fluid
accumulation. These distinct curves enable medical professionals to accurately diagnose
and differentiate between different cardiac conditions by analyzing the ECG signals. By
analyzing the irregular and abnormal waveforms, medical professionals can identify condi-
tions such as atrial fibrillation or ventricular tachycardia, which require specific treatment
approaches. On the other hand, the regular and consistent waveform of NSR helps confirm
a healthy heart rhythm and rule out any significant cardiac abnormalities. The distorted
waveform and varying amplitudes of the CHF pattern provide valuable insights into the
compromised function of the heart, allowing doctors to prescribe appropriate medications
and interventions to manage fluid accumulation and improve heart function. Overall, the
analysis of ECG signals plays a crucial role in accurate diagnosis and effective treatment
planning for patients with cardiac conditions.

The spectrograms for ARR are shown in Figure 2a, which displays the frequency
content of the heart’s electrical activity over time. The spectrograms reveal important
information about the irregularities in the heart rhythm, such as the presence of atrial
fibrillation or other arrhythmias. By analyzing spectrograms, doctors can assess the severity
of ARR and tailor treatments accordingly. The spectrograms for CHF are shown in Figure 2b,
and it can be observed that there are significant differences in the frequency content
compared to the spectrograms of ARR. This indicates that the electrical activity of the heart
in patients with CHF is distinct from that of patients with ARR. Analyzing the spectrograms
for CHF can help doctors identify specific patterns and abnormalities associated with this
condition, enabling them to provide targeted treatments and interventions. Finally, the
spectrograms for NSR are shown in Figure 2c and highlight the normal electrical activity of
the heart. The spectrograms show consistent and regular patterns, with a clear separation
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of frequency bands. This confirms that patients with NSR have a healthy and properly
functioning heart. By comparing the spectrograms for CHF, ARR, and NSR, doctors can
gain valuable perspectives on the electrical operation of the heart and make informed
decisions regarding patient care and treatment options.
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In Figure 3, the scalograms of all three signals are shown, and it can be observed
that the scalograms for CHF and ARR show irregular and fragmented patterns, with over-
lapping frequency bands. This indicates abnormal electrical activity in the heart, which
can be indicative of heart failure or arrhythmia. These findings can help doctors identify
and diagnose these conditions, allowing for appropriate interventions and management
strategies to be implemented. Furthermore, the comparison of scalograms assists in moni-
toring the effectiveness of treatment and assessing the progression of the disease over time.
Thus, scalograms offer a better representation of ECG signals than time-series signals and
spectrograms because they provide a clear visualization of the changes in heart activity.
This allows medical professionals to accurately analyze and interpret the data, leading to
more accurate diagnoses and treatment plans. Additionally, the use of scalograms can help
identify any abnormalities or irregularities in the ECG signals that may not be easily visible
in other types of representations.
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3.3. Deep Learning Architecture

This paper considers the following deep learning architectures:

A. GoogLeNet: This is a deep learning architecture that introduced the concept of incep-
tion modules, which are able to capture information at different scales and provide
a better representation of the input image. It also makes use of 1 × 1 convolutions
to lessen the number of parameters and has a relatively low computational cost
compared to other architectures.

B. Custom CNN: This work also considers the development of a small CNN. This net-
work consists of a total of 21 layers, comprising a sequence of a 2D convolution layer
followed by a batch normalization layer, a ReLu layer, and finally a 2D max pooling
layer; this sequence of layers is repeated 4 times and has a filter size of 16, with 4,
8, and 16 filters, respectively. The custom CNN model considered in this study has
approximately one fourth the number of layers of GoogLeNet, which has 144 layers.

3.4. Training Procedure

The dataset encompassed the three PhysioNet databases for classifying the ECG
samples as subjects with ARR, NSR, and CHF. Its development was carried out using
MATLAB. Figure 4, shows the block diagram representation of the arrythmia detection
process using ECG signals. The various steps involved in the training procedure were
as follows:

A. Pre-processing and Signal Transformation: We pre-processed the data to remove noise
and artifacts and segmented them into individual heartbeats or time windows. We
converted the ECG signals to scalograms using CWT and employed the obtained
scalograms to train the model.

B. Data Splitting: We divided the dataset into training, validation, and testing sets in a
ratio of 70% training, 15% validation, and 15% testing. The work used the 10-fold
cross-validation method.

C. CNN Model Selection: In the proposed work, a small CNN network was designed
for the automated detection of ARR, CHF, and NSR. The considered SmallNet had
approximately one fourth the number of layers of GoogLeNet, which has 144 layers.
To establish the efficacy of the proposed model, it was compared with a pre-trained
GoogLeNet CNN model.

D. Definition of Loss Function and Optimizer: We defined a suitable loss function and an
optimizer (e.g., Adam, SGDM) for the classification task.

E. Training: We passed the training data through the modified CNN model. We calculated
the loss between the predicted outputs and the actual labels. We backpropagated the
gradients and updated the weights of the unfrozen layers using the chosen optimizer.
We monitored training and validation loss and applied early stopping as needed.

F. Model Evaluation: We evaluated the fine-tuned model on the held-out test set to assess
its performance using metrics such as accuracy, ROC, AUC, sensitivity, specificity,
precision, and F1 score.
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3.5. Performance Evaluation

Deep learning models are evaluated using metrics such as the confusion matrix,
sensitivity, specificity, ROC curve, AUC, precision, and F1 score. The confusion matrix
provides a comprehensive overview of the model’s classification accuracy, while the ROC
curve illustrates the trade-off between true-positive and false-positive rates. The AUC,
derived from the ROC curve, quantifies the model’s overall performance, with a higher
AUC indicating better classification. The ROC curve is a powerful tool for visual assessment,
allowing for the selection of the optimal threshold for sensitivity and specificity. The AUC
simplifies the evaluation process and comparisons between models or approaches. The
details of each performance metric considered in this study are given below:

A. Confusion Matrix

The confusion matrix is a tabular representation of a model’s classification perfor-
mance. It consists of four essential components:

• True positives (TPs): instances where the model correctly predicted positive cases.
• True negatives (TNs): instances where the model correctly predicted negative cases.
• False positives (FPs): instances where the model incorrectly predicted positive cases

when they were actually negative.
• False negatives (FNs): instances where the model incorrectly predicted negative cases

when they were actually positive.

By examining these components, we gain insight into how well the model distin-
guishes between positive and negative cases, which is especially critical in applications like
medical diagnosis.

B. ROC Curve

The ROC curve is a graphical representation of a model’s performance across various
classification thresholds. It plots the true-positive rate (sensitivity) against the false-positive
rate (1-specificity) as the threshold for classification changes. This curve provides a vi-
sual depiction of the trade-off between correctly identifying positive cases and incorrectly
classifying negative cases. A model with a steeper ROC curve generally has better dis-
crimination ability. The ROC curve is particularly useful when deciding on an optimal
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threshold for decision making, as it allows one to select a threshold that aligns with one’s
specific objectives.

C. AUC

The AUC is a scalar value derived from the ROC curve. It enumerates the inclusive
performance of the model by measuring the area under the ROC curve. In the context
of identifying heart arrhythmias or any classification task, a higher AUC indicates better
performance in distinguishing between different classes. The AUC is a valuable metric for
comparing different models or approaches, as it condenses complex performance data into
a single number, simplifying the evaluation process.

D. Sensitivity

Sensitivity, also known as the true-positive rate or recall, measures the ability of a
model to correctly identify positive cases. Sensitivity is crucial in medical diagnostics,
especially when dealing with conditions like diseases. High sensitivity means fewer false
negatives, ensuring that individuals with the condition are correctly identified.

Sensitivity =
TP

TP + FN

E. Specificity.

Specificity measures the ability of a model to correctly identify negative cases. Speci-
ficity is vital to rule out individuals without a particular condition. High specificity means
fewer false positives, ensuring that healthy individuals are correctly identified as such.

Speci f icity =
TN

TN + FP

F. Precession.

Precision, also known as the positive predictive value, quantifies the accuracy of
positive predictions made by a model. Precision is crucial when the focus is on the accuracy
of positive predictions. In medical scenarios, high precision implies that when a test
predicts a positive result, it is likely to be accurate.

Precision =
TP

TP + FP

G. F1 Score.

The F1 score is the harmonic mean of precision and sensitivity. It provides a balanced
measure that considers both false positives and false negatives. The F1 score is valuable
when there is a need to balance the trade-off between precision and sensitivity. In medical
applications, where both false positives and false negatives have consequences, the F1 score
helps evaluate overall model performance.

F1 Score = 2 × Precision × Sensitivity
Precision + Sensitivity

In medical applications, such as identifying heart arrhythmias, minimizing false
positives and false negatives is of utmost importance. The ROC and AUC are invaluable
procedures for assessing and fine-tuning the performance of classification models, ensuring
that they meet the stringent requirements of accuracy and reliability necessary for medical
diagnosis and decision making.

4. Results and Discussion

The classification model was trained in a MATLAB environment on an Ubuntu desktop
with a Ryzen 9 CPU, NVIDIA RTX 2060 Super 8 GB GPU, and 32 GB of RAM. One of
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the well-established GoogLeNet models was considered for comparison in the study. The
specific parameters for training the algorithms utilized in this study were as follows: an
SGDM optimizer was used, and an initial learning rate of 0.0001 was considered for both
the models. Data augmentation was also applied to the dataset for better generalization.
The data augmentation operations involved randomly flipping the training images along
the vertical axis and randomly scaling them up to 50% horizontally and vertically. This
aided in averting the problems of overfitting.

Figure 5 shows plots of the (a) accuracy and (b) loss function on the training (colored
line) and validation data (dotted line with black markers) for the proposed SmallNet
CNN model. Similarly, Figure 6 shows plots of the (a) accuracy and (b) loss function on
the training (colored line) and validation data (dotted line with black markers) for the
GoogLeNet model.
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Table 2 compares the performance of the proposed small CNN against that of
GoogLeNet deep learning models across key metrics. The proposed small CNN exhib-
ited superior overall accuracy (91.20%) and validation accuracy (92.31%) compared to
GoogLeNet (78.26% and 73.08%, respectively). Additionally, the smaller model achieved
these accuracies with a notably reduced training time (36 s vs. 44 s) and a significantly lower
number of tunable parameters (1.5 M vs. 5.9 M) in comparison to the larger GoogLeNet
models. This suggests that the proposed small CNN not only exceled in terms of accuracy
but also demonstrated computational efficiency and model simplicity, emphasizing its
potential as an effective and resource-efficient deep learning solution.

Table 2. The accuracy obtained for the two deep learning models.

Metric Proposed Small CNN GoogLeNet

Overall accuracy 91.20% 78.26%
Validation accuracy 92.31% 73.08%

Training time 36 s 44 s
No. of tunable parameters 1.5 M 5.9 M
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Table 3 provides a detailed insight into the models’ performance across different
classes and presents a detailed breakdown of important performance metrics, including
sensitivity, specificity, precision, and F1 score, for both the proposed small CNN and
GoogLeNet models across different classes—ARR, CHF, and NSR. In terms of sensitivity,
the proposed small CNN demonstrated excellent performance by correctly identifying all
instances of ARR and NSR while achieving a moderate sensitivity for CHF. On the other
hand, GoogLeNet achieved perfect sensitivity for ARR but struggled to identify instances
of NSR and CHF. Regarding specificity, both models exceled in correctly identifying CHF
cases, with the proposed small CNN achieving high specificity for NSR as well. Notably,
the proposed small CNN outperformed GoogLeNet in precision and F1 score across ARR,
CHF, and NSR, suggesting a more balanced performance in terms of positive predictions.
The absence of precision values for CHF in “GoogLeNet” indicated potential challenges in
correctly identifying this class.

Table 3. Class-wise evaluation metrics for proposed small CNN and GoogLeNet.

Metric Proposed Small CNN GoogLeNet

ARR CHF NSR ARR CHF NSR

Sensitivity 1 0.5 1 1 0 0.8
Specificity 0.778 1 1 0.444 1 1
Precession 0.875 1 1 0.737 - 1

F1 score 0.933 0.667 1 0.848 - 0.889

Within CNNs like GoogLeNet and the proposed SmallNet, each layer generates
responses or activations in response to input images. However, not all layers are equally
adept at extracting meaningful features, with early layers being particularly effective at
capturing basic image features like edges and blobs. To visually demonstrate this, Figure 7a
showcases the activations of GoogLeNet, while Figure 7b displays the activations for the
proposed SmallNet. These visual representations, especially the filter weights of the first
convolutional layer, offer insights into how each model extracts and interprets features.
Notably, the figures illustrate the hierarchical nature of feature extraction, where lower
layers focus on foundational patterns. Figure 8 provides an examination of convolutional
layer activations for both GoogLeNet and the proposed SmallNet, focusing on an image
from the ARR class. The comparison involves scrutinizing areas in the convolutional
layers that become activated and contrasting them with corresponding regions in the
original image. This is essential for understanding how these neural networks respond to
arrhythmia-related features.
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Comparing the strongest activation channel for classification in CNNs holds signifi-
cance in unraveling how these networks prioritize and respond to different features during
the classification process. In the context of ARR detection, CNNs often operate on multiple
channels, each corresponding to specific visual characteristics. Identifying the strongest
activation channel involves pinpointing the channel that exhibits the highest level of ac-
tivation or response to features relevant to the classification task. Figure 9 shows the
visualization of the strongest activation channels for ARR classification in the proposed
SmallNet and GoogLeNet. This visualization is essential to elucidate which visual cues or
patterns contribute most significantly to the network’s decision making.

Figure 10 presents a comparison of the confusion matrices for the training dataset
obtained from both the models considered in the present study. The confusion matrices
for training data obtained from GoogLeNet and the proposed SmallNet revealed nuanced
classification performance. GoogLeNet demonstrated strength in accurately classifying
NSR instances, with 66 ARR and 18 NSR instances correctly identified. However, it
exhibited challenges in distinguishing ARR and CHF instances, misclassifying 21 CHF
instances as ARR. On the other hand, the proposed SmallNet showcased proficiency
in correctly classifying ARR instances, with 65 instances accurately identified. While
it misclassified two ARR instances as CHF and six CHF instances as ARR, it notably
outperformed GoogLeNet in CHF classification. Additionally, the proposed SmallNet
exceled in NSR classification, accurately identifying all 25 instances.
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Similarly, the confusion matrices for the test dataset obtained from GoogLeNet and the
proposed SmallNet are shown in Figure 11 and offer insights into their classification perfor-
mance. The GoogLeNet confusion matrix shows that it accurately classified 14 instances of
ARR and 4 instances of NSR. However, it struggled to differentiate CHF, misclassifying
four CHF instances, potentially indicating challenges in distinguishing between CHF and
other classes. The proposed SmallNet, on the other hand, demonstrated proficiency in
ARR classification, with 14 instances accurately identified. It faced challenges in CHF
classification, misclassifying two instances as ARR and two instances as NSR. Despite these
challenges, it exceled in correctly classifying NSR instances, with five accurately identified.

Figure 12 shows a comparison of the ROC curves for both models, and the respec-
tive values for each class are displayed in Table 4. From Figure 11 and Table 4, it can be
concluded that the provided class-wise AUC values for the proposed small CNN and
GoogLeNet shed light on their performance in distinguishing between different cardiac
classes. In terms of ARR detection, the proposed small CNN outperformed GoogLeNet,
with an AUC value of 0.9524 compared to 0.7778, indicating a superior ability to dis-
criminate between positive and negative instances of ARR. For CHF, the proposed small
CNN again exhibited stronger discriminatory power, with an AUC value of 0.9211, while
GoogLeNet lagged behind with a lower AUC of 0.5263. Remarkably, both models achieved
perfect AUC values of 1 for NSR, signifying excellent performance in distinguishing NSR
instances. These AUC results underscore the effectiveness of the proposed small CNN,
especially in ARR and CHF detection, as reflected in the higher AUC values across these
classes compared to GoogLeNet.
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Figure 11. Confusion matrices for testing data—comparative analysis of GoogLeNet and proposed
SmallNet in cardiac arrhythmia classification.
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Figure 12. Comparison of ROC curves for the proposed small CNN and GoogLeNet.

Table 4. Class-wise AUC values obtained for the two models.

AUC Value Proposed Small CNN GoogLeNet

ARR 0.9524 0.7778
CHF 0.9211 0.5263
NSR 1 1

In Figure 13, the ROC curves for the proposed small CNN and GoogLeNet are visually
compared specifically for the ARR class. The ROC curve illustrates the trade-off between
the true-positive rate and false-positive rate across different classification thresholds. The
accompanying AUC values provide a quantitative measure of the models’ discriminative
performance. Notably, the ROC curve for the proposed small CNN showcased a superior
AUC of 0.9524 for ARR detection, indicating a high level of accuracy in distinguishing
between positive and negative instances of arrhythmia. In contrast, GoogLeNet exhibited a
lower AUC value of 0.7778 for the same class, suggesting a less effective performance in
ARR detection. This visual and numerical evidence confirms the enhanced performance
offered by the proposed small CNN in accurately identifying instances of arrhythmia,
reinforcing its potential as a robust model for cardiac classification tasks.
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Figure 13. Comparison of ROC curves for the proposed small CNN and GoogLeNet for ARR class.

In Figure 14, a bar graph succinctly illustrates the AUC values for the proposed
small CNN and GoogLeNet across different cardiac classes. The graph provides a vi-
sual representation of the discriminative performance of each model for ARR, CHF, and
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NSR. Notably, the proposed small CNN consistently exhibited higher AUC values for all
classes—0.9524 for ARR, 0.9211 for CHF, and a perfect AUC of 1 for NSR. This graphical
representation reinforces the quantitative findings, emphasizing the proposed small CNN’s
superior classification performance across the diverse range of cardiac conditions compared
to GoogLeNet.
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Figure 14. Comparative analysis of AUC values for proposed small CNN and GoogLeNet across
cardiac classes.

In Figure 15, a comprehensive comparison of the average ROC curves for all classes
is presented for both the proposed small CNN and GoogLeNet. The ROC curves provide
a holistic view of the models’ classification performance across various thresholds. Im-
portantly, the figure highlights that the proposed small CNN consistently outperformed
GoogLeNet in terms of AUC (area under the ROC curve), indicating superior discrim-
inative power across all classes. The average AUC value serves as a robust metric for
overall classification performance, and the visually evident higher AUC for the proposed
small CNN substantiates its effectiveness in accurately distinguishing between different
cardiac classes. This result underscores the model’s potential as a reliable choice for a
broad spectrum of cardiac classification tasks, further emphasizing its comprehensive and
superior performance across diverse classes compared to GoogLeNet.
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Figure 15. Comparison of marco-average ROC curves for the proposed small CNN and GoogLeNet.

5. Conclusions

In conclusion, the present work provided a comprehensive exploration of deep-
learning-based methods for arrhythmia identification using ECG signals. The study show-
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cased the critical role that deep learning techniques play in the healthcare sector, particularly
in the early detection and treatment of arrhythmia. By comparing the performance of a
proposed small CNN model with established architectures like GoogLeNet, it was demon-
strated that simplicity and efficiency need not compromise accuracy. The small CNN model
exhibited remarkable accuracy in detecting arrhythmia, underscoring its potential as an
effective tool for automated arrhythmia detection. This research not only advances our
understanding of arrhythmia detection but also underscores the broader potential of deep
learning in healthcare. Early and accurate arrhythmia detection is crucial for patient out-
comes and healthcare efficiency. As technology continues to advance, deep-learning-based
approaches like that presented here offer a promising path toward improving patient care
and reducing the global burden of cardiovascular diseases.
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