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Abstract: In the neurorehabilitation field, robot-aided motion analysis (R-AMA) could be helpful for
two main reasons: (1) it allows the registration and monitoring of patients’ motion parameters in
a more accurate way than clinical scales (clinical purpose), and (2) the multitude of data produced
using R-AMA can be used to build machine learning algorithms, detecting prognostic and predictive
factors for better motor outcomes (research purpose). Despite their potential in clinical settings,
robotic assessment tools have not gained widespread clinical acceptance. Some barriers remain to
their clinical adoption, such as their reliability and validity compared to the existing standardized
scales. In this narrative review, we sought to investigate the usefulness of R-AMA systems in patients
affected by neurological disorders. We found that the most used R-AMA tools are the Lokomat
(an exoskeleton device used for gait and balance rehabilitation) and the Armeo (both Power and
Spring, used for the rehabilitation of upper limb impairment). The motion analysis provided by
these robotic devices was used to tailor rehabilitation sessions based on the objective quantification
of patients’ functional abilities. Spinal cord injury and stroke patients were the most investigated
individuals with these common exoskeletons. Research on the use of robotics as an assessment tool
should be fostered, taking into account the biomechanical parameters able to predict the accuracy
of movements.

Keywords: robot-aided motion analysis; objective motor assessment; biomechanics; neurorehabilitation

1. Introduction

In the field of neurorehabilitation, innovative technologies, such as robotic devices,
have been widely used to treat and evaluate patients affected by motor impairment due to
different neurological disorders (e.g., stroke, multiple sclerosis (MS), and spinal cord injury
(SCI)) [1]. Compared with conventional rehabilitation approaches, robotic-assisted therapy
(RAT) may have some advantages, including (i) guaranteeing repetitive, intensive, and task-
oriented rehabilitation; (ii) reducing the physical burden on clinical therapists, giving them
the possibility to treat more patients simultaneously; and (iii) quantitatively and objectively
assessing patients’ motor performance over time [2,3]. In particular, objective assessment of
motor performance is a fundamental issue in neurorehabilitation [4]. In fact, clinical scales
are still widely used in hospital settings, despite their validity and reliability being under
debate. Robot-aided motion analysis (R-AMA) could be helpful for two main reasons:
(i) it allows the registration and monitoring of patients’ motion parameters in a more
accurate way than clinical scales (clinical purpose), and (ii) the multitude of data produced
using R-AMA can be used to build machine learning algorithms, detecting prognostic
and predictive factors for better motor outcomes (research purpose). Specifically, motion
analysis refers to the recording of three-dimensional movements of human body segments
and the subsequent computation of meaningful parameters that describe human movement
from raw kinematic parameters [5,6]. Motion analysis is commonly carried out through
wearable and non-wearable sensors that are able to detect biomechanical parameters of
movements [7]. Similarly, robotic devices, both end effectors and exoskeletons, through
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specific sensors, could allow the detection of passive or active range of motion, movement
accuracy, and planning [8]. For example, Maggioni et al. [9] examined the possibilities of
assessing lower extremity function using robots, with parameters such as range of motion
(RoM), muscle strength, and proprioception. In fact, the Lokomat (which is a tethered
exoskeleton) was used to assess joint position sense (i.e., proprioception) in patients with
incomplete spinal cord injury. Despite their potential in clinical settings, robotic assessment
tools have not gained widespread clinical acceptance. Some barriers to and doubts about
their clinical adoption remain, such as their reliability and validity compared to the existing
standardized scales and motion analysis.

In this narrative review, we aimed to investigate the usefulness of R-AMA systems in
patients affected by neurological disorders.

2. Methods

Given the narrative nature of the paper, we only described the most relevant papers
on the issue by searching for them on PubMed, IEEE Xplore, and Scopus, considering the
period from 2010 to 2023. We chose this period because this past decade has witnessed the
implementation of robotic devices in the neurorehabilitation field. To select evidence, we
used the following keywords: “robotic device” OR “exoskeleton” AND “motor assessment”
OR “biomechanical assessment” OR “biomechanical parameters” OR “lower limb assess-
ment” OR “upper limb assessment” OR “motion analysis.” Since this is a narrative review,
we included the most relevant pilot studies, observational studies, randomized controlled
trials, case–control studies, and systematic reviews, considering also the references of the
selected articles, including only English papers. Each article was evaluated through the
title, abstract, text, and scientific validity [10].

3. Motion Analysis and Its Biomechanical Contribution to Accuracy Prediction

Motion analysis involves registering the three-dimensional movements of human
body segments and then calculating biomechanical parameters that describe human move-
ment [11]. The modeling of human motion can be studied from different perspectives. For
this purpose, various approaches are used to derive mathematical expressions that describe
human motion. Newton’s equations of motion are the fundamental tools for understanding
the cause–effect relationship between the forces acting on a system and the resulting mo-
tion [12]. However, applying them to complex systems, such as human locomotion, which
involve a large number of degrees of freedom, requires formulating and solving multiple
equations, leading to high computational costs. The Euler–Lagrange method is used in
multibody systems because it analyzes the entire system without studying the reaction
and contact forces between the elements that comprise the system. This equation allows for
the study of human motion by focusing solely on the mechanical energy of the system. The
knowledge of motion equations allows researchers to identify problems and design mecha-
nisms that seek to recognize or recover human movements [13]. Nowadays, motion analysis
has evolved substantially in parallel with technological advancements, encompassing various
applications, such as clinical gait analysis and 3D biomechanical modeling [14]. Biomechanical
motion analysis is generally based on two types of models: the multibody model and the finite
element model. The first type consists of a set of rigid or flexible bodies connected by joints,
while the second type of motion analysis reconstructs internal strain, stress, or deformation in
flexible bodies based on continuum mechanics theories [15,16].

Within a rehabilitation setting, quantitative analysis of human body kinematics is a
powerful tool that has been used to understand the different biomechanical patterns of
both healthy and pathological individuals [17]. Recently, biomechanical tools have also
been developed, ranging from simple manual annotation of images to marker-based optical
trackers and inertial sensor-based systems. Nowadays, motion analysis can be performed
using marker-less systems that use sophisticated human body models, computer vision, and
machine learning algorithms [17]. Biomechanical parameters that are considered during
motion analysis include kinematic and kinetic parameters [18,19]. In particular, kinematic
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parameters [20] include the spatial and temporal aspects of movement. These parameters
describe (a) the “static” direction during point-to-point movements; (b) the continuous change
of position, speed, and acceleration, which can be further subdivided into its amplitude and
direction components; or (c) combinations of these, such as movement trajectories.

4. Robotic Devices for Upper Limb Measurement

Kinematic (e.g., position, velocity, and acceleration) and kinetic (e.g., force, joint
torque, and muscle activity) data are acquired from sensors affixed to robotic and passive
mechanical devices to measure biomechanical aspects of upper extremities [21–28] (see
more in Table 1).

Table 1. Studies about upper limb robotic-aided motion analysis performed in neurological disorders.

Reference
No. Robotic Device Description Usefulness of Robot-Aided Motion Analysis

[29] Armeo®Power (Hocoma
AG, Switzerland)

The Armeo®Power is a
6-degrees-of-freedom exoskeleton

for upper limb rehabilitation.

Useful tool for the objective evaluation of upper
limbs in post-stroke patients. The kinetic parameters
of the motion analysis included kinetic parameters
of the shoulder (flexion–extension, abduction and
adduction, internal and external rotation), of the

elbow (flexion–extension, prone–supination), of the
wrist (flexion–extension), and of the hand (opening
and closing). The values deriving from the valuation
of the articular range were expressed in degrees; the

values deriving from the evaluation of the force
were expressed in Newton meters (Nm).

[30]
Armeo®Spring
(Hocoma AG,
Switzerland)

The Armeo®Spring device is an
exoskeleton for upper limb

rehabilitation. It is equipped with
7 goniometers and 1 pressure

sensor, which permits free 3D arm
movement. At the end of the
robotic arm, there is a handle,

which contains a pressure sensor,
measuring the grip force.

The authors used the Armeo®Spring device to
conduct a quantitative assessment of the precision,

speed, and smoothness of upper limb motion.
Among the several measures, the hand path ratio is
the ratio between the actual path in the horizontal

plane and the shortest-possible path, which reflects
movement efficiency. The mean velocity and the
number of peaks in the velocity profile were also

assessed. Additionally, the normalized jerk (Norm
Jerk), a measure of trajectory smoothness,

was analyzed.

[31]
Armeo®Spring
(Hocoma AG,
Switzerland)

As described before

The Armeo®Spring was used to assess movement
accuracy by measuring the

hand path ratio, the mean velocity, and the number
of peaks in the velocity profile. The authors

concluded that the device should be integrated into
the clinical evaluation of upper limb functions in

post-stroke patients.

[32]
InMotion 2.0

(Bionik Laboratories,
Watertown, MA, USA)

The InMotion 2.0 device is an end
effector in which the subject

moves their arm from a central
target to 8 peripheral targets.

The authors assessed kinematic parameters of the
upper limb, including elbow extension and shoulder

flexion, abduction and external rotation of the
shoulder, elbow flexion and shoulder extension, and

adduction and internal rotation of the shoulder.
These parameters, calculated at baseline, can assist
clinicians in defining a rehabilitation program for

post-stroke patients.

[33]
Gloreha Sinfonia

(Idrogenet, Lumezzane
BS, Italy –)

Gloreha Sinfonia is a robotic glove
for hand rehabilitation to

maintain range of motion (i.e., the
flexion angle excursion of the
finger metacarpophalangeal
joints) of the patient’s hand.

The authors objectively evaluated hand movements
using the Gloreha Sinfonia glove in order to

customize rehabilitation sessions according to
patients’ motor abilities. The angular values of the

joints were assessed using bending sensors
embedded in the glove.
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These kinds of measures are commonly registered in post-stroke patients, who may
present unilateral hemiplegic involvement. However, the percentage of studies dealing
with R-AMA for upper limbs is still poor. It seems that the Armeo®Spring was the most
used for this issue, followed by the Armeo®Power, InMotion 2.0, and Gloreha Sinfonia, as
reported in Figure 1.
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Figure 1. Percentage of selected articles reported in Table 1 dealing with upper limb robotic-aided
motion analysis.

For example, one of the most used robotic devices in post-stroke neurorehabilitation
is the Armeo®Power, an exoskeleton for upper limb training. Its efficacy in improving
functional outcomes is already demonstrated in the literature [34,35]; however, few authors
have investigated its role in assessing upper limb functions.

Specifically, this robotic device can evaluate specific kinematic parameters [36], as
reported in Table 1. In addition, the Armeo®Power evaluates the range of joint movement,
which is expressed in degrees, and the force of muscles, which is expressed in Newton
meters (Nm). According to Galeoto et al. [29], the Armeo®Power can be considered an
objective robotic tool compared to the Fugl–Meyer for upper limb (FM-UL) clinical scale
items. The FM-UL clinical scale is the most used and reliable scale to assess motor functions,
joint range of motion, joint pain, dysmetria, and tremor in post-stroke patients [37]. The
authors found strong correlations between flexion synergy (forearm supination and elbow
flexion) and results measured with the Armeo®Power. This suggests that the Armeo®Power
is more accurate than the FM-UL clinical scale in evaluating upper limb movements [29].

Other researchers have also evaluated the motor function of stroke patients using
robotic devices and measuring upper limb biomechanical features, such as movement
velocity, accuracy, and smoothness in active training [30,31]. Merlo et al. [30] used the
Armeo®Spring to conduct these measurements. To obtain objective data on upper limb
functions, the Armeo®Spring calculates a set of numerical indices based on the 3D endpoint
trajectory during the “vertical capture” task. The patient receives visual feedback of their
hand position through a display, which is used to facilitate rehabilitation exercises. Indeed,
the derived indices (movement velocity, accuracy, and smoothness) are easy to share with
clinicians because they describe the motor impairment of the upper limb [28].

For example, the loss of movement accuracy can be related to a reduction in sensibility,
whereas the decrease in velocity refers to paresis/paralysis, and the loss of smoothness
refers to an abnormal muscle tone (spasticity) [38]. However, before implementing them
in clinical practice, these indices must be validated by comparing them with other clinical
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scales. In their study, Longhi et al. [31] analyzed three aspects of upper limb (UL) evaluation.
First, they examined the ability of the Armeo®Spring to distinguish between stroke patients
and healthy subjects. Second, they assessed the validity of the indices used to measure
movement. Lastly, they investigated the concurrent validity of these indices by comparing
them with the Wolf Motor Function test, a clinically validated scale for assessing UL motor
function. The authors’ results confirmed the construct validity of the three indices, which
is consistent with the findings of Merlo et al. [30]. This suggests that the Armeo®Spring
can be a promising tool for objectively assessing UL motor skills. In addition, Goffredo
et al. [32] performed a kinematic evaluation of the upper limb in post-stroke patients using
the end effector InMotion 2.0.

The kinematic parameters were calculated from the trajectories recorded by the robot,
starting from the central target and extending to the peripheral targets in various directions.
The kinematic parameters described by the authors [32] refer to the functional abilities of
the UL. However, the Armeo®Power and the Armeo®Spring cannot perform hand motion
analysis due to their biomechanical architecture. To this aim, Cordella et al. [33] conducted
a quantitative and objective assessment of hand movement in post-stroke patients using
the Gloreha Sinfonia. The Gloreha Sinfonia is a robotic glove used to train hand motor
functions, focusing on the recovery of range of motion [33]. Once calibrated, this glove
allows an objective assessment of motor performance. In particular, the results of the
authors [33] demonstrated that the Gloreha Sinfonia can measure angular values from
bending sensors embedded in the glove.

Another concern that should be considered in clinical practice is the objective evalua-
tion of spasticity. The Modified Ashworth Scale (MAS) is, in fact, the most commonly used
clinical tool for assessing spasticity. However, it does have several limitations [39]. Indeed,
de-la-Torre et al. [38] in their systematic review found that R-AMA based on data capture is
effective for evaluating spasticity. However, it should be noted that cutting-edge algorithms
provide a more predictive and analytical measure than the only variation between the
original and the final status obtained from clinical scales [38]. Moreover, some authors [40]
have evaluated muscle synergies in post-stroke patients using a robotic device. Muscle
synergy specifically refers to the coordinated activation of both joints and muscles in order
to execute purposeful movements [41,42]. Post-stroke patients tend to activate abnormal
muscle synergies due to brain lesions in the corticospinal tract, which are further enhanced
by hyperreflexia. This aspect is fundamental in establishing the most effective treatment for
patients in the clinical rehabilitation setting. In this vein, Kung et al. [40] found that robotic
devices, such as end effectors, can be used for long-term evaluation of muscle synergies.

They registered kinematic, kinetic, and electromyographic (EMG) signals during
the tracking movement in order to develop biomechanical indices for evaluating muscle
synergies. In fact, their results revealed that abnormal synergies can be assessed through
two tracking directions: D2 (contra-proximal to ipsi-lateral) and D4 (left–right) [40]. Lastly,
robotic devices can also measure muscle strength, as suggested by Toigo et al. [43]. In
particular, the term “muscle strength” refers to force, moment, or power [43]. Robotic
devices, including exoskeletons and end effectors, are equipped with force sensors for
quantifying the interaction forces between the device and the patient [44]. These devices
record raw sensor data on force during functional movements, enabling the extraction of
valuable data detecting abnormal muscle synergies [43]. However, misalignments with
the device and variations in the rotational axis of a joint can distort the results. Moreover,
all kinematic and kinetic movement parameters are represented to some extent in the
sensorimotor cortex. Distal movements of the hand, including movement direction and
trajectories, can be discriminated in the sensorimotor cortex. This ability has potential
applications in brain–computer interface technology [21].

5. Robotic Device for Lower Limb Assessment

Walking recovery in neurological patients is one of the most important goals planned
by therapists [45]. In order to maximize the recovery of the walking function, it is important
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to define a personalized rehabilitation treatment, in addition to an accurate assessment
to monitor patients’ progress. In fact, both clinical and instrumental tools already exist to
perform an accurate analysis of motion [45]. However, if the assessment protocol takes too
much time to perform, clinicians and therapists may be reluctant to adopt them. A possible
solution could involve the use of robotic devices in which the patient would undergo
both training and assessment. In this study, Imoto et al. [46] used a novel gait training
robot known as WelWalk WW-2000. This robot enables the adjustment of various gait
parameters (such as time and mechanical assistance load) during the training session. The
robot is equipped with sensors and a markerless motion capture system to detect altered
gait patterns in stroke patients. This system can evaluate individuals’ gait patterns and
provide tailored rehabilitation gait training [46]. Generally, the objective assessment of
the lower limb should consider the simultaneous measurement of joint angles, spatial and
temporal parameters of gait, muscle strength, proprioception, and spasticity and/or muscle
stiffness [47] (see Table 2).

Table 2. Studies about lower limb robotic-aided motion analysis performed on neurological patients.

Reference
No. Robotic Device Description Usefulness of Robot-Aided Motion Analysis

[46]

WelWalk
(WW-2000, Toyota
Motor Corporation,

Aichi, Japan)

Knee-ankle-foot robot, low floor
treadmill, safety suspension

device for body weight support,
monitor for patient use, 3D sensor,

and control panel

Three-dimensional joint positions, lower limb tilt,
and knee joint angle were recorded during a task
using a 3D sensor, an inertial sensor, and a knee
angle sensor. Two-dimensional joint positions

collected using skeletal tracking software
(VisionPose®, NEXT-SYSTEM Co., Ltd., Fukuoka,

Japan) and depth data from the 3D sensor were used
to estimate the three-dimensional coordinates of the

joint positions. Bilateral hip, knee, ankle, and
shoulder joints, as well as the midpoints of the

shoulder and hip joints, were the predicted locations
of the 3D joints. This objective gait analysis can be
useful for individuals with hemiparetic stroke, as it
provides individually tailored gait training based on

these assessments.

[48]
Ekso

(Ekso Bionics, San
Rafael, CA 94901, USA)

Ekso a wearable unthethered
exoskeleton. Motors power the

hip and knee joints and all motion
are started either through specific

patient actions or the use of an
external controller.

The authors conducted a comprehensive assessment
by utilizing both kinematic and kinetic parameters,

as well as EEG registrations, in patients with
Parkinson’s disease. In this way, clinicians can
personalize the rehabilitation treatment with a

device that could increase the treatment intensity
and dose without burdening therapists.

[49]
Ekso

(Ekso Bionics, San
Rafael, CA 94901, USA)

As described before

Muscle synergies and activation profiles were
extracted using non-negative matrix factorization.
The authors’ findings provided insights into the

potential underlying mechanism for improving gait
functions through exoskeleton-assisted

locomotor training.

[50]
Lokomat

(Hocoma AG,
Switzerland)

The Lokomat is a robotic tethered
exoskeleton with active hip–knee

actuation and passive ankle
control during the swing phase, in

addition to a variable level
of assistance.

The Lokomat was used to assess proprioception,
which provides information about static position
and movement sense, using custom software to

measure joint position sense in the hip and knee. The
authors demonstrated the usefulness of the Lokomat

in measuring proprioception in SCI patients.
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Table 2. Cont.

Reference
No. Robotic Device Description Usefulness of Robot-Aided Motion Analysis

[51]
Lokomat

(Hocoma AG,
Switzerland)

As described before
The authors proved the Lokomat’s usefulness in

objectively assessing proprioception at the hip and
knee in people with SCI.

[52]
Lokomat

(Hocoma AG,
Switzerland)

As described before

Since lower limb kinesthesia deficits are common in
SCI patients, the authors demonstrated that the

Lokomat can serve as a valid and reliable robotic
device for monitoring sensory function. Kinesthesia
was evaluated using angular encoders of the hip and

knee. During the analysis, a score was generated
based on the difference between the initial angle and

the final angle.

The Lokomat, which is a tethered exoskeleton, is one of most used robotic devices for
gait training and for motion analysis in neurological disorders. In fact, 57% of the selected
papers reported the use of the Lokomat in performing R-AMA, followed by Ekso and the
WelWalk, as reported in Figure 2.
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motion analysis.

According to a systematic review [53], the Lokomat seems to be most suitable for the
motion analysis of lower limbs. Maggioni et al. [54] used the Lokomat to perform a type
of gait analysis, also adding force sensors and potentiometers. The authors successfully
developed and tested a novel specific algorithm to assess walking through the Lokomat. In-
deed, the Lokomat was used to calculate joint angles, assuming that those measured by the
exoskeleton also corresponded to the human angles [54]. Mercado et al. [55] calculated joint
angles in healthy subjects using the Denavit–Hartenberg notation and the Euler–Lagrange
approach to process video recordings of movement. Another study [48] investigates the
use of Ekso-GT, an overground exoskeleton, to assess gait parameters, such as stride time,
stride length, gait speed, and gait events. Although Ekso does not provide a comprehensive
report of gait parameters, these parameters and measurements can be derived from other
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calculations made by the exoskeleton. This allows for an accurate assessment of gait during
training using mathematical models. In addition, exoskeletons, like Ekso, can be integrated
with surface electromyography (sEMG) signals to monitor muscle synergies and muscular
patterns during walking. According to a systematic review [56], the rectus femoris and vas-
tus lateralis are the most frequently recorded muscles during gait. Indeed, the posterior calf
muscles, which play a role in ankle and foot movement, have been less studied during gait
training, despite their importance in the gait cycle. Similarly, Afzal et al. [49] investigated
muscle synergies in patients with MS who were wearing an exoskeleton. EMG signals were
recorded from seven muscles, including the vastus medialis, rectus femoris, biceps femoris,
semitendinosus, soleus, medial gastrocnemius, and tibialis anterior muscles. The authors
demonstrated that exoskeleton assistance does not alter the existing muscle synergies but it
can induce a modification in neural commands [49].

Another point to consider is the evaluation of proprioception provided by robotic
devices. Three studies [50–52] in spinal cord patients have addressed the evaluation
of proprioception or kinesthesia using the Lokomat. In fact, the Lokomat is equipped
with position sensors that are able to determine joint angles. For proprioception, the
authors considered the difference between the target position and the achieved position
for evaluation purposes [50,51]. Another author [52] evaluated kinesthesia by passively
moving the lower limb in a specific direction while patients were wearing the exoskeleton.

6. Discussion

In this narrative review, we found that robotic devices may be used to assess motor
behavior in patients with neurological disorders. Indeed, according to the few available
studies, two main exoskeletons, namely the Lokomat and the Armeo®Spring, R-AMA
may provide clinicians and researchers with reliable and more objective data regarding
motion analysis of the lower and upper limbs, respectively [30,31,50–54]. In addition,
upper limb R-AMA was tested only in post-stroke patients [29–31,33,36,37], while other
neurological disorders were excluded. This issue could be related to the fact that the motor
symptoms of other neurological pathologies, specifically those related to MS, are often
complicated by ataxia or extrapyramidal signs. These complications have a negative impact
on motion analysis [45]. Indeed, post-stroke patients manifest moderate-to-severe upper
limb sequalae (mainly weakness with hypotonia in the acute phase) due to damage in the
cortico-spinal tract [57]. Similarly, lower limb R-AMA was mostly performed on patients
with SCI [50–52], who are characterized by severe lower limb motor impairments, mostly
due to the traumatic interruption of central nervous pathways. Given that R-AMA was
performed only in patients with moderate-to-severe motor impairment, future studies
should take into account other levels of severity, as well as consider other pathologies. (e.g.,
MS, PD, and traumatic brain injury).

6.1. Benefits of Robotic-Aided Motion Analysis

Compared with conventional assessment methods, such as clinical scales or tests
administered by physiotherapists and/or physicians, R-AMA offers several advantages.
It can provide tri-axial measurements, analyze the patient’s limb trajectory, accurately
register spatial-temporal parameters of movement, and collect a large amount of data.
Altogether, these elements allow for personalization of the rehabilitation path according to
patients’ needs. This personalized approach can be used to create a tailored patient profile,
which includes a precise physiotherapy program. This program considers both traditional
and cutting-edge devices for treatment. In recent years, the concept of personalized
treatment has gained significant traction in various medical fields [58], including neurology
and rehabilitation.

In this vein, the so-called “rehabilomics” sheds some light on the role of biomarkers
in the clinical and rehabilitation setting [59]. This approach has primarily focused on the
biological field, including proteomics, genomics, metabolomics, and other related areas.
However, the kinematics and electrophysiological indicators can be considered biomarkers,
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as suggested by Garro et al. [60]. Indeed, the development of biomarkers based on the
models of motor control mechanisms may be useful in a clinical context to understand
healthy functions, disability, and rehabilitation progress. In this way, R-AMA can conduct
a neuromechanical assessment, which examines the connection between neurological
pathology and biomechanical issues [61] (Figure 3).
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Legend: R-AMA could be useful to personalize neurorehabilitation programs, thanks
to both biomarkers provided by EMG biosignals (on the left) and biomechanical param-
eters (on the right), including kinematic and kinetics. In the end, the great quantity of
data obtained through R-AMA could be further used for MLA for individuating motor
biomarkers involved in recovery prediction.

6.2. Challenges of Robotic-Aided Motion Analysis

To date, research on robotic devices has primarily focused on neuromotor training and
recovery in patients with neurological disorders, without considering the potential role of
these devices in objectively evaluating movement. However, physicians frequently criticize
these technical solutions, claiming that the outcome measures offered by robotic devices
are too abstract, do not translate into practical function, and lack ecological validity.

An important point that should be addressed is that robotic devices may require a
lengthy setup time and the support of technical staff to operate. In the clinical setting,
the physiotherapist has 30–60 min of rehabilitation treatment for each patient, and this
could further discourage the use of robotic devices in clinical practice. Additionally, robotic
devices, especially exoskeletons, must be perfectly aligned with the user to avoid undesired
interaction forces [62]. These forces can result in an uncomfortable and unsafe human–
robot interaction in the case of high forces or torques. Solutions to address misalignment of
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the joint’s axes can include soft exoskeletons, which are constructed from soft textiles or
elastomers. These exoskeletons offer greater user compliance compared to rigid robotic
orthoses [63]. However, robotic devices are not available in all rehabilitation centers due to
their costs, maintenance requirements, and the need for additional staff [64]. These may
be some reasons why robot-based assessments have not yet been integrated into clinical
practice on a large scale.

However, recent technological developments in the field of wearable devices, such
as accelerometers and inertial sensors, have the advantage of providing objective motion
analysis as low-cost and easy-to-use tools, as opposed to robotic devices [17,45]. In this
sense, professional engineers should be encouraged to develop assessment technologies that
are not constrained by practical limitations and administrative burdens. In our opinion, we
must identify and overcome the barriers that prevent the translation of robotic evaluations
to clinical application.

6.3. Future Perspectives: Combined Approaches and Beyond

The selection of motion biomarkers predicting recovery remains an open and under-
debate question. According to Amrani El Yaakoubi et al. [56], EMG and biomechanical
parameters together, including both kinetic and kinematic factors, are the most used
predictors for lower limb movement. EMG is, in fact, sensitive to neuromuscular changes,
particularly in post-stroke patients. The most common surface EMG analyses are time-
domain and frequency-domain analyses. Specifically, among frequency-domain analyses,
the mean frequency and median frequency are the most effective to assess muscle fatigue in
post-stroke patients [65]. Hussain et al. [66] found that a machine learning neural network
model based on EMG frequency domains has a high level of accuracy. However, the
muscles that contribute the most to kinetic and kinematic prediction cannot currently be
defined due to the heterogeneity of the results from the studies. In contrast, the kinematic
assessment of the upper limb mainly includes the smoothness of the trajectory, as suggested
by various authors [66,67]. Scano et al. [68] identified that post-stroke patients exhibit
lower smoothness of trajectory, indicating difficulty in controlling the upper limb during
multi-joint movements. Also, the authors found that elbow and shoulder joints showed
a limited ROM, likely due to altered postural accommodation. In this view, analyzing
EMG signals during upper limb functional activities with or without exoskeletons could
be a future objective to achieve. Moreover, other biosignals, like EEG, can be used to
control robotic devices through the brain–computer interface (BCI). An EEG-based brain-
controlled robot is a robotic device that uses an EEG-based BCI to receive control commands
from its user [69]. In the field of neurorehabilitation, EEG-based brain-controlled assistive
robots are divided into manipulators and mobiles. Brain-controlled manipulators operate
under direct BCI control, with user commands being sent to the robots. This is done
without the need for additional assistance from robot intelligence elements [70]. In contrast,
brain-controlled mobiles operate under shared BCI control, which involves combining
a BCI system with an intelligent controller. Robots of this type are safer, less tiring for
their users, and more accurate in interpreting and executing their commands [71,72].
Therefore, future developments in rehabilitation robotics should enable physicians to
choose the most appropriate biomechanical parameters according to an individual patient’s
specific requirements. Future technological advancements in the assessment of motor
performance should consider kinematic, EMG, and EEG signals. This aspect could be crucial
in understanding how the brain’s sensorimotor cortex encodes movements to achieve
optimal neural control of motor performance. It also enables the differentiation between
healthy and pathological characteristics. Hence, in order to guide the development of
future robotic-based assessment tools, it is essential to foster multidisciplinary collaboration
between clinical professionals (such as neurologists, physiatrists, and physiotherapists)
and biomedical engineers.
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7. Conclusions

In conclusion, the utility of R-AMA for both clinical and research purposes is still a
subject of debate, although some promising findings have been reported regarding the
effectiveness of the Lokomat and the Armeo. The motion analysis provided by these robotic
devices is used to customize rehabilitation sessions, relying on the objective quantification
of patients’ functional abilities. It should be considered that clinical scales and tests used
to monitor motor recovery in neurological patients are less accurate than motion analysis
conducted by robotic devices. Next, research on the use of robotics and assessment tools
should be encouraged. Future studies should be oriented toward two different frontiers:
(1) understanding the most useful biomechanical parameters that can predict the accuracy
of movements and (2) validating robotic device assessments for clinical purposes.
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