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Abstract: The majority of cancer-related deaths globally are due to lung cancer, which also has the
second-highest mortality rate. The segmentation of lung tumours, treatment evaluation, and tumour
stage classification have become significantly more accessible with the advent of PET/CT scans. With
the advent of PET/CT scans, it is possible to obtain both functioning and anatomic data during a single
examination. However, integrating images from different modalities can indeed be time-consuming
for medical professionals and remains a challenging task. This challenge arises from several factors,
including differences in image acquisition techniques, image resolutions, and the inherent variations
in the spectral and temporal data captured by different imaging modalities. Artificial Intelligence
(AI) methodologies have shown potential in the automation of image integration and segmentation.
To address these challenges, multimodal fusion approach-based U-Net architecture (early fusion, late
fusion, dense fusion, hyper-dense fusion, and hyper-dense VGG16 U-Net) are proposed for lung
tumour segmentation. Dice scores of 73% show that hyper-dense VGG16 U-Net is superior to the
other four proposed models. The proposed method can potentially aid medical professionals in
detecting lung cancer at an early stage.

Keywords: AI; U-Net; multimodal fusion; hyper-dense; multimodality imaging CT; PET; lung
tumour segmentation

1. Introduction

In 2020, lung cancer ranked as the second most prevalent cancer, accounting for
around 11.4% of all newly identified instances of cancer, with approximately 2.2 million
individuals affected. Furthermore, it was the primary cause of cancer-related mortality,
responsible for approximately 18.0% of the deaths caused by cancer globally, resulting in
approximately 1.8 million fatalities. Loss of appetite, exhaustion, chronic coughing, and
chest pain are among the symptoms of lung cancer, which can cause unimaginable anguish
for the sufferer [1].

The segmentation of lung tumours, treatment evaluation, and tumour stage classifica-
tion have become significantly more accessible with the advent of PET/CT scans. Moreover,
the molecular characteristics and anatomic aberrations of the target lesion can be observed
with PET/CT. The PET imaging technique does not involve cutting or surgery. By detecting
illness markers earlier, PET allows for earlier diagnosis than imaging modalities like MRI
and CT [2]. Their metabolic processes can be analysed for their physiological function and
biochemical features by studying particular organs and tissues. PET can detect molecular
and cellular levels of tissue metabolism.

However, multimodality imaging technology, such as PET-CT scanners, has simultane-
ously made it possible to record functional and anatomical information [3]. It is a rigorous
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and time-consuming process for oncologists, radiologists, and pulmonologists to manually
segment the lesions and tumours, leading to delays in therapy and decreased survival rates,
particularly in clinics with insufficient resources. In addition, specialist knowledge and
clinical experience are necessary for high-quality manual localization and segmentation.
Because of this, computer-aided diagnostic (CAD) systems [4] were developed to replace
radiologists’ manual viewing of lung cancer. Combining lung segmentation approaches
with radiologists’ knowledge can reduce the burden on radiologists and boost their pro-
ductivity and accuracy. Many recent advancements in image segmentation have allowed
for more precise and effective treatment and diagnosis. Thresholding, Atlas, and Region
Growing are some examples of classic automatic segmentation methods. These approaches
use the shallow qualities of an image, such as grayscale, texture, gradient, and many more,
to segment the object [5]. However, conventional segmentation techniques have difficulty
distinguishing between tumours and surrounding healthy tissue because their intensity
distributions are similar. In addition, these tasks typically involve manual processes and are
characterized by a significant investment of time. Moreover, they are subject to substantial
heterogeneity across operators.

Furthermore, the complexity of the background in CT images consistently provides
quite different information when comparing PET and CT scans. As a result of these
constraints, deep-learning-based algorithms have proven to be superior in auto-segmenting
medical images [6].

Deep learning (DL) models automatically extract features and apply the learned
high-dimensional abstractions for performing segmentation. The effectiveness of fully
convolutional networks (FCN) for semantic segmentation is promising [7]. In an FCN, the
fully connected layer is replaced by a convolutional layer. This comprehensive framework
has served as the foundation for subsequent studies of semantic segmentation of medical
images. Medical image segmentation commonly uses U-Net [8], built on the FCN architec-
ture. Using skip-connection architecture, each layer’s down-sampled features are joined
with their up-sampled counterparts. This mechanism is similar to an encoder-decoder, but
it is more effective and does not require a great deal of disk space. FCN-based networks,
such as U-Net, have surpassed manual or semi-automatic segmentation methods since the
emergence of big data methods.

The U-Net architecture is a convolutional neural network (CNN) primarily used to
recognize image patterns. U-Net semantic segmentation relies extensively on the categoriza-
tion of image pixels. Segmenting lung tumours can be reduced to a foreground/background
pixel binary classification problem. The down-sampling and up-sampling module is re-
sponsible for the U-Net architecture. The surface layer is where localization information
is learned, but the down-sampling procedure, also known as the pooling procedure, may
improve the volume of context data the network learns [8].

The VGG model investigates the effect of convolutional network depth on recogni-
tion accuracy in a large-scale setting. Our main contribution is a thorough evaluation of
increasing-depth networks using an architecture with 3 × 3 convolution filters, which
shows a significant improvement. The VGG model, a kind of CNN, was created to improve
model performance when more layers are added. The VGG model takes 224 × 224 colour
images as its primary input and feeds them via a sequence of convolutional layers, with
filter sizes of 3 × 3 and 1 × 1 with the stride of 1 and valid padding, as well as max pooling
with 2 × 2 with the stride of 2. Finally, we have a three-layer network with a SoftMax
activation function and 4096 neurons in the first two layers, followed by 1000 neurons in
the last layer. VGG [9] presents the two primary models, VGG16 and VGG19.

In comparison to the VGG-19 network, which has 19 layers of typical convolutional
networks, the VGG-16 network [9] only has 16, with filter sizes of 3 × 3 and strides of 1.
Each of the five blocks is separated from the next by a max-pooling layer. There are three
interconnected layers on top of the blocks.

The significant contributions of this research are given below.
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• The inputs to the proposed architecture are PET and CT scans. Here, dense connections
happen along the same pathways that process each modality individually. Finally,
their features are joined together at a high layer to finish separating them.

• Five deep models based on U-Net architecture are suggested for lung cancer seg-
mentation in multimodal image scenarios: early fusion, late fusion, dense fusion,
hyper-dense fusion, and VGG-16 U-Net.

• The performance of the suggested models was evaluated using three types of loss
functions: binary, Dice, and focal loss functions.

The remainder of the paper is structured as follows. Section 2 outlines studies on mul-
timodal PET-CT images for segmentation based on deep learning. The proposed network
architecture is described in Section 3. In Section 4, the results of the experiments and their
analysis are presented. Section 5 presents the study’s findings and recommendations for
moving forward.

2. Literature Review

CT and PET imaging are used in various research papers because of the unique insights
they provide into the structure and function of the human body, respectively. Combining
the two allows for the early detection of even the tiniest lung tumours.

Wang et al. [10] advised a DL-based dual-modality approach using CT and PET scans
to develop an automated segmenting of lung tumours for radiation therapy planning.
Two distinct convolution routes were built into the 3D convolutional neural network
for extracting features at different resolutions from the PETs and simulated CTs, and a
single deconvolution path was also built into the network. Tumour segmentation via skip
connections at each granularity was achieved by aggregating the obtained characteristics
from the convolution arms and feeding them into the deconvolution pathway. A panel
of oncologists judged the medical effectiveness of the network-generated segmentation
strategy. While this work has many promising applications, it does have some caveats.
The network may struggle to produce precise segmentations when tumour edges are not
precise on CT or PET.

Park et al. [11] presented a two-stage U-Net model to boost the segmentation ef-
fectiveness of lung tumours by utilizing [18F]FDG PET/CT, as precise segmentation is
necessary for determining the functional size of a tumour in this imaging modality. The
LifeX program was used to create the tumour volume of interest. In the first step, a 3D
PET/CT volume is used to train a global U-Net, based on which a 3D binary volume is
then retrieved to serve as an initial representation of the tumour’s region. In the second
stage, the PET/CT slice identified in Stage 1 is sent to the U-Net, generating a 2D binary
image centred on the eight adjacent slices. The major drawback of the research is the lack
of a 3D volume as the final result of the suggested approach. It may cause the coronal and
sagittal slices to have gaps between the binary segments.

Xiang et al. [12] recommended a modality-specific segmentation network (MoSNet)
to segment lung tumours. To better understand the differences between PET and CT
scans, MoSNet is taught to use modality-specific representations, while modality-fused
representations are employed to convert the typical characteristics of lung tumours in
both scan types. The authors suggest an adversarial approach that uses an adversarial
purpose concerning a modality discriminator and a reserved modality-common illustration
to reduce the modality difference’s approximation. As a result, the network’s ability to
represent data for the segmentation in PET and CT scans is enhanced. By generating a
map for each modality, MoSNet can explicitly quantify the weights for the attributes in
each modality. However, the limitation of the research is that the proposed approach is
developed for 2D thorax PET-CT slices.

Fu et al. [13] proposed a DL system for lung cancer segmentation, i.e., a multimodal
spatial attention module (MSAM). It is trained to highlight tumour-related regions selec-
tively and downplay those physiologically rising from the PET scans. Next, using the
created spatial attention maps, a CNN core is trained to focus on areas of a CT image
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with a higher propensity for tumours. The drawback of the research is that the datasets
used only had one observer defining the outlines. If numerous observers had been used to
reach a consensus segmentation, things would have gone much smoother. Because of the
potential vagueness of the related thresholding approach used to create the ground truth
for the NSCLC dataset, the segmentation outputs require human adjustment to correct for
incorrectly categorized ROIs.

Zhong et al. [14] provided an innovative method for lung tumour segmentation by
bringing together a robust FCN-based 3D U-Net and a graph-cut-based co-segmentation
model. Initially, high-level discriminative features for PET and CT images are learned
by independently training two distinct deep U-Nets on the datasets. These features then
create tumour/non-tumour masks and probability maps. The final tumour segmentation
findings are obtained using the PET and CT probability mappings in a graph-cut-based
co-segmentation model. Despite fusing their extracted features, the research has given
different results for CT and PET.

Hwang et al. [15] recommended a new network architecture called 3C-Net, which uses
numerous contexts in three distinct ways. Two decoders in the network are implemented
to exploit inter-slice contextual information: a segmentation decoder and a context decoder.
The context decoder receives the inter-slice difference features and uses them to predict
the segmentation mask’s inter-slice difference. Having this 3D background information
for each slice helps in attention direction. The prediction results from each decoder stage
are used to derive a loss function for network optimization. Since two modalities are
used, i.e., PET/CT data, a co-encoder block is implemented to extract mutually reinforcing
features from both modalities while simultaneously acquiring contextual knowledge about
them. Weights for both CT and PET are modified twice in co-encoder blocks. The co-
encoder blocks take in relevant data from both modalities, allowing for interaction while
maintaining spatial and structural coherence. The encoder additionally includes an asterisk
spatial pyramid pooling (ASPP) block in its final step. The ASPP block aids the network
in increasing the scope of its observations and avoiding the loss of spatial context, which
allows the recording of visual context at various scales.

Kumar et al. [16] improved the multimodality PET-CT fusion using CNN, which
learns to fuse complementary information. The proposed CNN stores modality-specific
characteristics before deriving a spatially variable fusion map. It allows quantifying the
relevance of each modality’s characteristics across various spots. Moreover, multiplying
the fusion maps with the modality-specific feature maps yields representations of the
complementary multimodality data at various positions. The recommended CNN is tested
on PET-CT scans of lung tumours, where its ability to detect and separate many regions
with variable fusion needs is evaluated.

Jemaa et al. [17] demonstrated a comprehensive strategy employing 2D and 3D CNN
for rapid tumour classification and metabolic data retrieval from whole-body FDG-PET/CT
images. This architecture is relatively economical between tumour load and healthy tissue
volume, and between the intrinsic heterogeneity of the input images, which is especially
important for whole-body scans due to their vast size and high asymmetry.

Zhao et al. [18] developed a novel multimodality segmentation approach that uti-
lizes a 3D FCN, and simultaneously includes PET and CT data in tumour segmentation.
Initially, the network underwent a multitask training phase, during which two parallel
sub-segmentation architectures, each built with a deep CNN, were learned to generate
map-like features from both modalities. The PET/CT feature maps’ characteristics were
re-extracted using a weighted cross-entropy reduction technique, and a feature fusion
component was then constructed using cascaded convolutional modules. The SoftMax
function was also used to generate the cancer mask as the network’s final output. The
research lacks an automatic setting of the weighting parameters of the loss functions, which
can affect performance. Also, more effective ways for feature extraction can increase the
performance of the segmentation.
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Using W-net, Zhong et al. [19] evaluated 3D deep fully convolutional networks (DFCN)
for tumour co-segmentation on dual-modality NSCLC and PET-CT images. CT and PET
data are combined to better understand NSCLC tumours in PET-CT scans and apply DFCN
co-segmentation. The recommended DFCN-based co-segmentation approach uses two
connected 3D U-Nets with an encoder-decoder to exchange complementing data between
PET and CT.

Bi et al. [20] developed a hyper-connected fusion model that uses a CNN-TN fusion
encoder and a CNN-TN fusion decoder. With hyper connections between them, the encoder
splits into three forks to independently handle PET, CT, and combined PET-CT scans. The
transformer encoders process the encoded image embeddings to learn complimentary
characteristics in a long-range dependency between the PET, CT, and concatenated PET-CT
images. The transformer decoder combines the learnt embeddings to find characteristics
important for segmentation, which are subsequently transformed into a 2D feature map.
The segmentation results are then up-sampled using a convolutional neural network. The
data came from the soft-tissue sarcoma databases. The data showed that the model’s Dice
had a probability of 66.36%. The summaries of the literature research in lung tumour
segmentation models are listed in Table 1.

Table 1. Literature summary.

Author CT-Only Extractor PET-Only Extractor Feature Fusion Dataset Description

Wang et al. [10] 3D CNN 3D CNN 3D CNN
Private clinic dataset

comprising 290 pairs of CT
and PET.

Park et al. [11] Global U-Net Global U-Net Regional U-Net Private data of 887
individuals with lung cancer.

Xiang et al. [12] Dual-stream encoder Dual-stream encoder Decoder branch 126 PET-CT scans containing
NSCLC

Fu et al. [13] Encoder-decoder
backbone CNN

Multimodal spatial
attention module

(MSAM).

CNN architecture
containing skip

connections.

Two clinical PET-CT datasets
of NSCLC and STS.

Zhong et al. [14] 3D U-Net 3D U-Net Graph-cut-based
co-segmentation model

PET-CT scans from lung
cancer patients.

Hwang et al. [15] Shared co- encoder Shared co-encoder Shared co-encoder F-18-FDG PET/CT scans
from a private hospital.

Kumar et al. [16] Encoder using
multiscale output

An encoder using
multiscale output

Decoder using multiscale
multimodal input

Biopsy-proven NSCLC FDG
PET-CT scans.

Jemaa et al. [17] - - 2D U-Net and selected
VNet

Patients with non-Hodgkin’s
lymphoma and NSCLC,

which includes 3664
FDG-PET/CT images from

head to toe.

Zhao et al. [18] VNet VNet Voxel-wise addition, along
with VNet

Private clinical dataset
having 3D PET/CT images.

Zhong et al. [19] Encoder using
multiscale output

An encoder using
multiscale output

Decoder using multiscale
multimodal input

NSCLC patients who
received stereotactic
radiation treatment.

Bi et al. [20] CNN-TN Encoder CNN-TN Encoder TN-CNN decoder
Non-small-cell lung cancer

(NSCLC) and one soft-tissue
sarcoma (STS) dataset.

3. Methodology

This section discusses the segmentation models for lung cancer in depth. The underly-
ing functions of the proposed models are also described. The U-Net technique is the basis
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for the proposed models; it has demonstrated usefulness in medical image segmentation.
A U-Net model is fed the CT and PET scan data. During the decoder step, further improve-
ment is performed in the model’s recognition of the input image features by creating dense
connections across layers in the same input branch of the U-Net.

The proposed architecture for lung cancer segmentation is shown in Figure 1. Figure 1
depicts the three main stages of our framework: (1) image pre-processing, (2) multimodality
U-Net segmentation, and (3) medical image post-processing. The pre-processing, augmen-
tation, and post-processing methods are discussed in the following subsections.
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Figure 1. Block diagram for the lung cancer segmentation framework.

3.1. Image Processing
3.1.1. Image Pre-Processing

The intensity levels of the image’s pixels were normalized. In addition to resizing
each image, the pixel scale value was changed from (0–255) to (0–1) to reduce the level of
complexity of the images. To simplify model training, we decreased the resolution of the
CT and PET scans in the dataset to 256 × 256 pixels. The dataset was divided as follows, at
random: 46 examples were used for training, and another 5 were used for testing.

3.1.2. Data Augmentation

The CT-PET images were augmented throughout this phase to prevent overfitting,
which helps in enhancing the performance of the model. In addition, the implementation
of augmentation techniques, such as random rotations, flips, and cuts, can enhance the
model’s ability to maintain invariance towards variations in feature position and orientation
within the image. This feature proves to be particularly advantageous when working with
real-world images that may exhibit variations in object orientation or spatial arrangement.
Images are augmented in three ways, as shown in Figure 2: rotating the CT-PET by
90 degrees clockwise (2b), flipping the CT-PET upside down (2c), and left-mirroring the
CT-PET (2d).



Diagnostics 2023, 13, 3481 7 of 23

Diagnostics 2023, 13, x FOR PEER REVIEW 7 of 24 
 

 

3.1.2. Data Augmentation 
The CT-PET images were augmented throughout this phase to prevent overfitting, 

which helps in enhancing the performance of the model. In addition, the implementation 
of augmentation techniques, such as random rotations, flips, and cuts, can enhance the 
model’s ability to maintain invariance towards variations in feature position and orienta-
tion within the image. This feature proves to be particularly advantageous when working 
with real-world images that may exhibit variations in object orientation or spatial arrange-
ment. Images are augmented in three ways, as shown in Figure 2: rotating the CT-PET by 
90 degrees clockwise (2b), flipping the CT-PET upside down (2c), and left-mirroring the 
CT-PET (2d). 

 
Figure 2. Some examples of the augmentation process of CT and PET images for STS: (a) the main 
CT-PET, (b) rotating the CT-PET by 90 degrees clockwise, (c) flipping the CT-PET upside down, and 
(d) left-mirroring the CT-PET. Red arrows indicate the tumour region. 

3.1.3. Image Post-Processing 
The suggested framework’s ultimate stage used a morphological change and a basic 

thresholding technique. To lessen the impact of noise, a morphological gradient ac-
counted for the structure of the input picture. Its effect is analogous to the difference be-
tween expanding and contracting an image. 

While Equation (1) defines dilation [21] as the process of removing pixels (noises) 
from object boundaries, Equation (2) describes erosion [22] as the process of adding pixels 
(negative noises) to object boundaries. 𝐴⨁𝐵 =∪ ∈ 𝐴  (1)𝐴 ! 𝐵 = 𝑧 ∈ 𝐸|𝐵 ⊆ 𝐴  (2)

where 𝐴 is a set of pixels, and B is a structuring element. The thresholding technique is 
defined as Equation (3). 𝑓 (𝑥, 𝑦) = 1      𝑖𝑓 𝑥 𝑡0     𝑖𝑓 𝑥 𝑡  (3)

where 𝑡 is the threshold value employed to determine if the pixel concerned is part of the 
desired ground truth or the background. These methods are then used on the expected 
ground truth to soften the edges and remove false positive values. After being processed, 
the images of tumour tissue are sharp and in sharp focus. 

Figure 3 depicts the last stage in processing predicted masks, in which tiny false pos-
itive values and blobs at the borders are removed. 

Figure 2. Some examples of the augmentation process of CT and PET images for STS: (a) the main
CT-PET, (b) rotating the CT-PET by 90 degrees clockwise, (c) flipping the CT-PET upside down, and
(d) left-mirroring the CT-PET. Red arrows indicate the tumour region.

3.1.3. Image Post-Processing

The suggested framework’s ultimate stage used a morphological change and a basic
thresholding technique. To lessen the impact of noise, a morphological gradient accounted
for the structure of the input picture. Its effect is analogous to the difference between
expanding and contracting an image.

While Equation (1) defines dilation [21] as the process of removing pixels (noises)
from object boundaries, Equation (2) describes erosion [22] as the process of adding pixels
(negative noises) to object boundaries.

A
⊕

B = ∪b∈B Ab (1)

A!B = {z ∈ E|B ⊆ A} (2)

where A is a set of pixels, and B is a structuring element. The thresholding technique is
defined as Equation (3).

f (x, y) =
{

1 i f x > t
0 i f x < t

(3)

where t is the threshold value employed to determine if the pixel concerned is part of the
desired ground truth or the background. These methods are then used on the expected
ground truth to soften the edges and remove false positive values. After being processed,
the images of tumour tissue are sharp and in sharp focus.

Figure 3 depicts the last stage in processing predicted masks, in which tiny false
positive values and blobs at the borders are removed.

3.1.4. Multimodal Feature Fusion

A feature fusion strategy is deployed in medical imaging to generate a higher quality
final image. Feature extraction, classification, and decision making are the three main
pillars of any supervised learning-based method. To broaden the types of features collected
and better understand their relationships, the early and late sequences of feature fusion are
employed in the encoder portion of the core U-Net design. Features from different imaging
modalities, like PET and CT, are fused serially to better characterize lung tumours.
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3.1.5. Early Fusion

In early fusion, each medical image scan (CT and PET) has a single input path which
contains two CNN layers with 64 units and a Relu activation function. Then, these two paths
are concatenated into a single path, which is processed through a unique path in the down-
sampling U-Net path. This path contains three groups of CNN architecture; each group has
three CNN layers with 128, 256, and 512 units, followed by a max pooling layer. All CNNs
activation functions are Relu functions. Figure 4 shows the early fusion architecture.
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3.1.6. Late Fusion

In contrast to most architectures like U-Net, the encoding path is divided into N
streams that serve as input for each imaging modality. Each modality learns a unique
feature set using images from the other. The two modalities’ feature maps are combined at
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each network’s high-level feature layer. This process solves the problem of the early fusion
strategy. These feature sets are combined into one feature set and then subjected to the
last phase of a multimodal classifier’s training. The U-Net down-sampling path contains
four groups of CNN layers. Each group contains three sequential CNN layers with 64, 128,
256, and 512 units, respectively, followed by a max pooling layer. All CNNs have a Relu
activation function. At this point, the two paths are concatenated to generate the input of
the U-Net up-sampling path. Figure 5 shows the late fusion architecture.
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3.1.7. Dense Fusion

For lung cancer segmentation, the dense-fusion-based U-Net provides two down-
sampling routes, one for CT and one for PET images. Eight CNN deep learning building
blocks are used along each possible route. All layers preceding the current layer are inputs
to the current CNN layer. A max-pooling layer follows each pair of consecutive CNN
layers. The dimensions of the CNN layer are (in order) 64, 128, 256, and 512. The Relu
activation function is standard in all CNNs. The input to the U-Net up-sampling path is
generated by concatenating the outputs of the paths following the design described in each
path. The dense fusion architecture is shown in Figure 6.

3.1.8. Hyper-Dense Fusion

Deep learning is essential when an application requires a deep layer to function
effectively and efficiently. Reducing the overfitting impact is one of several benefits of
using dense architecture for multimodality U-Net medical image segmentation. The
layers in the same input path provide inputs to all net layers for dense design, which is
necessary for U-Nets with multiple input paths. Each layer feeds its immediate successor
and those in adjacent input channels in hyper-dense fusion. As the network learns the
intricate connections between the modalities at each level of abstraction, the hyper-dense
connectivity produces a more robust feature representation than early/late fusion in a
multimodal situation. The hyper-dense fusion layout is depicted in Figure 7.
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3.2. Loss Functions

In the proposed method, we thoroughly investigated and compared the models using
a variety of loss functions. Segmenting an image is essentially a pixel-level classification
problem. Each pixel in an image contributes to the overall image, and specific clusters of
pixels define particular aspects. Semantic image segmentation is a technique that divides
these pixels into their respective components. While designing intricate, deep learning
architectures for image segmentation, choosing the loss/objective function is crucial. Loss
functions can be broken down into several types based on distribution, region, boundary,
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and compound. The proposed analysis uses three distinct loss functions, i.e., binary
cross-entropy, Dice, and focal. The representation as the network discovers the many
interconnections between modalities at every level of abstraction, rather than the binary
early/late fusion approach.

3.2.1. Binary Cross-Entropy

Cross-entropy [23] is used to quantify the dissimilarity between two probability dis-
tributions for a specific random variable or sequence of events. Segmentation, being a
categorization at the pixel level, is extensively employed for this purpose, and it achieves
good results. The formula for cross-entropy is given in Equation (4).

LBCE(y,ŷ) = −[ylog(ŷ) + (1− y)log(1− ŷ)] (4)

where ŷ is the predicted value by the trained model.

3.2.2. Focal Loss

Focal loss (FL) [24] can be understood as a form of binary cross-entropy. It reduces
the importance of simple instances, letting the model devote more time and energy to
mastering complex ones. It is effective when there is a significant imbalance between the
classes. The formula for focal loss is given in Equation (5)

FL(pt) = −αt(1− pt)γlog(pt) (5)

where (1− pt)
γ is the modulating factor. Here, γ > 0, and when γ = 1, the focal loss will be

the same as the cross-entropy loss. Similarly, γ can be set by the inverse class frequency or
used as a hyperparameter with a typical range of [0, 1].

3.2.3. Dice Loss

In computer vision, the Dice coefficient is a metric utilized extensively to calculate the
degree of similarity between two images. In the latter half of 2016, it was also adapted as a
Dice loss function [25]. The formula for Dice loss is given in Equation (6).

FDL(y, p̂) = 1− (2yp̂ + 1)
(y + p̂ + 1)

(6)

In this case, 1 is added to both the numerator and denominator to prevent the function
from being undefined in exceptional cases like y = p̂ = 0.

4. Hyper-Dense VGG16 U-Net Segmentation Proposed Model

In various computer vision problems, shortcut connections between layers have
become increasingly popular since the emergence of residual learning [26]. Unlike in
conventional networks, these links back-propagate gradients immediately, which helps
prevent gradient-vanishing issues and allows for more complex architectures. The idea
of shortcut connections was expanded upon by DenseNet [27], which specified that each
layer’s inputs should correspond to the outputs of all layers that came before them. Densely
connected convolutional neural networks (CNNs) are built using the feed-forward principle,
which entails adding direct connections from any layer to all succeeding layers. Deep
networks are more accessible and more accurate to train because of this connectivity. This
section proposes independently expanding U-Net to support DenseNet connections within
the same multiple N streams of PET and CT modalities. Higher level layers of the proposed
extension will also use the late fusion strategy.

The inspiration for this comes from three separate observations. First, all architectural
feature maps are connected by short paths, enabling implicit deep supervision. Second,
the network’s information and gradients are better able to flow because of the direct
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connections between all layers. Finally, the regularizing effect of dense connections makes
it less likely that training data will be too small for a given task.

Using dense and hyper-dense connections has been demonstrated to have many ben-
efits when segmenting medical images. More information can be gleaned from medical
images when the VGG architecture is used for feature extractions. We propose a multi-
modality U-Net medical image segmentation model using hyper-dense connections and
the VGG16 model.

Our primary objective was to refine an existing deep-learning model for lung cancer
segmentation. To do this, we modified the U-Net design and used it as the starting point.
The encoder and the decoder are both CNNs, making up the basic U-Net architecture. The
encoder extracts features by first performing convolutional operations and then down-
sampling. The usual convolutional processes follow the up-sampling and concatenation
layer of the decoder branch. Connecting feature maps from the encoder network is made
possible via a skip link that connects the same-level layers of the decoder and encoder, with
the up-sampled feature map conveying coarse global context information. This helps with
recovering local characteristics after down-sampling.

According to this model, U-Net takes data via two distinct input paths, one for
each image type. The architecture of both paths is VGG16, with dense and hyper-dense
connections between them. This architecture was proposed so that image classification and
segmentation tasks may take advantage of VGG, dense, and ultra-dense networks. The
suggested VGG16 U-Net model’s components are given in Figure 8.
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Figure 8 depicts the proposed hyper-dense VGG16 U-Net model, built upon the U-Net.
Both CT and PET images can be fed into the model. The segmented image of lung cancer is
the product of the model. In the suggested approach, input images for both CT and PET
were 128× 128. Each image input type has its dedicated input path, each with 16 CNNs (the
number of CNNs in VGG16). Each dataset was processed through CNNs of varying sizes
(64, 128, 256, and 512). Figure 6 shows that both input paths are incredibly well connected,
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and there are also many connections between the two. All convolutional neural networks
used ReLU activation. The decoder’s structure comprises four groups of convolutional
neural networks (CNNs) of varying sizes (1024, 512, 256, and 128).

5. Experiments

The efficiency of the proposed U-Net models for segmenting lung tumours was mea-
sured across various performance criteria. The STS dataset was used for both training and
testing the models. Experiments compared the newly developed models to benchmarked
models widely utilized on the same dataset and other datasets.

5.1. Experimental Setup

All experiments were run on servers in the Google Colaboratory environment, and
the recommended models for segmenting lung tumours were built using a TensorFlow
and Keras backend with an NVIDIA Tesla P100 -PCIE GPU and 32.0 GB RAM. For the
training phase, we employed the Adam optimizer with the following settings: learning rate
= 0.0001, 1 = 0.9, 2 = 0.999, and epsilon = 1 × 10−8. One hundred epochs of training were
used. The intensity levels of the image’s pixels were normalized to remove any potential
for ambiguity. The dataset was arbitrarily divided into 70% for training, 20% for validation,
and 10% for testing.

5.2. Dataset Description

The proposed models are trained on data from a study of soft-tissue sarcomas
(STSs) [28]. STS includes many types of scans, such as CT, PET, and MRI, but in our
research only the CT and PET scans were used. In this dataset, a cohort of 51 patients with
histologically proven soft-tissue sarcomas (STSs) of the extremities was retrospectively
evaluated. It included 27 females and 24 males, with ages ranging from 16 to 83 years old,
and with various cancer degrees: low, intermediate, and high. The PET slice volumes had
a thickness of 3.27 mm and a median in-plane resolution of 5.47 mm × 5.47 mm (range:
3.91–5.47 mm). All images used in our tests were downsized to 128 pixels on the longest
dimension. For our experiments, we excluded slices without tumour pixels in the ground
truth. In total, over 3000 pairs of PET-CT image slices (3063 STS) were included.

5.3. Performance Metrics

The efficiency of the suggested approach was assessed using the most commonly
employed metric for evaluating segmentation tasks [29]: the Dice score (Dice), the most
crucial segmentation performance measure. It is defined by Equation (7).

Dice =
(2 ∗ Tp)

(2 ∗ Tp + Fp + Fn)
(7)

In addition, measures of accuracy, sensitivity, and specificity were used. Equations (8)
to (10) also provide definitions for them.

Accuracy =
Tp + Tn

Tp + Tn + Fn + Fp
(8)

Sensitivity =
Tp

Tp + Fn
(9)

Speci f icity =
Tn

Tn + Fp
(10)

where the four primary blocks for computing these metrics were defined as true positive
(Tp), true negative (Tn), false positive (Fp), and false negative (Fn) values.
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6. Results and Discussion

The effectiveness of the proposed models is discussed in this section. In this section,
we report the results of our model assessments, broken down into four categories: loss
function comparisons, same-dataset comparisons, cross-dataset comparisons, and cross-
model comparisons. Dice, IoU, accuracy, spectral sensitivity, and area under the curve
(AUC) were utilized as performance measures.

6.1. Loss-Function-Based Comparison

Adjustments to the loss functions form the basis for a new comparative evaluation
of the models. Focal loss functions, Dice, and binary cross-entropy are employed in our
research. These operations are among the most well-known and often used in deep learning
for image segmentation. The outcomes are displayed in Tables 2–4 for binary, Dice, and
focal loss functions.

Table 2. Binary cross-entropy.

Dice IOU ACC Sen Spec

Late 0.67882 0.53651 0.98516 0.73885 0.99068
Early 0.68066 0.54075 0.98397 0.73816 0.99083
Dense 0.69569 0.54016 0.98095 0.68401 0.99225
Hyper 0.71851 0.57818 0.98381 0.72302 0.99284

Hyper + VGG16 0.72532 0.58687 0.98278 0.69209 0.99423

Table 3. Dice loss function.

Dice IOU ACC Sen Spec

Late 0.51479 0.69734 0.97806 0.64604 0.99048
Early 0.51465 0.69671 0.97993 0.65452 0.99135
Dense 0.51485 0.51191 0.98112 0.67253 0.99112
Hyper 0.64081 0.69725 0.98295 0.67958 0.99046

Hyper + VGG16 0.66828 0.52222 0.98048 0.69506 0.99102

Table 4. Focal loss function.

Dice IOU ACC Sen Spec

Late 0.71217 0.5704 0.98347 0.71046 0.99327
Early 0.66112 0.51011 0.97943 0.6351 0.99232
Dense 0.71554 0.57403 0.98198 0.70131 0.99347
Hyper 0.72713 0.58717 0.98436 0.71786 0.99339

Hyper + VGG16 0.73011 0.55664 0.98103 0.67472 0.99362

Figures 9–11 depict the findings using various loss functions, like cross-entropy, focal
loss, and Dice loss. In contrast, the performance measures for the proposed models using the
metrics Dice, IoU, accuracy, sensitivity, and specificity are given in Figures 12–16, respectively.
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The suggested hyper-dense VGG16 model outperforms the other models in Dice for
all types of loss functions, as seen in Tables 2–4.The focal loss function is the only option if
one wants the best Dice performance possible. Figures 9–16 offer graphical representations
of the evaluation outcomes. The five presented models are compared in Figures 9–12
regarding the binary cross-entropy, Dice, and focal loss functions used as performance
indicators. Figure 9 shows that the suggested hyper VGG16 model outperforms the
others in terms of Dice accuracy (improved by 7%), IOU accuracy (improved by 9%), and
specificity accuracy (improved by 0.4%). However, the late fusion model’s accuracy and
sensitivity are unparalleled. The results of the Dice loss function are shown in Figure 10,
and it is evident that the suggested model outperforms the previously introduced models
in terms of Dice, specificity, and sensitivity. Finally, the proposed model outperforms the
other established models regarding the focal loss function performance, achieving 73%
for Dice. Figures 10–13 present visual representations of the performance above metrics
about the loss function employed. Figure 13 demonstrates that the most outstanding value
for the focal loss function is found with the Dice metric. The segmentation results of the
proposed model for various loss functions are displayed in Figure 17. In Figure 17, the lung
tumour segmentation results generated by hyper-dense VGG16 are compared to the ground
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truth, employing various loss functions such as binary, Dice, and focal. The observations
from Figure 17 indicate that the focal loss function yields the most accurate predictions,
capturing even the segmentation of small tumour portions and producing a predicted
segmentation mask that closely aligns with the ground truth segmentation. Conversely,
when utilizing the binary cross-entropy loss function, the segmentation results tend to be
slightly larger. The Dice loss function, however, provides the least accurate predictions,
as it fails to segment small tumour portions and produces a larger overall segmentation
compared to the ground truth.
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6.2. Same Dataset Models in the State of the Art

Table 5 compares the Dice, IoU, accuracy, specify, and sensitivity scores of the proposed
model to those of the benchmarked research conducted on the same STS dataset. As shown
in Table 5, the dense fusion model outperforms the other models using the same dataset.
Figures 18–22 shown visual representations of the performance metrics which were used in
performance evaluation and the comparison of the proposed models.

Table 5. Comparison of the proposed and benchmarked models on the STS dataset.

Dice IOU ACC Sen Spec

Fu et al. [13] 62.26 - - 64.74 99.7
Bi et al. [20] 66.36 - - 69.93 99.69

Late 0.712171 0.5704 0.98347 0.71046 0.99327
Early 0.661116 0.51011 0.97943 0.6351 0.99232
Dense 0.715539 0.57403 0.98198 0.70131 0.99347
Hyper 0.72713 0.58717 0.98436 0.71786 0.99339

Hyper + VGG16 0.73.0109 0.55664 0.98103 0.67472 0.99362
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VGG16 model outperforms state-of-the-art models trained on the same dataset by a mar-
gin of Dice improvement equal to 17%. The proposed architecture for feature extraction 
between the two types of inputs and applying the VGG16 architecture of image feature 
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According to the data in the table and the graphs above, the suggested hyper-dense
VGG16 model outperforms state-of-the-art models trained on the same dataset by a margin
of Dice improvement equal to 17%. The proposed architecture for feature extraction
between the two types of inputs and applying the VGG16 architecture of image feature
extraction led to this enhancement.
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6.3. Different Datasets in the State of the Art

Table 6 compares the Dice, IOU, accuracy, specificity, and sensitivity metrics of the
proposed model to those of benchmarked studies that employed different datasets, demon-
strating the model’s superior performance. Table 6 show that the dense fusion model has
a higher Dice value than the other models. Figures 23–27 show visual representations
of the performance metrics used in performance evaluation and the comparison of the
proposed models.

Table 6. Comparison of the proposed and benchmarked models on different datasets.

Dice IOU ACC Sen Spec

Fu et al. [13] 67.83 - - 99.9 76.16
Kumar et al. [16] 63.85 - - - -

Late 0.712171 0.570397 0.983471 0.710462 0.993269
Early 0.661116 0.510114 0.979428 0.635095 0.992316

Dense 0.715539 0.57403 0.981976 0.701314 0.993468
Hyper 0.72713 0.587171 0.984362 0.717861 0.993387

Hyper + VGG16 0.730109 0.556635 0.981034 0.674717 0.99362
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Based on the data in the table, we infer that the suggested hyper-dense VGG16
model outperforms the other state-of-the-art lung cancer segmentation models trained on a
separate dataset by a margin of Dice improvement equal to 14%. The proposed architecture
for feature extraction between the two types of inputs and applying the VGG16 architecture
of image feature extraction led to this enhancement.
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7. Conclusions and Future Scope

Despite significant tumour detection and treatment developments, lung cancer re-
mains a leading cause of mortality globally. This study offers a deep learning model
based on hyper-dense VGG16 deep technologies to segment lung cancer using U-Net as
a backbone structure with multimodal input images. A comprehensive evaluation of the
proposed model was included: introducing four models to compare with the proposed
one, comparing the proposed model with others presented in the state of the art, and
comparing the proposed model with the others using the same and different datasets. The
hyper-dense VGG16 model performed the best out of all the analyses performed on this
dataset, receiving a Dice score of 73%. The hyper-dense VGG16 model achieved better
performance because the extraction of features in each layer is not only a function of the
previous layer input, but a function of all previous inputs in the same input branch, and
it has inputs from the other input branches which make the feature extraction deeper
and more accurate. However, further research based on the outcomes of this study can
go in a few different directions, such as employing a combination of CT, PET, and MRI
as input to the segmentation model to verify the suggested model’s generalizability and
introducing the performance study of the proposed model with respect to a combination
of two types of loss functions such as binary and Dice loss functions. Furthermore, the
model’s performance can be tested by experimenting with various hyperparameter values
of the offered methodologies.
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