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Abstract: The rise in cardiovascular diseases necessitates accurate electrocardiogram (ECG) diag-
nostics, making high-quality ECG recordings essential. Our CNN-LSTM model, embedded in an
open-access GUI and trained on balanced datasets collected in clinical settings, excels in automating
ECG quality assessment. When tested across three datasets featuring varying ratios of acceptable
to unacceptable ECG signals, it achieved an F1 score ranging from 95.87% to 98.40%. Training the
model on real noise sources significantly enhances its applicability in real-life scenarios, compared
to simulations. Integrated into a user-friendly toolbox, the model offers practical utility in clinical
environments. Furthermore, our study underscores the importance of balanced class representation
during training and testing phases. We observed a notable F1 score change from 98.09% to 95.87%
when the class ratio shifted from 85:15 to 50:50 in the same testing dataset with equal representation.
This finding is crucial for future ECG quality assessment research, highlighting the impact of class
distribution on the reliability of model training outcomes.

Keywords: electrocardiograms (ECGs); digital medicine; artificial intelligence; digital health;
CNN-LSTM model; user-friendly toolbox

1. Introduction

Globally, cardiovascular diseases (CVDs) are the leading cause of death, accounting
for 32% of all global fatalities in 2019, with the majority occurring in low- to middle-income
countries [1]. Heart attacks and strokes, which comprise 85% of these CVD-related deaths,
underscore the urgent need for effective diagnostic tools, such as Electrocardiography
(ECG) [2–4]. The advent of wearable technologies has facilitated continuous ECG monitor-
ing, significantly advancing cardiovascular care [5,6]. However, the interpretation of ECG
records is complicated due to their vulnerability to disruptions [7].

Advancements in ECG integration with digital health technologies offer promising
solutions to improve cardiac care, particularly in underserved regions [8,9]. Automated
ECG quality assessment is pivotal in these settings, where access to healthcare and trained
specialists is limited. By enabling the immediate identification and re-recording of sub-
par ECGs, these techniques can streamline the diagnostic process, reducing delays and
improving patient outcomes [10,11].

The traditional approach to ECG recording and assessment, often manual and time-
consuming, demands expertise [12,13]. Modern approaches leveraging machine learning
and sensor advancements offer a more efficient alternative, potentially reducing the work-
load on healthcare professionals [14–16]. Moreover, real-time ECG quality assessment
techniques, incorporating advanced signal processing, play a crucial role in the reliability
and accuracy of diagnoses [17,18].
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Our recent works have demonstrated the versatility of ECG in various contexts,
from assessing driving stress to hypertension monitoring, further highlighting its po-
tential in cardiovascular care [19,20]. The democratization of ECG assessments through
automated systems can make them more accessible and practical in diverse healthcare
environments [21,22].

Building on these motivations, our study introduces a new machine learning algo-
rithm embedded in a graphical user interface (GUI), designed to enhance usability for
clinicians. This tool not only eases the assessment of ECG signal quality, but also considers
class representation during training and testing phases, addressing a crucial aspect often
overlooked in previous studies.

2. Methodology
2.1. Training Datasets: CinC11 and CinC17

The CinC11 dataset [23] used in this study was a relabeled single-lead version. Each
lead was assigned a separate label, unlike the original dataset with 12-leads having a single
label. The relabeled dataset, available on GitHub [24], consisted of 5400 10-s single-lead
ECG recordings from CinC11. These recordings were divided into a train set of 1200 samples
and a test set of 4200 samples. The train set comprised 67.92% acceptable signals and 32.08%
unacceptable signals. A random split was performed, creating a train-validation ratio of
90:10. The test set contained 67.71% acceptable signals and 32.29% unacceptable signals, as
defined in [24].

For training an alternative version of the CNN-LSTM model, a mixture of CinC11 [23]
and CinC17 [25] data were used. One dataset aimed for a balanced distribution of accept-
able and unacceptable labeling with a 50:50 ratio. Additional noisy data from CinC17
was incorporated to balance the classes and generate more training data. This resulted
in a dataset of 4048 10-s ECG recordings, with 2024 samples labeled as acceptable and
2024 samples labeled as unacceptable.

The second dataset included all data from both CinC11 and CinC17, resulting in
a larger dataset of 13,912 samples. Out of these, 11,888 were labeled as acceptable and
2024 samples were labeled as unacceptable. The larger dataset size aimed to enhance the
model’s flexibility and robustness due to the availability of more training data.

Both datasets were split into training, validation, and test sets using an 80:10:10 ratio.
However, it is important to note that the randomization algorithm used for splitting the
data makes it difficult to trace the origin of leads within the splits. It is possible that
leads from a single 12-lead recording ended up in different sets, which could potentially
introduce data leakage and inflate the results [26,27].

2.2. Testing Dataset: BUT QDB

The BUT QDB dataset [28,29] was used as an external test dataset to avoid high
performance scores due to leakage. The original 20 min recordings were preprocessed to
consist of multiple 10 s samples with a single label. All the labeled segments shorter than
10 s were discarded. This resulted in 10,570 samples. The BUT QDB dataset consists of
1000 Hz recordings, so the 10,570 samples of 10 s were downsampled to become 500 Hz.
A total of 5285 of these samples were labeled acceptable, and 5285 samples were labeled
unacceptable.

2.3. Spectrogram Conversion

ECG recordings were first normalized between −1.0 and 1.0 before being converted
into spectrograms using the tf.signal.stft function. This function applies to the ECG tensor of
shape (samples, channels), with channels being None, as the ECG tensor comprises a single
channel. Key parameters for the function are frame length and frame step, denoting the
length and step size of the analysis window, respectively, used in the Short-Time Fourier
Transform (STFT) computation.
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The STFT process splits the ECG tensor into frames, applying the Fourier transform
separately to each, thus switching the signal from the time domain to the frequency
domain. The window function employed here, the Hann function, aids in mitigating
spectral leakage, or the distortion of signal frequency when it extends beyond the window
edges. The selection of the frame length is determined by a trade-off between time and
frequency resolution.

STFT is given by:

STFTx[k] = X(m, ω) =
k=−∞

∑
∞

x[k]ω[k − m]e−jωk, (1)

where k indicates the index of the analyzed value in the ECG data sample, and the fast
Fourier transform values are computed over discrete steps or ‘windows’.

The Hann window function, used here, is defined as:

w[n] = 0.5 − 0.5 cos(2π
n
N
). (2)

This function’s bell-shaped and symmetric nature transitions from 0 at the window
start and end to 1 in the center, reducing spectral leakage. Chosen over the Hamming
window function due to its superior frequency-time resolution trade-off and effectiveness
in reducing spectral leakage, the Hann window function is more suitable for ECG data,
particularly for identifying high-frequency arrhythmias such as atrial fibrillation.

2.4. CNN-LSTM Model

The CNN-LSTM model used in this study is based on the work of Özer et al. [30],
originally designed for classifying power quality disturbances in the power grid. The
model consists of two main parts: a Convolutional Neural Network (CNN) for feature
extraction and a Long Short-Term Memory (LSTM) network for temporal data analysis and
classification. The input data, originally power grid data, is converted into two-dimensional
spectrograms before being fed into the model. The CNN part performs feature extraction,
while the LSTM part captures temporal dependencies and performs classification. However,
to adapt the model for ECG quality assessment, several modifications were made to reduce
overfitting and computational demands. Specifically, additional dropout layers were added
to the CNN part, and the Bi-LSTM was replaced with an LSTM. This modified model
closely resembles models used in previous studies for heartbeat event classification and
atrial fibrillation detection.

The finalized CNN-LSTM model, illustrated in Figure 1, starts with an input layer that
takes in spectrogram data of shape (38, 129). A normalization layer is applied to scale the
input data for improved processing. The model then incorporates a series of convolutional
layers, max pooling layers for down-sampling, dropout layers to prevent overfitting, and
dense layers for feature extraction. The LSTM layer, a type of recurrent neural network,
follows the CNN part and captures temporal dependencies in the sequential data. After
additional dropout and dense layers, a sigmoid activation function is applied in the output
layer to predict the class probabilities for ECG quality assessment.

For model training, we utilized the Adam optimizer, an optimization algorithm fa-
vored for its adaptive learning rate, which adjusts during training based on parameter
gradients. This contrasts with algorithms like stochastic gradient descent, which employ a
static learning rate throughout training.

Training the model involved the Adam optimizer with a learning rate of 0.0001 and
sparse categorical cross-entropy loss. The learning rate parameter impacts the model
parameters’ modification speed with each iteration. Lower rates make for slower, more
accurate updates, while higher rates expedite these updates, but may reduce precision.
Here, we have opted for a 0.0001 learning rate as the typical 0.001 rate seemed to hasten
model convergence excessively. Despite altering the training ‘friction’ level, this learning
rate does not affect the adaptive nature of the Adam optimizer.
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Following training, we saved the parameters for future testing and integration into
the toolbox. We carried out the implementation using Python 3.8.11 and TensorFlow 2.9.1,
leveraging both a CPU and GPU for training. For a dataset of 13,912 data points, the
training process lasted around 10 min.

Figure 1. Schematic overview of the proposed CNN-LSTM network. The Feature extraction box
outlines the CNN part of the model. The Classification box outlines the LSTM part of the model. The
values under the input layer represent the input shape. The values under the Conv1D layers represent
the filter and kernel size. The value under the dropout layers represents the dropout rate. The value
under the LSTM and Dense layers represents the dimensionality of the output. The Sigmoid under
the last Dense layer represents the activation function of the output.
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3. Results

Figure 2 shows the results of the CNN-LSTM model on waveform input data, the
figure displays the ground truth labels [‘Tru’] and the predicted labels [‘Pred’].

Table 1 summarizes the performance of the proposed CNN-LSTM model compared
to other methods. The model achieved the highest sensitivity, specificity, accuracy, and
F1-score among all the analyzed methods.

The toolbox underwent significant changes to improve usability. It now accepts
waveform data without a specific numbering scheme, can import .wav files, automatically
detects the number of leads in the data, and adjusts the table size accordingly. The code
was also optimized and follows software engineering best practices.

Figure 2. Examples of true positives and true negatives yielded by the proposed CNN-LSTM model,
utilizing the BUT QDB dataset.

The new toolbox is shown in Figures 3 and 4, and the code for the toolbox can be
found on GitHub (https://github.com/Kirina/Automated_ecg_assessment, accessed on
16 November 2023), along with detailed instructions on its usage. The original code is also
available on GitHub (https://github.com/LinusKra/ECGAssess, accessed on 16 November
2023), enabling easy comparison of the code changes. Figure 3 presents a demonstration
highlighting the CNN-LSTM’s capability to automatically classify ‘Lead 1’ as having
acceptable quality. In contrast, Figure 4 illustrates an instance of unacceptable quality in a
distinct ECG recording.

https://github.com/Kirina/Automated_ecg_assessment
https://github.com/LinusKra/ECGAssess
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Table 1. Overview of the performance of the proposed CNN-LSTM compared to other methods. Ac
refers to acceptable, UnAc refers to unacceptable. N/R refers to not received, meaning that the value
was not mentioned in the article. 1 Subset of CinC11 labeled in [24]. 2–6 Same dataset. 7 Calculated
value from values in paper.

Method Year Train
Dataset Test Dataset Train Ratio Test Data Sensitivity Specificity Accuracy F1-Score

Ac:UnAc Ac:UnAc (%) (%) (%) (%)

Proposed
method 2022 CinC11 1 and

CinC17 2 BUT QDB 3 50:50 50:50 92.43 99.60 96.02 95.87

Proposed
method 2022 CinC11 1 and

CinC17 2 CinC11 1 and CinC17 50:50 50:50 98.52 95.52 97.03 97.09

Proposed
method 2022 CinC11 1 and

CinC17 4 BUT QDB 3 85:15 50:50 99.41 96.71 98.06 98.09

Proposed
method 2022 CinC11 1 and

CinC17 4 CinC11 1 and CinC17 85:15 85:15 99.74 83.80 97.27 98.40

Proposed
method 2022 CinC11 1,5 CinC11 1,6 68:32 68:32 98.24 92.04 96.23 97.25

Kramer
et al. [24] 2022 CinC11 1,5 CinC11 1,6 68:32 68:32 98.03 86.21 94.21 96.31 7

Hermawan
et al. [31] 2019 CinC11 CinC11 70:30 70:30 85.00 86.00 85.60 N/R

Clifford
et al. [32] 2012 CinC11 and

NSTDB CinC11 and NSTDB 50:50 50:50 N/R N/R 95.80 N/R

Taji et al. [33] 2017 CinC11 and
NSTDB CinC11 and NSTDB 50:50 50:50 98.20 98.20 97.20 98.38

Yaghmaie
et al. [34] 2017 CinC11 and

NSTDB and CinC11 and NSTDB 50:50 50:50 96.20 97.60 96.90 N/R

MIT-BIH

Fu et al. [35] 2021 Private Private 80:20 84:16 98.66 86.65 96.73 N/R

Figure 3. Showcase of the new toolbox with an instance of an ECG signal with acceptable quality. The
GUI marks it as bad quality due to automatic labeling based on the proposed CNN-LSTM algorithm.
Other ECG signal quality indices in agreement. The displayed ECG corresponds to ‘Lead 1’, extracted
from the CinC11 dataset, which includes 12-lead ECG data. By utilizing the scroll bar situated in the
top left corner of the graphical user interface, we can load and examine each ECG lead within the
dataset. Remarkably, all 12 ECG leads exhibit acceptable quality.
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Figure 4. Showcase of the new toolbox with an instance of an ECG signal with unacceptable quality.
The GUI marks it as bad quality due to automatic labeling based on the proposed CNN-LSTM
algorithm. Other ECG signal quality indices in disagreement. The displayed ECG corresponds to
‘Lead 8,’ extracted from the CinC11 dataset, which includes 12-lead ECG data. By utilizing the scroll
bar situated in the top left corner of the graphical user interface, we can load and examine each ECG
lead within the dataset. Remarkably, all 12 ECG leads, excluding ‘Lead 8,’ exhibit acceptable quality.

4. Discussion

Our evaluation of the CNN-LSTM model across diverse datasets such as CinC11 [23],
CinC17 [25], and BUT QDB [28,29] demonstrates its adaptability and robustness. The
model’s effective performance on the BUT QDB dataset, which was gathered under different
conditions than the training data, underscores its generalizability.

In terms of sensitivity, specificity, accuracy, and F1-score, the CNN-LSTM model ex-
hibits superior effectiveness in ECG quality assessment, outperforming other methods as
detailed in Table 1. This highlights its potential for practical clinical application. Moreover,
our analysis showed the performance of the proposed algorithm with equal representations
of high quality vs. low quality, at 50:50, during both the training and testing phases. This
highlights the importance of class representation during training and testing. Notably,
the F1 score of the proposed algorithm decreased from 98.09% to 95.87% when the class
representation changed from 85:15 to 50:50, despite the test set having an equal represen-
tation for both. This point must be carefully considered when reporting results in future
investigations on this topic.

In our study, the newly developed toolbox was demonstrated using examples from the
CinC11 dataset, as illustrated in Figure 3. This figure showcases the toolbox’s interface while
analyzing an ECG signal from ‘Lead 1’, marked as having acceptable quality. Despite the
CNN-LSTM algorithm’s automatic labeling indicating bad quality, other ECG signal quality
indices concurred with the acceptable quality assessment. This instance demonstrates the
toolbox’s ability to facilitate a comprehensive review of ECG signals. The user-friendly
graphical interface, complete with a scroll bar, allows clinicians to easily navigate and
assess each of the 12 leads within an ECG recording. The effective visualization and
assessment capabilities of the toolbox, as seen in Figure 3, underscore its potential utility in
clinical settings.

Figure 4 provides an additional perspective on the toolbox’s functionality by pre-
senting an ECG signal from ‘Lead 8’ of the CinC11 dataset, this time marked as having
unacceptable quality. In this case, the GUI’s labeling based on the CNN-LSTM algorithm
indicates bad quality, aligning with the disagreement observed in other ECG signal quality
indices. This example highlights the toolbox’s sensitivity in detecting and labeling poor-
quality signals, an essential feature for ensuring accurate ECG analysis. The graphical user
interface again proves instrumental in allowing for the detailed examination of each lead,
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reinforcing the toolbox’s role in enhancing ECG quality assessment. The contrast between
the results for ‘Lead 1’ and ‘Lead 8’ within the same dataset illustrates the model’s nuanced
approach to ECG signal evaluation.

A primary strength of this study is the extensive evaluation of the model across varied
datasets, which reduces the risk of dataset-specific overfitting and showcases the model’s
ability to handle different signal qualities. Combining CNN for feature extraction with
LSTM for temporal data analysis, the model adeptly identifies complex ECG patterns,
resonating with the guidelines in [36]. This methodology significantly contributes to
discussions on the need for robust and adaptable models in biomedical signal analysis,
particularly for diagnosing noncommunicable diseases.

Furthermore, the study emphasizes transparency and reproducibility, demonstrated
by the public availability of the source code [24]. This openness encourages further research
and collaboration in the field.

However, the study has limitations. The model’s effectiveness is closely linked to
the diversity and quality of the training data, and its performance might be impacted
when exposed to highly varied data types. The computational demands for training and
deploying deep learning models could also limit their feasibility in certain settings.

Future research should focus on developing algorithms that are compatible with
various ECG recording devices by accommodating multiple sampling frequencies. Expand-
ing the algorithm to handle different data lengths and enabling real-time analysis could
greatly enhance its clinical utility. Exploring hybrid models that combine feature-based
and deep learning approaches might offer a balance between computational efficiency
and interpretability.

The consistent and versatile performance of our CNN-LSTM model across various
datasets reaffirms its promising reliability as a screening tool. This tool has the potential to
improve decision-making processes when collecting ECGs in different settings with noise
and various clinical environments. Feedback from clinicians on this tool would be highly
appreciated to understand its efficacy, scalability, and effectiveness in improving cardiac
diagnosis and treatment.

5. Conclusions

This study introduces an innovative CNN-LSTM model for automated ECG quality
assessment, embedded in an open-access GUI and trained on real-world noise without
simulated data. The model, comprising a CNN for feature extraction and an LSTM for
classification, shows superior performance on various datasets, including CinC11, CinC17,
and BUT QDB. It demonstrates high sensitivity, specificity, accuracy, and F1 scores, high-
lighting its robustness in diverse clinical settings. The balanced class representation during
training provides crucial insights, emphasizing the need for accurate class distribution in
ECG quality assessment. Future work should focus on enhancing the model’s adaptability
to different data types and extending its capabilities for real-time analysis.
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