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Abstract: As the number of coronary computed tomography angiography (CTA) examinations is
expected to increase, technologies to optimize the imaging workflow are of great interest. The aim of
this study was to investigate the potential of artificial intelligence (AI) to improve clinical workflow
and diagnostic accuracy in high-volume cardiac imaging centers. A total of 120 patients (79 men; 62.4
(55.0–72.7) years; 26.7 (24.9–30.3) kg/m2) undergoing coronary CTA were randomly assigned to a
standard or an AI-based (human AI) coronary analysis group. Severity of coronary artery disease
was graded according to CAD-RADS. Initial reports were reviewed and changes were classified.
Both groups were similar with regard to age, sex, body mass index, heart rate, Agatston score, and
CAD-RADS. The time for coronary CTA assessment (142.5 (106.5–215.0) s vs. 195.0 (146.0–265.5) s;
p < 0.002) and the total reporting time (274.0 (208.0–377.0) s vs. 350 (264.0–445.5) s; p < 0.02) were lower
in the human AI than in the standard group. The number of cases with no, minor, or CAD-RADS
relevant changes did not differ significantly between groups (52, 7, 1 vs. 50, 8, 2; p = 0.80). AI-based
analysis significantly improves clinical workflow, even in a specialized high-volume setting, by
reducing CTA analysis and overall reporting time without compromising diagnostic accuracy.

Keywords: coronary artery disease; coronary CT angiography; artificial intelligence; workflow;
human AI teaming; computed tomography

1. Introduction

Cardiovascular disease is the leading cause of death worldwide and has increased
over the past decade, posing a significant challenge to public health systems [1]. Strategies
for early detection of disease and risk stratification of patients are of great clinical and
socioeconomic interest. Coronary computed tomography angiography (CTA) has emerged
as an important diagnostic modality in the assessment of patients with stable chest pain
and is being implemented in several national and international guidelines [2–4].

Coronary CTA offers excellent periprocedural safety and risk stratification equivalent
to invasive coronary angiography [5,6]. As coronary CTA allows for the detection of early
and nonobstructive stages of coronary artery disease (CAD) and for the identification of
high-risk plaques, it enables the timely initiation of adequate preventive therapies [7,8]. The
increasing use of coronary CTA is associated with fewer hospitalizations for myocardial
infarction and a reduction in cardiovascular mortality [9]. The detailed assessment of the
entire coronary tree, including stenosis quantification and plaque characterization, requires
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both time and expertise. With the increasing use of coronary CTA and the associated
increase in workload, technologies that optimize workflow and improve diagnostic accu-
racy are of great interest. Artificial intelligence (AI) has been adopted for coronary CTA
assessment showing promising results, but improvements in the integration of AI-based
applications into clinical workflow are still required [10,11].

Recently, AI-based coronary CTA analysis software has been introduced that provides
an automated pre-evaluation of the entire coronary tree in terms of luminal narrowing
and plaque composition. In contrast to other available approaches, it allows for the on-site
processing and evaluation of the CTA series [12,13], thereby enabling a seamless integration
into the clinical workflow. Thus, it may facilitate and speed up the diagnostic workflow as
well as provide additional diagnostic confidence by serving as a second reader.

The objective of the study was to investigate the potential of AI for improving clinical
workflow and diagnostic accuracy.

2. Materials and Methods
2.1. Image Acquisition

Patients, who were referred for coronary CTA by their physician, were assigned
to either a standard assessment group or to an AI-based assessment group (human AI
team) using block randomization. Patients with contraindications to contrast medium
application, prior percutaneous coronary interventions, or coronary artery bypass grafts
were not included in the study since the AI has yet not been trained for the analysis of
such cases. Image acquisition was performed on third generation a dual-source CT scanner
(SOMATOM Force, Siemens Healthcare, Forchheim, Germany) in a high-volume imaging
center performing >2500 coronary CTA examinations per year. Patients received up to
20 mg metoprolol tartrate intravenously to achieve a heart rate of approximately 65/min
and 0.4 mg glyceroltrinitrate if no contraindications were present. A calcium scoring scan
was used to determine the coronary calcium burden and to further optimize the subsequent
coronary CTA protocol. Depending on heart rate, heart rhythm, and calcium burden, axial
or spiral acquisition modes were used for coronary CTA. Images were reconstructed using
Advanced Modeled Iterative Reconstruction (ADMIRE) level 3 with dedicated cardiac
kernels (usually Bv36 and Bv40). The series of the automatically determined best diastolic
(best diastole) or best systolic (best systole) phase was automatically transferred to the
on-site AI server and processed without any user interaction.

2.2. Image Analysis

Image analysis was performed on a dedicated workstation (syngo.via VB60, Siemens
Healthcare, Forchheim, Germany) by two readers with >5 years and >10 years of expe-
rience in cardiac CT. A dedicated on-site database with a browser-based interface was
used for structured reporting. The results of the coronary artery assessment were recorded
in a table containing stenosis severity and plaque composition of every segment of the
coronary tree model recommended by the Society of Cardiovascular Computed Tomog-
raphy (SCCT) [14,15]. In the standard group, the reader analyzed every coronary artery
segment visually and performed semi-automated stenosis measurements as needed. The
results were manually entered into the table, which was facilitated by providing drop-down
menus and boilerplates. In the human AI group, the results of the fully automated analysis
were transferred to the table automatically and an unfolded view of the coronary tree was
provided as an overview of the analysis results (Figure 1). The reader needed to review the
results of the AI and correct them, if necessary. In both groups, the time taken from the start
of the coronary artery analysis to the completion of the table was measured (coronary CTA
assessment time). Subsequently, the cardiac morphology was assessed and a structured
report, which included the analysis of the coronary arteries using the Coronary Artery
Disease Reporting and Data System (CAD-RADS), other cardiac findings (e.g., atrial septal
defects), and the resulting recommendations, was created. The time between the start of
the coronary artery analysis and the finalization of the entire report was measured (total
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reporting time). The readers rated their diagnostic confidence on a scale of 1 (low) to
5 (high). The initial report was reviewed by a third reader (>15 years of experience in
cardiac CT), and a consensus reading was performed in case of discrepancies. Changes
from the original report were considered minor, if the CAD-RADS score had not changed,
or relevant, if it had. As the AI was not trained to detect intramural plaques, CAD-RADS
scores 0 and 1 were combined into one group.
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Figure 1. Examples of the unfolded view. (a) patient with mild CAD (CAD-RADS 2) and (b) patient
with severe CAD (CAD-RADS 4A).

2.3. AI Analysis

Automated analysis of the coronary CTA series was performed using a non-commercial
research prototype (Siemens Automatic Coronary Analysis Prototype 2.0, Siemens Health-
care, Forchheim, Germany). The software provides a fully automated workup of the
case in four steps. In the first step, the patient-specific coronary anatomy is automat-
ically segmented using the approach described in Gülsün et al. [16]. This approach
first performs four-chamber segmentation and detects key cardiac landmarks, includ-
ing the mitral valve center, aortic valve center, and left-ventricular apex. It then detects
the left and right coronary ostia, followed by automatic extraction of the entire coronary
artery centerline tree. The centerline extraction algorithm uses model-based coronary
specific territories and main branches for robustness against stents, imaging artifacts, and
total occlusions.

In the second step, the SCCT 18-segment model is applied to the coronary artery
branches using an automated coronary labeling approach that includes a 3D image-to-
image deep learning model and a post-processing step to enforce anatomical consistency
of the labeling results. The 3D deep learning model is trained to predict a segment label
class for each coronary voxel, given an input intensity mask that encodes the four heart
chambers and the coronary tree. The architecture consists of encoder and decoder blocks,
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predicting a class from a comprehensive segment-label set of 26 coronary segments. Each
centerline point is then assigned a label based on the prediction of the closest voxel. The
model is trained on an independent set of 3914 cases with expert-annotated segment labels,
of which 628 were used as a separate validation set for the final model selection. The
post-processing step takes the coronary centerline trees with deep learning generated label
predictions as input and finds a maximum likelihood solution according to a set of rules
that define all possible parent child label configurations.

In the third step, the actual vessel assessment is performed. A multitask deep learning
approach is applied to perform automated coronary lesion detection, lumen segmentation,
and healthy vessel wall estimation. The approach is trained for multiple tasks to account
for potential confounding factors such as poor image quality or the presence of other
causes of stenosis (e.g., myocardial bridging). The multitask deep learning architecture is
trained jointly for improved generalization performance and robustness of the individual
tasks. The decoder for each anomaly detection task predicts a probability distribution over
output classes (such as healthy vs. diseased) for each centerline point. The decoder for
segmentation tasks predicts a probability distribution over output segmentation classes
(foreground vs. background) for each voxel. Cross-sectional images with an isotropic
resolution of 0.2 mm and a size of 41 × 41 are sampled along the coronary centerline and
stacked to construct a 3D input passed to the model. The model is trained on a separate set
of 3491 cases with expert-annotated lesion, stent, myocardial-bridging and artifact markers,
and segmentation masks where 818 of them are used for the final model selection. A fixed
probability threshold (0.5) is applied to the model’s outputs to obtain final marker positions
and segmentation masks.

In a fourth step, quantification is performed at lesion-, segment-, and case-level
by a rule-based inference mechanism. Stenosis grading is performed for each lesion by
comparing the minimum luminal diameter to the reference diameter derived from the
healthy vessel wall segmentation. The maximum degree of narrowing is determined for
each coronary segment by computing the maximum degree of narrowing of all lesions
present in that segment. Finally, the CAD-RADS score is calculated based on the maximum
degree of stenosis across all evaluated segments. The results of the analysis are presented
to the user with overview images as well as lesion-specific key images. An overview of the
workflow is shown in Figure 2. The overview images provide a generalized, color-coded
schematic depiction of the coronary segments as well as a coronary unfolded view showing
the detected lesions in relation to the patient’s individual coronary anatomy (Figure 1). The
quantitative results were stored as structured information and provided to the reporting
system in JavaScript Object Notation (JSON) format through a software interface, which
was used for the automated transfer of the results of the AI into the table of the reporting
database in this study.

Patient characteristics were derived from medical records and questionnaires. The
study was conducted in accordance with the Declaration of Helsinki and the scientific data
analysis was approved by the local ethics committee (S-758/2018).

2.4. Statistics

Data was assessed for normal distribution using the D’Agostino–Pearson test. Cate-
gorial data is given as counts and fractions and continuous data is presented uniformly
as median and interquartile range since it showed partly a non-parametric distribution.
The Mann–Whitney test was applied for the comparison of continuous data and the Chi-
squared test for categorical data. Statistical analyses were performed using dedicated
statistical software (MedCalc Statistical Software Version 22, MedCalc Software, Ostend,
Belgium). A p-value < 0.05 was regarded as statistically significant.
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Figure 2. Visualization of the AI analysis workflow after segmentation of the coronary centerlines:
(1) a coronary segment labeling is performed; (2) after lesion detection and lumen segmentation;
(3) quantification is performed on lesion-, segment- and case-level; (4) quantification by rule-based
inference for each lesion (4A) and on segment and case level (4B).

3. Results
3.1. Patient Characteristics

The study population consisted of 120 patients (79 men, 41 women) with a median age of
62.4 (55.0–72.7) years. Men were significantly younger than women (61.4 (54.5–69.4) years vs.
66.9 (55.5–75.7) years; p < 0.05). The median body mass index (BMI) was 26.7 (24.9–30.3) kg/m2

and the median heart rate during the coronary CTA was 61.5 (57.5–65.5)/min. The median
Agatston score was 20.1 (0.0–174.6) and coronary calcifications were absent in 40 patients
(33.3%), minimal in 16 patients (13.3%), mild in 25 patients (20.8%), moderate in 19 patients
(15.8%), severe in 13 patients (10.8%), and extensive in 7 patients (5.8%). The CAD severity
classified by CAD-RADS was as follows: CAD-RADS 0/1 in 34 patients (28.3%), CAD-
RADS 2 in 54 patients (45.0%), CAD-RADS 3 in 21 patients (17.5%), CAD-RADS 4A in
6 patients (5.0%), CAD-RADS 4B in 2 patients (1.7%), and CAD-RADS 5 in 3 patients (2.5%).
The distribution of coronary calcifications and CAD severity is displayed in Figure 3.
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The renal function and the distribution of cardiovascular risk factors other than smok-
ing within the past 5 years were not significantly different between the standard and
human AI group (see Table 1). Of note, both groups showed no significant differences with
regard to age, sex, BMI, heart rate, Agatston score, and CAD-RADS resulting in comparable
conditions for the coronary artery analysis.

Table 1. Characteristics of the study population.

Standard Human AI Team

Age (years) 62.5 (53.8–73.3) 62.1 (55.3–71.8) p = 0.63

Sex (male) 41 (68.3%) 38 (63.3%) p = 0.57

BMI (kg/m2) 27.8 (25.2–30.4) 26.5 (24.7–30.0) p = 0.49

GFR (mL/min/1.73 m2) 84.6 (75.0–94.0) 79.4 (73.0–89.3) p = 0.08

Arterial Hypertension 34 (56.7%) 36 (60.0%) p = 0.71

Hyperlipidemia 28 (46.7%) 37 (61.7%) p = 0.10

Diabetes mellitus 7 (11.7%) 9 (15.0%) p = 0.59

Smoking 10 (16.7%) 3 (5.0%) p = 0.04

Family History of CAD 36 (60.0%) 33 (55.0%) p = 0.58

Heart Rate (/min) 62.0 (58.5–65.0) 60.0 (55.0–66.5) p = 0.25

Agatston Score 17.7 (0.0–128.1) 43.2 (0.0–212.6) p = 0.60

CAD-RADS

p = 0.87

0/1 17 (28.3%) 17 (28.3%)
2 25 (41.7%) 29 (48.3%)
3 13 (21.7%) 8 (13.3%)
4A 3 (5.0%) 3 (5.0%)
4B 1 (1.7%) 1 (1.7%)
5 1 (1.7%) 2 (3.3%)

BMI: body mass index, CAD: coronary artery disease; GFR: glomerular filtration rate.

3.2. Workflow Optimization

The time for the coronary CTA assessment was significantly reduced in the human
AI group compared to the standard group by approximately 27% (142.5 (106.5–215.0) s
vs. 195.0 (146.0–265.5) s; p < 0.002; Figure 4a). Accordingly, the total reporting time was
significantly lower in the human AI group (274.0 (208.0–377.0) s vs. 350.0 (264.0–445.5) s;
p < 0.02; Figure 4b), which corresponds to approximately 22%.
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Diagnostic certainty was comparable between the human AI and the standard group
(4.0 (4.0–5.0) vs. 4.0 (3.0–5.0); p = 0.52). The number of cases with no, minor, or CAD-RADS
relevant changes did not differ significantly between the human AI and the standard group
(52, 7, 1 vs. 50, 8, 2; p = 0.80; Figure 5).
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4. Discussion

This is the first study to assess this recently introduced AI for coronary CTA analysis
that has been fully integrated into the workflow under clinical conditions in a real-world
population. Its use resulted in a significant reduction in coronary CTA assessment time and
total reporting time, without compromising diagnostic accuracy.

As coronary CTA is increasingly included in guidelines and is likely to become the
first-line modality in the evaluation of patients with stable chest pain in an increasing
number of health systems, it can be assumed than examination numbers will increase. With
the associated significant increase in workload, there is a high demand for automation and
optimization throughout the imaging workflow [10]. AI approaches have the potential
to address this need by improving image reconstruction, including image reformation,
and automating coronary CTA analysis. Adequate visualization of the coronary tree, as
provided by the unfolded view of the AI (Figure 1) may not only facilitate the assessment
of CAD, but also allow for the demonstration of findings to patients.

Previous studies have assessed several AI applications for coronary artery assessment.
In a retrospective multicenter study including 527 patients, a fully automated AI algorithm
was not inferior to experts in the detection of coronary stenosis ≥50% and reduced the
post-processing time significantly [17]. An accuracy of 84% and 86% for detecting ≥50%
and ≥70% stenoses, respectively, was found in a CREDENCE substudy comparing AI
quantitative coronary CTA with core lab quantitative coronary angiography [18]. In the
CLARIFY study including 232 patients, there was high agreement between the AI approach
and experienced readers for CAD-RADS classification, with 78.0% of cases achieving
CAD-RADS categorical agreement and 98.3% of cases agreeing within one category [12].
Accordingly, the results of the human AI team and those of the reference reading showed a
good agreement in our study.
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While many of the previous studies took a technical approach, focusing on the accuracy
of the respective AI approaches, the scope of this study was to evaluate the potential of
an AI-based approach to optimize the clinical workflow. For example, the cardiac phase
was automatically selected by the CT scanner software and not meticulously chosen with
regard to most appropriate image quality. This approach may not fully assess the diagnostic
accuracy of AI as it had also to cope with series of suboptimal cardiac phases. However,
this approach may give a more realistic impression of the current clinical potential of AI, as
a fully autonomous coronary CTA analysis without human interaction and supervision
seems unlikely within the next few years due to the current limitations of AI and regulatory
requirements. Human readers will still need to review AI results and take responsibility for
the final report and resulting recommendations. In particular, it will remain the physician’s
task to integrate the results of the coronary CTA examination into the individual clinical
context. Therefore, AI is more likely to support than replace the expert in the coming years
taking the role of a second reader. Hence, the Good Machine Learning Practice for Medical
Device Development guiding principles identified by the US Food and Drug Administration
(FDA), Health Canada, and the United Kingdom’s Medicines and Healthcare products
Regulatory Agency (MHRA) include as a guiding principle that the focus should be on
the performance of the human AI team, rather than the performance of the model in
isolation [19]. In this study, the human AI team performed well, significantly reducing the
time required for coronary CTA analysis and complete reporting. Even in this setting, with
an already streamlined workflow and highly experienced readers specialized in coronary
CTA, time savings of 27% were achieved for coronary tree analysis. This significant time
saving can not only allow doctors to assess more examinations, but also to invest more
time in the analysis of complex cases or in the interaction with the patients. Despite
the known benefits of medical therapy in reducing cardiovascular risk and improving
outcome, a significant proportion of CAD patients do not adhere to their medication
regimen [20,21]. As the visualization of coronary findings can improve the patient’s
therapy adherence [22,23], an optimized workflow that leaves more time to show the
findings and discuss results and implications with the patients could be beneficial. In
this study, the demonstration of the findings was further facilitated by the automatically
generated unfolded view, which clearly displays the overall extent of the coronary plaques
and thus the severity of the CAD.

By acting as a second reader, preparing the report and highlighting any significant
stenosis, the AI could also reduce the workload on the human reader, preventing exhaustion,
especially in high-volume settings. As the AI was seamlessly integrated into the imaging
workflow, working in the background, the only user interaction required was the push
of a button to import the results and the unfolded view into the reporting database. The
main tasks of the human reader were therefore to validate the AI-generated results by
cross-checking them with the coronary CTA series, to check for other cardiac findings,
and to make clinical recommendations. By not imposing additional work on the reader,
the long-term acceptance of this approach is high, making human AI teaming suitable
for everyday practice. Notably, neither reader confidence nor diagnostic accuracy was
compromised by the accelerated diagnostic process. This is of paramount importance
since coronary CTA is used for initial diagnostics and risk stratification as well as for the
clarification of inconclusive preceding stress tests, both of which require a high degree of
diagnostic certainty.

In the human AI team, a CAD-RADS relevant deviation occurred in a single case,
resulting in a change of one CAD-RADS category. The human AI team was therefore on a
par with the standard CTA assessment in terms of diagnostic accuracy. In the light of the
expected increase in the number of coronary CTA examinations and the associated growing
number of coronary CTA readers, AI could be an advantage, especially for inexperienced
readers, who can benefit significantly from AI assistance [24]. In addition to facilitating the
quantification of coronary artery stenosis and the characterization of plaque, AI can also
alert them to relevant findings and thus provide an additional layer of diagnostic safety.
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Prospectively, AI may increase the comparability between reports from different readers or
different imaging sites, which might contribute to further standardization of reporting and
risk stratification.

Limitations

Patients with coronary artery stents or coronary artery bypass grafts were excluded,
as the AI was not trained for these cases. Furthermore, cases with severely impaired
image quality, e.g., due to severe arrhythmias requiring multi-phase assessment, were not
included as the current AI model only allows for single-phase analysis. As the study was
conducted in an outpatient setting, emergency patients e.g., patients with acute coronary
syndrome and unstable patients, were not included in the study population. The number
of cases with CAD-RADS relevant changes was slightly lower in the human AI group
than in the standard group. Although a larger sample size might have led to statistical
significance, the clinical relevance of such a small effect is questionable. The readers were
highly experienced, which may have led to an underestimation of the effect that the use of
AI by inexperienced readers would have had on time savings and diagnostic accuracy.

5. Conclusions

Human AI teaming with AI-based coronary CTA analysis significantly improves clini-
cal workflow, even in a specialized high-volume setting. Coronary CTA analysis and overall
reporting time were significantly reduced without compromising diagnostic accuracy.
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