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Abstract: Background: Corneal fluorescein staining is a key biomarker in evaluating dry eye disease.
However, subjective scales of corneal fluorescein staining are lacking in consistency and increase the
difficulties of an accurate diagnosis for clinicians. This study aimed to propose an automatic machine
learning-based method for corneal fluorescein staining evaluation by utilizing prior information
about the spatial connection and distribution of the staining region. Methods: We proposed an
end-to-end automatic machine learning-based classification model that consists of staining region
identification, feature signature construction, and machine learning-based classification, which fully
scrutinizes the multiscale topological features together with conventional texture and morphological
features. The proposed model was evaluated using retrospective data from Beijing Tongren Hospital.
Two masked ophthalmologists scored images independently using the Sjögren’s International Collab-
orative Clinical Alliance Ocular Staining Score scale. Results: A total of 382 images were enrolled in
the study. A signature with six topological features, two textural features, and two morphological
features was constructed after feature extraction and selection. Support vector machines showed the
best classification performance (accuracy: 82.67%, area under the curve: 96.59%) with the designed
signature. Meanwhile, topological features contributed more to the classification, compared with
other features. According to the distribution and correlation with features and scores, topological
features performed better than others. Conclusions: An automatic machine learning-based method
was advanced for corneal fluorescein staining evaluation. The topological features in presenting
the spatial connectivity and distribution of staining regions are essential for an efficient corneal
fluorescein staining evaluation. This result implies the clinical application of topological features in
dry-eye diagnosis and therapeutic effect evaluation.

Keywords: dry-eye disease; corneal fluorescein staining; topological features; machine learning

1. Introduction

Dry eye disease (DED) is a multifactorial condition affecting the ocular surface, char-
acterized by a loss of homeostasis of the tear film and accompanied by ocular symptoms,
in which ocular surface damage plays an etiological role [1]. The prevalence of DED ranges
between 5% and 50% worldwide [2]. To diagnose DED, careful assessment of ocular surface
damage is essential. Recommended assessments include corneal, conjunctival, and lid-
margin staining, with corneal staining being the most significant [3]. Sodium fluorescein
is a common dye for corneal staining, as it can enter sick cells and be transported across
altered tight junctions and micro pool at the space left by a shed epithelial cell [4].
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Several subjective grading scales have been developed to evaluate corneal fluorescein
staining (CFS), including the National Eye Institute (NEI)/Industry scale [5], the Oxford
scale [6], and the Sjögren’s International Collaborative Clinical Alliance Ocular Staining
Score (OSS) scale [7]. The NEI scale divides the cornea into five zones (central, superior,
inferior, nasal, and temporal) and assigns a grade from 0 to 3 to each zone. In contrast,
the Oxford and OSS scales examine the entire cornea, using different criteria to evaluate
staining regions. The Oxford scale employs illustrative drawings to grade corneal staining
from 0 to 5, while the OSS scale counts the number of staining dots and assigns a score
between 0 and 3, with an additional point for special types of dot distributions. However,
there is little consensus on the features included in these scales, as they differ in their
procedures and standards [8]. The variety of grading scales can be confusing for ophthal-
mologists and time consuming in clinical practice, and subjectivity leads to interobserver
and intraobserver variability.

Therefore, computer-aided diagnosis (CAD) has made progress in evaluating CFS in
recent years. Rodriguez et al. [9] developed a semi-automatic method by manually identify-
ing staining regions using three seed points in a corneal area. Similarly, Pellegrini et al. [10]
manually traced the corneal area with the ImageJ 1.51s software for CFS grading. In con-
trast, Daugman’s operator was employed for locating the cornea, followed by an Otsu
method for automatically identifying staining regions [11]. Bagbaba et al. [12] also devel-
oped a method that automatically segmented staining regions using connected component
labeling. Kourukmas manually positioned the cornea and segmented the stained area
with the help of ImageJ software [13]. Rather than directly predicting the CFS result, all
these methods finally attempted to explore the correlation between the corresponding
grade and the image-based parameters of the staining regions, such as the number of
corneal staining regions and the ratio of the staining area to the total corneal area. Recently,
data-driven deep neural networks (DNNs) have been used to segment staining regions or
to examine the grading scale directly from the images [14–18], producing promising results
in grading CFS.

The emergence of computer-aided solutions for evaluating CFS can provide objective
measurements and facilitate the quantitative grading of dry eyes. However, previous
studies have primarily focused on the correlation of CFS with the number or area of the
staining regions [9–12,18], neglecting the distribution and texture information from these
regions. This approach is inadequate for complicated corneal staining images that involve
confluent staining and filaments. Although data-driven solutions such as deep learning
show promising classification accuracy, their lack of interpretability restricts their usage
in clinics [14–17]. Moreover, previous research has ignored spatial position information,
despite the variations in the closeness and distribution between staining regions in different
grades’ images, indicating the potential use of the topological theory in CFS evaluation.
To the best of our knowledge, the topological features have not been applied in corneal-
staining evaluation.

Therefore, we considered whether topological attributes might uncover a more efficient
underlying differentiating mechanism between different staining grades. We proposed an
automated machine learning-based method for evaluating corneal fluorescein staining in
dry-eye disease, which includes a set of multiscale topological features designed to capture
spatial connectivity and distribution information between staining regions.

2. Materials and Methods
2.1. Data Set

The retrospective, single-center research was conducted at Beijing Tongren Hospital,
Capital Medical University. Patients diagnosed with dry eye based on the Dry Eye Work-
shop II criteria between 2021 to 2022 were included [19]. Patients with a history of ocular
injury or infection, contact lens wear within the last 6 months, surgery within the previous
12 months, or systemic autoimmune diseases such as Sjogren’s syndrome and systemic
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lupus erythematosus were excluded. The study adhered to the principles of the Declaration
of Helsinki. Written informed consent was obtained from all participants.

All corneal images were acquired by a single technician using a photo slit-lamp
system (BX 900, Haag-Streit, Bern, Switzerland) with 10×magnification. The cornea was
stained with fluorescein by introducing a wet fluorescein sodium ophthalmic strip (Tianjin
Jingming New Technological Development Co., Tianjin, China) into the inferior fornix,
and participants were instructed to blink [19]. The camera settings were constant for all
participants, and images of the entire cornea were obtained using the blue filter and the
barrier yellow filter to observe corneal staining.

2.2. Investigator Grading System

Two experienced ophthalmologists assessed corneal staining images independently.
The results obtained by the two ophthalmologists were compared and discrepancies were
resolved with another ophthalmologist. In dry-eye disease, the inferior zone typically
presents the most severe grade of corneal staining. Compared to other areas, the inferior
zone has a higher density of staining and provides more features [20]. We assumed that the
center of the cornea was located at the middle of pupil, and the distance from the center to
the bottom edge of the cornea was regarded as the radius. Therefore, the region of interest
(ROI) was located at the lower sector areas, with an included angle of 90◦. The ROI in the
inferior cornea was finally graded according to the OSS scale. The OSS score was calculated
as follows: 0, no staining; 1, one to five staining dots; 2, six to 30 staining dots; 3, more than
30 staining dots [7]. An additional point was added if:(1) there were one or more patches
of confluent staining, (2) there were one or more filaments, or (3) staining occurred in the
central cornea. As the ROI was the inferior zone of the cornea, the maximum score for each
ROI was 5 in our study. The final OSS score was regarded as the true label.

2.3. Staining Region Analysis

As shown in Figure 1, the stage of staining region analysis was developed to extract
the regions of staining. The extraction process consisted of three primary steps: image
preprocessing, identification of the region of interest (ROI) in the cornea, and segmentation
of staining regions within the ROI. The precise determination of both the ROI and staining
regions was critical for achieving optimal performance of the automated grading system.
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Figure 1. Overview of our proposed automatic segmenting and grading method for corneal fluores-
cein staining evaluation.

2.3.1. Image Preprocessing

To improve the clarity of corneal edges and eliminate reflective areas, we applied
a series of image preprocessing operations before determining the ROI. In cases where
low-contrast images were obtained, likely due to variations in the light environment during
image capture, we employed image enhancement methods to increase the visibility of
corneal edges. First, we extracted the red channel from the input color image to enhance
the edges and minimize the possible impact of staining (Figure 2a). We then utilized
median filtering and contrast-limited adaptive histogram equalization (CLAHE) to decrease
noise and improve image contrast [11,21], respectively. Additionally, to address potential
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reflective regions in the images, Otsu thresholding was applied to detect and eliminate the
brightest areas (Figure 2b) [22].
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Figure 2. Representative result of image digital analysis: (a) original image; (b) image after prepro-
cessing; (c) location of the region of interest (ROI) (red lines), with the cornea in yellow lines, the
pupil in green lines and the semicircle applied to determine ROI in red dashed lines; (d) segmentation
of staining regions in the ROI (red lines).

2.3.2. Location of the ROI

Following the preprocessing procedures, we identified the ROI by first detecting the
cornea and the pupil. We used Otsu thresholding to binarize and segment the sclera areas,
which were outside and brighter than the cornea. We then determined the center and
radius of the cornea by identifying the largest diameter in the inner edges of the binarized
sclera, corresponding to the circular edges of the cornea. Daugman’s integrodifferential
operator was subsequently used to detect the pupil within the cornea [23]. Specifically,
we searched for the largest outward radial gradient of the grey intensity of the circular
ring under any proposed combination of the center (x0, y0) and radius r, consisting of the
circle of the pupil. Daugman’s equation, as presented in Equation (1), was used to compute
the pupil’s position. Once the cornea and the pupil were detected, the ROI’s location was
determined as the lower sector area with an included angle of 90◦. Figure 2c shows the
detected cornea, pupil, and ROI.

max
(r,x0,y0)

|Gσ(r)×
∂

∂r

∫
r,x0,y0

I(x, y)
2πr

ds| (1)

2.3.3. Segmentation of Staining Regions in the ROI

To segment the staining regions of the dots or patches in the located ROI image, we
employed the top-hat by reconstruction operation in morphology [24]. Specifically, we first
extracted the green channel to highlight the green staining regions and then performed an
open operation to eliminate small bright details. Next, the ROI image was reconstructed
in grayscale using the result from the open operation as a template, which effectively
removed the highlights while preserving the background. Finally, the staining regions
were segmented by taking the difference between the ROI and the reconstructed result
(Figure 2d). Compared with the commonly used threshold segmentation methods, such as
Otsu, the top-hat by reconstruction operation showed superior detection performance to
staining regions under different contrasts.

2.4. Signature Construction

After segmenting the desired stained regions, we proceeded with signature construc-
tion, which involved feature extraction and selection to meet the requirements of the
classification model. In this stage, we extracted conventional radiomic features, includ-
ing textural and morphological features. Additionally, we developed a set of multiscale
topological features to uncover spatial connectivity and distribution information between
staining regions [25]. These additional features aimed to capture the intricate relationships
and patterns among the stained regions.
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2.4.1. Feature Extraction

Radiomic features, encompassing both textural and morphological characteristics,
were calculated, as the previous study mentioned [26,27]. A total of 837 texture features
were extracted to analyze the background grayscale textural and pattern information of
ROI images. Specifically, this included 18 first-order histogram statistical features and
75 second-order gray matrix features, such as autocorrelation and cluster prominence in
the gray-level co-occurrence matrix (GLCM), the gray-level non-uniformity and gray-level
non-uniformity normalized in gray-level size zone matrix (GLSZM), the gray-level variance
and high gray-level run emphasis in gray-level run length matrix (GLRLM), and so on.
These features were calculated in nine forms of images, respectively [26]. In addition
to the original image, three image transformation operations were performed to enrich
the textural information of the ROI. These operations included Laplacian of Gaussian
filtering (LoG) (σ = 1, 2, 3), four components of wavelet decomposition, and local binary
patterns (LBPs). Furthermore, to avoid ignoring the information from staining regions,
nine morphological features were extracted by calculating the shape characteristics, such
as circularity and the area of each segmented staining region [10].

To capture the spatial connectivity and distribution information of staining regions,
a set of multiscale graph-theoretic topological features were developed. These features
aimed to address characteristics like regional clustered distribution resulting from confluent
staining, which cannot be accurately described by textural and morphological features
alone [25]. The approach involved considering the centroid of each staining region as the
vertex in a graph and estimating the connectivity between staining regions using dilation
operations at multiple scales. When two staining regions overlapped after dilation, their
nodes were connected by an edge, thus generating a topological graph that reflected the
connectivity. As the scale of dilation increased from small to large, the number of edges
and the connectivity of the graph exhibited a positive correlation. The construction process
of the topological graph is shown in Figure 3. Eight topological features, including vertex
degree and eccentricity, were calculated at each scale. These calculations were performed
using different disk dilation operators, ranging in size from 4 to 64. A total of 128 multiscale
topological features were extracted in 16 scales. The texture features we extracted were the
same as those in the literature, and the morphological and topological features extracted
are shown in Table 1 [25].
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(a) to column (e) are 4, 16, 32, 48, and 64. Top row: the results of dilation on the staining regions at
different scales; bottom row: the results of the constructed topological graph at corresponding scales.

2.4.2. Feature Selection

In order to handle the large number of features (974 normalized features) obtained after
calculating all three kinds of features, a four-step feature selection method was employed
for signature construction. This approach aimed to reduce the dimensionality of the features
set and prevent overfitting of the model without compromising its performance. One-way
analysis of variance (ANOVA) and a Pearson redundancy-based filter (PRBF) were applied
to eliminate redundant terms in the feature vector [28]. Subsequently, a backward feature
selection method based on the linear regression model was used to remove non-significant
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features [29]. The final selection for important features was determined using a decision-
tree method [30], where the importance of each feature was measured by the gini impurity
at each node. Higher importance indicated stronger separability of the feature across
different classes of the model. Multiple alternative signatures were constructed, based on
different combinations of the importance ranking and feature categories.

Table 1. Extracted topological features.

Feature Categories Feature Names

Topological features

Number of subgraphs
Average vertex degree
Maximum vertex degree
Average vertex eccentricity
Diameter
Average clustering coefficient
Giant connected component ratio
Percentage of isolated points

Morphological features

Mean area
Total area
Mean perimeter to area ratio
Total perimeter to area ratio
Mean circularity
Mean perimeter
Total perimeter
Minimum external rectangle aspect ratio
Number

2.5. Classification and Evaluation

The developed machine learning-based model aimed to classify corneal staining
images into different grades, based on selected features. To determine the optimal approach
for our auto-grading method and evaluate the effect of different categories of features, we
extensively explored the performance of different combinations of signatures and models.
Specifically, four groups of features were applied in the same support vector machine
(SVM) model in order to determine the one that was associated with best performance
and accept it as the final signature. Additionally, different combinations of topological and
non-topological features (textural and morphological) were investigated to evaluate the
contributions of topological features in the classification process. This included the overall
top-10 important features, the top-10 important non-topological features, and the top-5
important topological features and non-topological features, respectively. These resulting
signatures were then accessed using five kinds of machine learning-based classification
models, namely, SVM, Naive Bayes (NB), Decision Tree (DT), Boosting Tree (BT), K-nearest
neighbors (KNN), and Random Forest (RF). In our experiments, the original dataset was
divided into a training dataset (307 images) and a testing dataset (77 images), in an 8:2
ratio. A ten-fold cross-validation method was used to train and validate each model on the
training dataset, while the classification performance of the model was evaluated with the
testing dataset.

2.6. Statistical Analysis

An intraclass correlation coefficient (ICC) was calculated to assess the interobserver
repeatability between two resident ophthalmologists; ICC ≥ 0.8 indicated good reliability.
Accuracy (ACC), sensitivity (SEN), precision (PRE), specificity (SPE), F-measure of the
confusion matrix, and the area under the receiver operating characteristic (ROC) curve
(AUC) were calculated to evaluate the performance of the proposed method. The confusion
matrix showed the predicted label and true label of each class, and the ACC was the ratio of
the total number of correctly classified samples to the total number of samples. Due to the
imbalance between different classes in the dataset, the F-measure was also used to evaluate
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the harmonic mean of precision and sensitivity. The ROC is a function of sensitivity and
specificity, which was established by changing the threshold of the classifier. Generally,
AUC was used to evaluate the accuracy of the classification model. The larger the AUC,
the better the performance. Kendall’s tau-b correlation coefficient (rK) was used to evaluate
the correlation between selected features and true labels. All experiments were two-sided
tests; p < 0.05 was considered to be statistically significant and p < 0.01 was considered to
be statistically extremely significant.

2.7. Implementation Details

The detection and classification experiments in this study were conducted on a per-
sonal computer with an Intel Core i9-9900K, 3.60 GHz, and 16 cores. The programming
language used for the implemented algorithms was MATLAB software (version R2022a,
RRID:SCR_001622). All input images were standardized to a size of 1944 × 2592, and the
extracted ROI size was normalized to 596 × 1104. In the preprocessing phase, median
filtering was applied with a neighborhood size of 21 × 21. For pupil detection using
Daugman’s integrodifferential operator, the preselected range for the pupil center (x0, y0)
was a rectangle with the corneal center as the center and 0.35 times the corneal radius as the
length. The preselected range for the pupil radius (r) was from 0.15 times to 0.35 times the
length of the corneal radius. The calculation angle range for the integrodifferential operator
was from 0 degrees to 360 degrees. In the reconstruction of the top-hat operation, a circular
structural element with a radius of 10 was used. For machine learning model training, the
dataset was divided into a training set and a test set in an 8:2 ratio. Model parameters were
optimized using the training set, and the model’s performance was evaluated using the test
set. For the SVM model, the kernel function was a Gaussian kernel. The DT model had a
maximum split criterion of 4 at each node. The boosting tree model underwent 30 training
cycles. The KNN model had a neighborhood size of 10.

3. Results
3.1. Analysis of Dataset and Subjective Grades

A total of 421 images were acquired and 382 images were enrolled in the study, ex-
cluding blurred or poor-exposure images. No image was observed with filament, allowing
for the implementation of a five-category model ranging from 0 to 4. There were 41 images
(10.7%) with grade 0; 57 images (14.9%) with grade 1; 112 images (29.3%) with grade 2;
59 images (15.5%) with grade 3; and 113 images (29.6%) with grade 4. The median score
was 2 (range, 0–4). The ICC values between the two ophthalmologists were 0.789 (95%
confidence interval: 0.562–0.881, p < 0.001).

3.2. Selection and Evaluate of Features

In this study, 992 initial features were extracted from the ROI and the staining regions
of each image. These included 837 textural features, 9 morphological features, and 128
topological features. Specifically, texture features were directly computed within the
localized ROI image, while morphological and topological features involved operations
on the detected stained regions. Morphological features calculated information for each
connected component of the stained regions, while topological features were evaluated
from the graph structure constructed from the overall results of the stained region detection.
During the process of feature selection, ANOVA retained 556 features, PRBF preserved
199 features, and. finally, backward feature selection based on a linear regression model
yielded 44 features. Additionally, the decision-tree feature selection method predicted the
importance of features in classification. The top-20 important features are shown in Figure 4,
demonstrating that six out of the top seven ranked features were topological features.
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The top-20 important features are shown in Figure 4. We evaluated the performance of
four groups of features with an SVM model on the training (10 FCV) and testing datasets,
respectively. The classification results are summarized in Table 2. The overall top-10
important features provided the best performance, with an ACC of 82.67% and an AUC
of 96.59%. These results were significantly higher than those of the other feature groups.
Similarly, the topological top-5 important features exhibited superior performance (ACC:
74.67%, AUC: 95.36%) compared to the non-topological top-5 (ACC: 64.00%, AUC: 84.14%).
This finding suggests that topological features made a more significant contribution than
other types of features.

Table 2. Classification results of different groups of features in SVM.

Feature Groups ACC SEN PRE SPE F-M AUC

The overall top-10
important features 82.67 83.71 80.91 80.91 81.80 96.59

The top-10 important
non-topological features 64.00 53.53 57.88 57.88 54.22 90.64

The top-5 important
topological features 74.67 65.82 70.91 70.91 67.60 95.36

The top-5 important
non-topological features 64.00 46.48 56.36 56.36 49.90 86.14

ACC, accuracy; SEN, sensitivity; PRE, precision; SPE, specificity; F-M, F-measure;
AUC, area under the receiver operating characteristic curve.

The overall top-10 important features consisted of two textural, two morphological,
and six topological features. Their explanations are shown in Table 3. For more detail, the
distribution of each feature in the five classes is presented in Figure 5. The correlation be-
tween features and true labels is shown in Table 4. All topological features except “topology
11-8” and “topology 1-7” were strongly correlated to true labels (rK > 0.7, p < 0.001).

Since some features in score 0 images had zero values, which may interfere with the
potential correlation, the result of removing the score 0 images is also shown in Table 4.
Please note that “topology-11-8” showed a negative relationship (rK = −0.6, p < 0.001).
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Table 3. Explanation of the top-10 important features.

Feature Names Feature Explainations

Topology-14-5 The diameter in topological features of scale 56
Morphology-5 The mean circularity in morphological features
Topology-2-1 The number of subgraphs in topological features of scale 8
Topology-5-2 The average vertex degree in topological features of scale 20
Topology-11-8 The percentage of isolated points in topological features of scale 44
Topology-10-2 The average vertex degree in topological features of scale 40
Topology-1-7 The giant connected component ratio in topological features of scale 4
Texture-4-15 The skewness in textural features of LOG transform of sigma 3
Morphology-3 The mean area perimeter ratio in morphological features
Texture-4-79 The large area low gray-level emphasis in textural features of GLSZM of LOG transform of σ = 3
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Table 4. The correlation between the top-10 important features and true labels.

Feature Names
OSS 0 to 4 OSS 1 to 4

rK p Value rK p Value

Topology-14-5 0.74 <0.001 * 0.68 <0.001 *
Morphology-5 −0.02 0.694 −0.30 <0.001 *
Topology-2-1 0.74 <0.001 * 0.71 <0.001 *
Topology-5-2 0.72 <0.001 * 0.68 <0.001 *
Topology-11-8 −0.31 <0.001 * −0.60 <0.001 *
Topology-10-2 0.75 <0.001 * 0.71 <0.001 *
Topology-1-7 −0.10 0.006 −0.39 <0.001 *
Texture-4-15 0.39 <0.001 * 0.40 <0.001 *
Morphology-3 0.35 <0.001 * 0.18 <0.001 *
Texture-4-79 −0.31 <0.001 * −0.31 <0.001 *

OSS, the Sjögren’s International Collaborative Clinical Alliance Ocular Staining score; rK, Kendall’s tau-b correla-
tion coefficient; *, p value < 0.05.

3.3. Effectiveness of Selected Features among Different Classification Models

The effectiveness of the selected three groups of features was evaluated using five
different machine learning-based classification models (SVM, DT, BT, NB, KNN, and
RF) to assess their generalization performance. As shown in Table 5, among the three
feature groups, the overall top-10 important features consistently achieved the highest
performance across all classification models. The topological top-5 features outperformed
the non-topological features within the same range, indicating a robust effectiveness of
the selected topological features. Moreover, SVM showed the best performance compared
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with other models (ACC: 82.67%, AUC: 96.59%). To further analyze the grading process,
the confusion matrix and ROC curve are presented in Figures 6 and 7, respectively. The
confusion matrix highlights excellent performance in distinguishing class 0 and class 4,
while some errors were observed between class 3 and class 2, as well as class 3 and class 4.
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Table 5. Classification results for different groups of features in SVM, DT, BT, NB, and KNN.

Models Feature Groups ACC SEN PRE SPE F-M AUC

SVM
A-10 82.67 83.71 80.91 80.91 81.80 96.59
T-5 74.67 65.82 70.91 70.91 67.60 95.36

NT-5 64.00 46.48 56.36 56.36 49.90 86.14

DT
A-10 73.33 78.40 71.97 71.97 73.66 90.67
T-5 69.33 62.55 65.45 65.45 62.60 87.79

NT-5 57.33 41.68 50.23 50.23 44.58 84.97
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Table 5. Cont.

Models Feature Groups ACC SEN PRE SPE F-M AUC

BT
A-10 74.67 75.77 74.55 74.55 74.88 93.25
T-5 69.33 68.08 68.03 68.03 67.57 91.48

NT-5 68.00 60.02 59.17 59.17 56.39 87.62

NB
A-10 76.00 78.50 76.21 76.21 76.78 88.35
T-5 68.00 71.24 67.58 67.58 68.53 85.41

NT-5 62.67 57.72 56.14 56.14 55.10 88.19

KNN
A-10 80.00 79.66 78.18 78.18 78.26 95.44
T-5 74.67 74.88 73.18 73.18 73.59 91.43

NT-5 60.00 55.72 55.23 55.23 55.05 86.40

RF
A-10 77.33 78.52 78.03 78.03 78.13 94.86
T-5 72.00 72.32 70.61 70.61 70.37 90.96

NT-5 68.00 65.94 64.17 64.17 64.73 90.28

A-10, the overall top-10 important features; T-5, the top-5 important topological features; NT-5, the top-5 important
non-topological features; ACC, accuracy; SEN, sensitivity; PRE, precision; SPE, specificity; F-M, F-measure; AUC,
area under the receiver operating characteristic curve; SVM, support vector machine; DT, Decision Tree; BT,
Boosting Tree; NB, Naïve Bayes; KNN, K-Nearest Neighbor, RF, Random Forest.

4. Discussion

In this study, we developed an automatic machine learning-based method for corneal
fluorescein staining evaluation. Our findings highlighted the significance of topological
features as clinical characteristics in the evaluation of corneal fluorescein staining in dry-eye
disease. This end-to-end model consisted of segmenting staining regions, extracting their
radiomic characteristics, and differentiating them into the corresponding grades. The
resulting radiomic signature was constructed from a combination of multiscale topological
features, as well as textural and morphological features. The experimental results of our
clinical dataset demonstrated the good performance of the proposed model with ACC
82.67% and AUC 95.36%. Moreover, we identified the 10 most important interpretable
image-based features, with topological features playing a crucial role. These topological
features captured the spatial connectivity and distribution information among staining
regions, thereby holding promising in guiding clinical decision-making for the diagnosis
and treatment of dry-eye diseases.

The key component in our proposed method was the usage of multiscale topological
features that scrutinized the spatial connectivity and distribution among staining regions.
These features significantly contributed to the discriminatory ability of the model. This
is evident in Figure 4, where the top-ranked radiomic features after selection include
six topological attributes among the top seven characteristics. Additionally, the superior
performance of topological features compared to non-topological features was consistently
observed across different machine learning-based classification models, as shown in Table 5.
This indicated the effectiveness of topological features in distinguishing between different
grades of corneal staining. Moreover, Table 4 reveals a significant positive or negative
correlation between topological characteristics and subjective gradings, which was not
observed in other textural and morphological features. These findings underscore the
unique contribution of topological features in capturing relevant spatial information related
to corneal staining.

The observation of an increasing diameter of scale 56 (“topology-14-5”) with higher
true labels suggested a linear distribution of fluorescein staining. In the context of clinical
practice, we interpreted this linear distribution as being horizontal. The horizontal distribu-
tion is associated with incomplete blinking, which refers to a blink cycle where the upper lid
turns to the upstroke before making contact with the lower lid [31,32]. Incomplete blinking
is commonly observed in dry-eye patients [33]. Incomplete blinks extend the period of
horizontal strip area exposure to desiccating stress, leading to more corneal epithelium
defects in that region [34]. Therefore, the presence of a linear distribution of staining may
serve as an indicator of incomplete blinking and the associated increased risk of corneal
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epithelial damage. Other topological features revealed the aggregation of corneal staining
in the inferior zone, which has rarely been reported in previous studies. The number of
subgraphs of scale 8 (“topology-2-1”) and the average vertex degree of scale 20 (“topology-
5-2”) and 40 (“topology-10-2”) positively correlated with the true label, which indicated a
tendency for staining to cluster. The aggregation phenomenon may be attributed to the
main mechanism of corneal epithelium cell damage in DED, which is tear hyperosmolarity.
It has been proven that hyperosmolarity can be localized [3]. Additionally, tear film is more
likely to break up in areas in damaged epithelium, leading to an increase in osmolarity in
those regions. This creates a vicious cycle, resulting in more corneal epithelium defects in
the same area. Furthermore, the more staining in the fixed area (the inferior zone of the
cornea) inevitably affects the value of such topological features. These topological features
highlight the crucial role they play in distinguishing the severity of corneal staining and
provide valuable insights into the spatial connectivity and distribution of staining regions
in a clinical setting.

We extensively explored different combinations of feature signatures and models to
identify the approach that yielded the best performance for our computer-aided diagnosis
method. The selection of the support vector machine (SVM) model as the best-performing
classification model in our study was based on its high accuracy (ACC) of 82.67% and area
under the receiver operating characteristic curve (AUC) of 96.59%. The high ACC and AUC
values obtained with the SVM model indicated its effectiveness in accurately classifying
corneal staining images into different grades.

There were some previous studies that reported similar results in staining-regions
evaluation. While some studies focused on semi-automatic methods for locating the re-
gion of interest (ROI) in the cornea [9,10], our method was fully automated, providing
accurate localization and segmentation of staining regions. Additionally, previous studies
mainly relied on image processing or deep-learning techniques for corneal region segmen-
tation, without specifically analyzing the spatial connectivity and distribution of staining
regions [11,12,18]. In contrast to approaches that only consider parameters such as the
number and area of staining regions, we introduced topological features to capture the
spatial characteristics and the confluence of staining regions. This provided a more compre-
hensive analysis of corneal staining patterns. By incorporating these topological features
along with textural and morphological traits, our machine learning-based classification
model demonstrated improved performance in grading corneal staining.

The effectiveness of the topological features identified in our study holds promise for
clinicians in diagnosing dry-eye disease. The integration of topological features with other
radiomic characteristics enhances the classification performance and provides valuable
insights into the spatial characteristics of corneal staining. This information can, potentially,
aid clinicians in diagnosing and managing dry-eye disease more effectively.

There were several limitations in our study that should be acknowledged. First,
the segmentation accuracy of large staining patches could be improved. Due to the low
contrast and ambiguous edges of the patches, the segmentation accuracy was compromised.
Future studies could explore more efficient methods, such as deep learning, for accurately
locating the ROI and segmenting staining regions. Second, the performance of the proposed
method should be further validated on a larger dataset. Although our study included a
substantial number of images, a larger dataset would provide more robust evidence of the
effectiveness of the proposed method. Lastly, the classification performance for score 3 was
relatively insufficient. It is possible that score 3 included two distinct conditions: true score
3 and score 2 with an additional score for confluent staining. This may have resulted in
a misclassification as score 4 or score 2. Future research could focus on designing a more
refined classification model to improve the differentiation of score 3 from other grades.
Addressing these limitations in future studies will help to further enhance the accuracy
and applicability of the proposed method in corneal fluorescein staining evaluation.
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5. Conclusions

Our study demonstrated the effectiveness of a fully automatic machine learning-based
method for corneal fluorescein staining analysis. The integration of topological features
with other radiomic characteristics enhanced the classification performance and provided
valuable insights into the spatial characteristics of corneal staining. This information can,
potentially, aid clinicians in diagnosing and managing dry-eye disease more effectively.
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