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Abstract: Standard-of-care medical imaging techniques such as CT, MRI, and PET play a critical role
in managing patients diagnosed with metastatic cutaneous melanoma. Advancements in artificial
intelligence (AI) techniques, such as radiomics, machine learning, and deep learning, could revolu-
tionize the use of medical imaging by enhancing individualized image-guided precision medicine
approaches. In the present article, we will decipher how AI/radiomics could mine information from
medical images, such as tumor volume, heterogeneity, and shape, to provide insights into cancer
biology that can be leveraged by clinicians to improve patient care both in the clinic and in clinical
trials. More specifically, we will detail the potential role of AI in enhancing detection/diagnosis,
staging, treatment planning, treatment delivery, response assessment, treatment toxicity assessment,
and monitoring of patients diagnosed with metastatic cutaneous melanoma. Finally, we will ex-
plore how these proof-of-concept results can be translated from bench to bedside by describing how
the implementation of AI techniques can be standardized for routine adoption in clinical settings
worldwide to predict outcomes with great accuracy, reproducibility, and generalizability in patients
diagnosed with metastatic cutaneous melanoma.

Keywords: metastatic melanoma; artificial intelligence; immunotherapy; radiology

1. Introduction

Medical imaging plays an essential role in the management of all cancers, especially
those diagnosed with malignant cutaneous melanoma, a current public health concern
due to the increasing incidence, prevalence, and morbidity/mortality. Immunotherapy
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and inhibitors that target BRAF (a serine/threonine protein kinase) and MEK (a mitogen-
activated protein kinase in the MAPK pathway) are the leading therapeutic strategies used
in advanced melanoma. Prior to these strategies, treatments were found to have limited
success. While BRAF and MEK inhibitors are only indicated for use in about 40–50% of
patients with BRAF V600 mutations, immunotherapies have been shown to be effective
regardless of a patient’s BRAF mutation status. Despite these advancements, melanoma is
the 17th most common cause of cancer worldwide, and the incidence has rapidly increased
over the last 50 years, leading to a large majority of skin cancer deaths [1].

In recent years, an upsurge in artificial intelligence (AI) research in patients with
cutaneous melanoma suggests that the AI-based analysis of medical images may enhance
a wide range of clinical tasks. It has changed the way providers manage patients with
cancer, from the selection of exam/imaging modality to detection, staging, prognostication,
treatment planning and delivery, response assessment, and prediction of toxicity.

This review explores the existing literature on CT, MRI, and PET scans and provides an
overview of the potential benefits as well as the restrictions of adopting AI, including but not
limited to detection/diagnosis, staging, treatment planning and delivery, response assess-
ment, treatment toxicity assessment, and surveillance of malignant cutaneous melanoma.

In this review, we discuss the potentially promising role of AI for the precision manage-
ment of patients within the various clinical specialties involved in patient care by exploring
various perspectives on using AI-based tools in radiology, immunotherapy, and radiation
therapy, thus increasing diversity in future clinical trials.

Finally, we will explain the possible future directions for AI as it relates to cutaneous
melanoma. The implementation of AI methods is changing the landscape of medical
imaging, both in clinical practice and research [2]. The goal of AI is to develop a multiomics
approach by extracting biomarkers and signatures with other parameters via image analysis,
potentially resulting in revolutionary personalized care by selecting the most effective
treatments with the fewest side effects. AI can study radiographic images over time and
evaluate tumor mechanisms of molecular resistance, leading to new therapeutic treatments
against melanomas. Hopefully, by implementing standardization, the use of AI could be
adopted worldwide and pave the way for reproducible and generalizable tools that will
improve care for patients with malignant cutaneous melanoma.

2. Concepts in AI

AI is a vast field that encompasses algorithms designed to accomplish tasks tradi-
tionally achieved via human intelligence. It includes machine learning (ML) and deep
learning (DL), a subset of ML. AI transforms images into numerical data, thus providing
information beyond visual interpretation.

DL algorithms employ complex models with structures similar to neural networks.
These algorithms reduce the need for human input and identify patterns automatically
based on data [3]. They can learn to predict outcomes without relying on any prior domain-
specific knowledge [4]. With more training data, these DL algorithms can form new
associations between images and diseases; there is no limit to their capacity to learn [3].

Radiomics is a method that extracts quantitative characteristics from images using
data algorithms with features generated using ML algorithms. These algorithms and
models can replicate certain input–output relationships in a dataset without prior decision-
making principles. Domain experts are required to select these features, which include
characteristics such as intensity heterogeneity, edge sharpness, and shape irregularity that
are known to be associated with disease [3].

3. Challenges of AI

One of the biggest challenges in using automated AI tools for medical decision making
is that the models may need to work better across different institutions with diverse patient
populations and imaging procedures. Overfitting is a common problem in developing
these AI models, which has been partially addressed by improving the training methods.



Diagnostics 2023, 13, 3483 3 of 12

Another significant barrier to implementing automated AI-based decision-making tools is
underspecification, which requires a thorough understanding and rectification of concepts.
It is commonly understood that a single AI pipeline, with specified training and testing sets,
can generate multiple models with varying degrees of generalizability. Underspecification
refers to the pipeline’s inability to determine whether these models have integrated the
structure of the underlying system by utilizing an independent test set that is distributed
identically to the training set [5]. Radiomics provides a noninvasive way to evaluate and
monitor tumor characteristics, such as temporal and spatial heterogeneity, by assessing the
tumor and its microenvironment as a whole. For radiomics to become widely accepted in
clinical practice as biomarkers, improvements, and standardization are necessary [2].

4. Types of Imaging

Imaging has long been used to diagnose metastatic melanoma prior to the introduc-
tion of AI. Computerized tomography (CT) scans, single-photon emission computerized
tomography (SPECT), and positron emission tomography (PET) imaging were used for
staging and prognostication purposes. AI has the potential to drastically influence the way
these imaging techniques are used.

4.1. AI on CT

Several variables affect the accuracy of imaging features on CT, such as the specific ac-
quisition and reconstruction parameters, as well as the quality of the contrast enhancement
used during imaging [6]. Hence, these variables must be carefully controlled during data
analysis to ensure accurate conclusions. Regions of interest found in CT, PET, and MRI
are analyzed in a semi-automatic fashion. Experienced physicians must manually correct
computer-aided outline detections found on open-source platforms such as 3DSlicer. These
platforms typically offer online support and are regularly updated [2]. Therefore, consistent
sampling is essential, as the variables have a significant impact on radiomics features [4].
A possible solution to this obstacle is using predefined fixed CT parameters for image
acquisition in future prospective radiomics studies that can effectively reduce variability
and improve the accuracy and reproducibility of radiomics results [7]. By using fixed CT
parameters, such as consistent slice thickness, radiation dose, and reconstruction kernel,
researchers can minimize the impact of technical factors on radiomic features and enable a
more reliable comparison of imaging data across different patients and institutions [8]. This
approach can also reduce the potential confounding effects of the scanner model, operator
skill, and patient motion.

4.2. AI on MRI

Most MRI equipment is non-standardized and varies from one manufacturer to an-
other. MRI intensities vary due to this non-standardization, as well as different sequence
types and acquisition parameters, resulting in inconsistency in image intensities between
individuals and within individuals undergoing multiple MRIs over time [2]. This impacts
radiomics features remarkably. MRI data preprocessing methods such as intensity normal-
ization, bias field correction, and noise smoothing can help improve the quality of MRI
and make the results of radiomics analysis more reliable and reproducible. Applying these
preprocessing methods will make radiomics analyses more robust, and the results can be
comparable across different studies and institutions [9].

4.3. AI on PET

The integration of PET images into radiation therapy workflows has proven to be
highly beneficial. PET images allow for more precise tumor targeting, more consistent
segmentation, and improved patient management and radiation therapy dose planning
compared to CT or MRI [10]. Additionally, PET imaging can provide valuable information
about the metabolic activity of tumors to help assess tumor aggressiveness and response to
therapy [11]. The EANM Research FDG-PET/CT accreditation program has helped identify
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major calibration errors and reduce long-term inconsistencies of PET results, regardless of
manufacturer or model [12].

4.4. AI in SPECT Imaging

Few reports have evaluated the use of SPECT imaging for radiation therapy due to
its limited ability to provide quantitative information (photon attenuation, scatter, partial
volume effect, and motion artifacts). However, these limitations are being addressed via the
utilization of SPECT/CT acquisitions and quantitative image reconstruction [11] (Figure 1).
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Figure 1. Overview of imaging modalities and methods that can be used with AI. MRI, SPECT, PET,
and CT are all primarily involved with the diagnosis of metastatic melanoma. Integrating AI into
imaging allows clinicians to find a segment of interest and then extract features to draw correlations
and identify the most important features. AI models are created with these data and can be used to
diagnose, prognosticate, treat, and monitor metastatic melanoma [2,4,11,13,14].

5. Detection and Diagnosis

Current standardized detection and diagnosis of cutaneous malignant melanoma
involves dermoscopy with a biopsy of the lesion with appropriate dermatopathology and
staging. Additionally, ultrasound has been used to help with detection and diagnosis.
Recently, the detection and diagnosis of malignant cutaneous melanoma has involved the
use of AI. Furthermore, the International Skin Imaging Collaboration has collected the
largest set of images over the last five years to develop algorithms for AI-detected skin
cancer [15]. New evidence has emerged suggesting that AI/ML can lead to better clinical
decisions regarding diagnosis and detection, with the possibility of replacing human-based
judgment. These studies have shown that AI/ML algorithms have performed better or as
well as dermatologists [16].

One study recently compared the accuracy of human dermatologists to state-of-the-art
AI technology in diagnosing melanoma-like pigmented skin lesions. The results showed
that ML algorithms achieved a mean of 2.01 (95% CI 1.97 to 2.04; p < 0.0001) more correct
diagnoses than the dermatologists [17]. Another recent study suggests that dermatologists’
confidence in the diagnosis and detection of cutaneous melanoma increased with the
confirmation of AI-based deep neural networks, such as the convolutional neural network
(CNN) [18].

There are other investigational imaging forms of detection and diagnosis of malignant
cutaneous melanoma that involve the use of targeted molecular imaging using PET/CT
with biomarkers underway. Fibroblast activation protein (FAP)-targeted PET imaging, as
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well as programmed death ligand-1 (PD-L1)-targeted PET imaging, have recently been
shown to be extremely effective in the detection of various malignant cancers, including ma-
lignant melanoma. Furthermore, melanin imaging has shown utility in the early diagnosis
of cutaneous melanoma, with many more immune-targeted therapies currently undergoing
clinical trials [19]. PD-L1 targets the cell line in A375 melanoma cells transfected with the
human PD-L1 gene, whereas the FAP targets are notorious for being ubiquitous in tumor
cells, and several clinical trials are underway regarding the diagnostic results of using these
two markers [19]. Additionally, the melanin targets are highly overexpressed in melanoma
cells and have the potential to decrease the costs and shortcomings in the detection of
micro melanomas [19]. There are currently specific limitations for the initial diagnosis of
melanoma, such as tracer availability, histotype, and resolution limits that AI has the ability
to improve via its ability to use targeted molecular imaging and enhanced algorithms.

6. Staging

Medical imaging is essential for tumor staging in patients with metastatic melanoma.
Currently, TNM staging is standard practice for metastatic melanoma. The T stage is defined
according to Breslow thickness and ulceration. The N stage is determined by regional node
metastasis. The M category primarily focuses on the site of distant metastases, with the
category definitions also including lactate dehydrogenase level [20].

CT scans, ultrasound, sentinel node biopsy, and SPECT-CT are the standard for
evaluating nodal involvement. Other modalities, such as high- or ultra-high frequency
ultrasound, are new to the field, with high resolution potentially enabling important staging
information without the need for biopsy. An important predictor of survival in patients
with melanoma is the number of tumor-involving lymph nodes [20]. 18F-FDG PET/CT has
also been proven to have high performance in the diagnosis/detection of nodal metastases
at initial staging [10,21].

Additionally, targeted molecular imaging represents a new strategy to identify diseases
via PET that are not visualized by traditional imaging [19]. A new trend is forming
wherein biomarkers equipped with AI features allow for the exploration of advanced
tumor architecture, orientation, and histologic structures; these biomarkers can be used
routinely for cancer staging once they become validated [22,23].

7. Prognostication

The current (eighth) edition of TNM (tumor, node, and metastasis) staging of cutaneous
melanoma described by the American Joint Committee on Cancer (AJCC) is meant to be
prognostic rather than predictive. The criteria are based on the characteristics of the
primary tumor (thickness, ulceration, and mitotic rate), regional lymph node status, and
the presence of distant metastases. The information from TNM staging is then combined to
classify patients into AJCC prognostic stage (stage I-IV) groups. Studies have established a
strong relationship between these features and patient survival [24]. Many other prognostic
factors, including age, sex, sentinel lymph node tumor burden, mitotic rate, and circulating
melanoma cells or tumor DNA (ctDNA), can strongly impact long-term patient outcomes
but are not formal components of the AJCC system due to a lack of sufficient data. They
are likely to influence future versions of the prognostic criteria.

AI has been used on histological images of melanoma specimens to create computa-
tional algorithms that can predict disease-free survival. In one study, a CNN (convolutional
neural network) was created using digital slides from 108 patients and tested on its ability
to predict distant metastatic recurrences (DMRs) over 24 months on two validation sets of
104 and 51 patients. The AUCs (area under the curve) were 0.91 and 0.88 for the two sets,
respectively, and the outputs also correlated with disease-specific survival [25]. Another
study used support vector machine (SVM)-based statistical analysis on digital slides to
predict sentinel lymph node (SLN) positivity. The model had a sensitivity and specificity of
77% and 94% using SVM and 93% and 69% using logistic regression, respectively [26]. Such
studies are relatively sparse, and the use of AI in pathology is not yet well validated. More
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research is required to predict metastases, drug response, and survival time in melanoma.
Nevertheless, AI holds tremendous potential in aiding the prognostication of cutaneous
melanoma as an adjunct to TNM staging and reducing unnecessary sentinel node biopsies.
Additionally, AI can incorporate important prognostic factors beyond the AJCC criteria
and even identify novel factors such as genetic profiles, making it a promising tool for
managing melanoma.

8. Treatment Planning and Treatment Delivery

While surgical excision can successfully treat most melanomas, patients with metastatic
cutaneous melanoma often do not benefit from surgery due to the spread of cancer. Despite
improvements in systemic therapies, the long-term outcomes for metastatic melanoma are
still poor. Targeted therapies, such as BRAF and MEK inhibitors, have shown promising
results in patients with specific gene alterations, but acquired resistance can limit their
efficacy. Immunotherapy has demonstrated a durable response in approximately half of
patients with metastatic melanoma, but severe autoimmune adverse events affect many
patients [3]. Imaging has also played a crucial role in locating existing or metastatic diseases
while also helping with delivery and treatment planning. The use of PET imaging agents is
on the rise, with many biomarkers having great potential—including but not limited to
FAP, melanin, MEK, nicotinamide, and benzamide [19]. Data suggest that melanin-targeted
agents are more specific and advantageous compared to others, including FAP, MEK, and
benzamide. This new technique can help address the various limitations seen in stan-
dardized imaging by increasing specificity and detecting lesions below the resolution of
current imaging techniques by mapping tumor heterogeneity and providing more specific
prognostic information [19]. Additionally, the majority of—if not all—cancer treatments,
particularly those used to treat metastatic melanoma, have been validated thanks to a
radiologic scanner. The best indicator of a drug’s efficacy remains overall survival; there-
fore, we need surrogate markers to determine progression-free survival, which is then
extracted from the radiological evaluation of the scanners thanks to the criteria generally
demonstrated by RECIST (response evaluation criteria in solid tumors) or iRECIST in the
framework of melanomas being treated by immunotherapy [19].

AI can offer a potential solution to the increasing complexity of treatment delivery,
representing a revolutionary advancement in the role of image-guided immunotherapy.
Additionally, the use of AI imaging techniques can also help with more specific disease
detection to allow for appropriate planning of immunotherapy and facilitate a more direct
treatment delivery approach. They can also help identify adverse effects or disease progres-
sion in patients undergoing immunomodulatory therapy [23]. A potential example could
be having a patient start one dose of immunotherapy and then repeat imaging with AI,
informing whether the patient should continue the same drug or escalate to another. This
could involve starting with nivolumab and relatlimab and then switching to a more toxic
form, such as nivolumab and ipilimumab, depending on imaging results. Furthermore, AI
tools will allow clinicians to adapt treatments earlier on and more reliably by deciphering
the tumor immune microenvironment using medical images to recognize patterns and thus
guide treatment delivery and planning [3].

9. Response Assessment

It is important to note that the current AJCC melanoma staging system likely under-
estimates survival outcomes, as it is based on data that predates the use of new highly
effective therapies such as checkpoint inhibitor immunotherapy and molecularly targeted
therapy. The criteria need to be readjusted with these contemporary treatments in mind.

AI can be used to analyze cutaneous melanoma histology specimens to predict thera-
peutic responses to immune checkpoint inhibitors. Hu et al. demonstrated that a CNN,
based solely on digital histological slides, could accurately predict response to immune
checkpoint inhibitors in 54 melanoma cases, with an area under the curve (AUC) of 0.778.
CNN correctly classified 65.2% of responders and 74.2% of non-responders [27]. In another



Diagnostics 2023, 13, 3483 7 of 12

study, a multivariate classifier effectively stratified patients into high and low risk for
disease progression, with an AUC of 0.800. Patients classified as high risk had significantly
worse progression-free survival than those classified as low risk (p = 0.02) [28].

Recent studies have demonstrated the effectiveness of radiomics and machine learning
in predicting treatment response and overall survival in patients with advanced melanoma
treated with immunotherapy. One study identified a radiomic signature discerned from
conventional CT that reached an AUC of 0.92 for overall survival in a validation set of
patients with melanoma treated with pembrolizumab [13]. Similar studies have demon-
strated the effectiveness of CT-based radiomic signatures in predicting overall survival in
patients with NSCLC treated with nivolumab [29]. Such signatures can be developed for
other imaging modalities, such as FDG-PET scans. Seban et al. identified radiographic
signature biomarkers involved in lymphoid tissue metabolism in the spleen and bone
marrow to predict survival and response in patients with melanoma prior to anti-PD1
immunotherapy [23,30–32].

10. Treatment Toxicity Assessment

Traditional cancer treatments focus on targeting cell division [14]. Their effectiveness
can be assessed based on the regression and shrinkage of tumors, which can best be
measured by CT using Response Evaluation Criteria in Solid Tumors (RECIST) [33].

However, immunotherapy causes different patterns of tumor progression, resulting in
a need for fundamental changes in the use of imaging modalities to study their beneficial
and adverse effects [14]. First, pseudotumor progression is a pattern that results in a
transient increase in tumor size [34]. Next is dissociated response, a mixture of decreases in
the size of some lesions and increases and/or no change in size in others [35]. On the other
hand, many individuals would advance from immunotherapy without any changes in the
size of their lesions [14]. Abscopal response, which refers to tumor shrinkage in a site that
is not directly targeted, is another form of response [36].

Additionally, immunotherapeutic treatments may adversely affect various organs,
resulting in autoimmune toxicity such as pneumonitis and thyroiditis, known as immune-
related adverse events (irAEs) [14,37]. Identifying these patterns can be challenging since
irAEs can also cause cell swelling, making it hard to differentiate the impact of these
treatments on tumor cells to determine whether treatment was effective or an adverse
effect was skewing the information [14]. Furthermore, patients who respond well to
treatments and have longer exposure duration may have a greater risk of experiencing
irAEs [38]. Therefore, it is crucial to explore new imaging techniques to better understand
the relationship between irAEs and treatment response [14].

Numerous studies have demonstrated the effectiveness of utilizing AI and radiomics,
which transform images into quantitative data, to analyze various tumor responses to
immunotherapy [3,14]. Although CT images are used more frequently due to their ac-
cessibility, AI can also use images derived from MRI and 18F-FDG PET [14,39]. AI and
radiomics have the potential to assess survival rate, disease prognosis, treatment response,
and irAEs [14,40,41]. Although there is reassuring information about AI, we still have a
long way to go before it can be effectively applied in clinical settings [14].

Besides CT scans, some new imaging modalities may also be beneficial in assessing
immunotherapy. New MRI techniques, such as perfusion-weighted, apparent diffusion,
MR spectroscopy, and chemical exchange saturation transfer (CEST) MRI, have shown
promise in the field of immunotherapy [14,42]. Moreover, it has been shown that 18F-FDG
PET can detect irAE in patients with melanoma receiving immunotherapy even before the
usual clinical presentations of irAE [43]. Another optimal imaging modality that may be
used in the future is immune PET, which analyzes the immune context of tumors [14].

Furthermore, stereotactic radiosurgery (SRS), which delivers a high dose of radiation
to lesions, is a treatment option for brain metastases [44]. Radiation necrosis (RN) is one of
the most crucial adverse effects of these treatments and must be differentiated from tumor
recurrence (TR) due to the need to treat these entities differently [44,45]. Compared to
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conventional imaging methods such as MRI with contrast, modalities such as perfusion
MRI, MR spectroscopy, and PET have been shown to better distinguish between RN and
TR; however, there is no sufficient sensitivity or specificity of these modalities in the clinical
fields [46,47]. Many studies have shown the potential promising role of radiomics in
differentiating between RN and TR [48,49]. The use of machine learning and radiomics has
shown that using an imaging marker on conventional T1 MRI, which indicates the texture
and spatial characteristics of the lesion, can differentiate between RN and TR [50].

11. Surveillance

Radiologic surveillance of melanoma has increased recently as a method to monitor
patients for early recurrence and distant metastasis. Distant disease spread patterns for
melanoma are typically hard to predict and are often atypical compared to other tumors.
This has created inconsistencies in guidelines for the use of imaging surveillance, creating a
space for AI-based therapies to establish a foothold.

Basic radiology interventions such as CXR and ultrasound imaging have typically
been used to detect the recurrence of metastatic disease. Ultrasound surveillance is usually
superior to clinical examination alone, which often leads to false negatives; however, the
long-term benefit of using ultrasound for surveillance is unknown. Thus, many patients
who are negative for recurrence undergo unnecessary surgery or repeat scans. More modern
techniques, such as CT and PET/CT, have become the preferred modality for surveillance.
One study shows that PET/CT sensitivity was 65% and specificity was 99% for surveillance
of distant metastasis, with similar results being reported in other studies [51]. Patients with
metastatic melanoma typically undergo surveillance within 6–12 months following surgery
using PET/CT. Of note, the use of PET/CT for the detection of brain metastasis is typically
poor, which is of crucial importance due to the brain being a common site for metastasis.
Instead, MRI is the preferred imaging modality for surveillance [51].

Increased surveillance using AI could result in earlier treatment for recurrence and
improved early diagnosis of recurrence. Furthermore, AI could potentially help gauge
the likelihood a radiographic abnormality is correctly identifying actual melanoma. This
would then guide the decision of whether a biopsy is needed. There are currently several
models that provide a prognostic benchmark for the use of biomarkers in metastatic
melanoma. One example is using ML to predict the recurrence of bladder cancer post-
cystectomy with greater specificity and sensitivity than prior imaging techniques [52].
Furthermore, recurrence prediction using ML with digital pathology has shown great
promise with several cancers, including melanoma. Similarly, DL with PET scans is
currently being used to predict local recurrence of cervical cancer, and applied ML to
CT-derived radiomic features is starting to predict recurrence in various cancers. Of note,
a recent paper published in 2022 outlines a new ML algorithm to predict recurrence risk
using 36 clinicopathologic features. The most predictive features for recurrence were
Breslow tumor thickness and mitotic rate. This study holds great promise in the field of
AI-related surveillance of metastatic melanoma [53]. Imaging-based radiomics and DL
modalities for cancer surveillance have rapidly grown in the last decade, further allowing
for the application of metastatic melanoma and future recommendations for individualized
surveillance and treatment [54].

Existing radiomics-based analyses focus on molecular and histologic classification
using biomarkers from the primary tumor. There is great potential to use biomarkers with
imaging such as PET, CT, and MRI using radiomics to enhance current clinical surveil-
lance of metastatic melanoma. Further studies to explore the full potential of AI-based
surveillance are needed.

12. Perspectives and Future Directions

Immune checkpoint inhibitors, such as anti-CTLA4, anti-PD1, and anti-LAG3, are
currently the standard treatment options for cutaneous metastatic melanoma; however,
further research on the best ways to combine and sequence these drugs is needed [55]. 18F-
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FDG PET/CT has shown accuracy not only in response monitoring but also in monitoring
systemic immune response and detecting prognosis in an early stage [56]. There is a future
need to provide a more accurate and systematic interpretation of 18F-FDG PET/CT by
implementing new evolving immunotherapeutic strategies [23]. Furthermore, the use of
18F-FDG PET biomarkers with immunotherapy is in its early stages, and advancements in
its clinical application are imperative in relation to better overall survival rates [30]. Other
recent advances include the ability of radiomics applied to CT to non-invasively assess
tumor heterogeneity that could be an indicator of response to immunotherapy [40]. Further
standardization is needed to reflect changes in the tumor microenvironment to confirm this
potential advancement [13].

Future directions include determining the total tumor burden by analyzing all measur-
able lesions and estimating overall survival using AI [57], which can extract tumor volume,
heterogeneity, and shape [13]. Continued research in AI using imaging modalities such
as CT, MRI, and PET—the current standards of care—could transform these tasks. The
detection of molecular pathways that provide physiological information showing disease
response and progression will become increasingly more specific. The increase in encour-
aging results using AI and radiomics supports further advancements in precision medicine
with metastatic melanoma. Using biomarkers with AI can help predict outcomes and over-
all survival with greater accuracy, generalizability, and reproducibility. Additionally, the
automatic extraction of data with AI is currently not being utilized due to time constraints;
however, new research in the field will help mitigate this challenge. Continued clinical
trials and ongoing innovation will help determine earlier on if treatments are working for a
patient’s specific tumor characteristics and better predict overall survival [58].

13. Conclusions

The use of AI methods, such as radiomics and DL algorithms, is rapidly advancing the
field of medical imaging and holds tremendous potential for improving the diagnosis and
management of patients with metastatic melanoma. However, significant challenges re-
main, including underspecification and overfitting, which must be addressed to implement
AI-based decision-making tools in clinical practice. Standardization and improvement in
radiomics are necessary for it to become a widely accepted biomarker. Moreover, the choice
of imaging modality significantly impacts the accuracy and reproducibility of radiomics
analysis. Controlling variables during data analysis can make the results more robust and
reliable, and the use of fixed parameters can minimize the impact of technical factors. In ad-
dition, AI has the potential to assist clinicians with prognostication of cutaneous melanoma
by incorporating important prognostic factors beyond the AJCC criteria and reducing
unnecessary sentinel node biopsies. AI in response assessment to contemporary treatments
such as immune checkpoint inhibitors has also shown promising results. However, more
research is required to predict metastases, drug response, and survival time in melanoma,
and the AJCC criteria need to be readjusted with contemporary treatments in mind. In
summary, advancements in AI provide hope for developing new therapeutic strategies
to fight deadly diseases like metastatic melanoma, and careful consideration of imaging
modality and variables during data analysis can make radiomics analysis more reliable
and comparable across different studies and institutions.
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