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Abstract: (1) Background: endobronchial ultrasound-guided mediastinal transbronchial cryo-node
biopsy, previously assisted by fine-needle aspiration, is a novel technique of particular interest in the
field of lung cancer diagnosis and is of great utility for extrathoracic tumor metastases, lymphomas,
and granulomatous diseases. An integrated histological and molecular diagnosis of small samples
implies additional difficulty for the pathologist. Additionally, emerging tumor biomarkers create the
need to search for new approaches to better manage the tissue sample; (2) Methods: An analytical
observational study of 32 mediastinal node cryobiopsies is carried out in 27 patients (n = 27). Statistical
analysis using the t-student and Wilcoxon signed-rank tests for paired data is performed with SPSS
26 and R Statistical software. The significance level is established at p < 0.05; (3) Results: cryobiopsies
were valid for diagnosis in 25 of 27 patients, with a maximum average size of 3.5 ± 0.7 mm. A total of
18 samples (66.67%) were positive for malignancy and 9 (33.33%) were benign. The tumor percentage
measured in all neoplastic samples was greater than 30%. The average DNA and RNA extracted
in nine non-small cell lung cancer cases was 97.2 ± 22.4 ng/µL and 26.6 ± 4.9 ng/µL, respectively;
(4) Conclusions: the sample size obtained from an endobronchial ultrasound-guided mediastinal
transbronchial cryo-node biopsy facilitates the morphological and histo-architectural assessment of
inflammatory and neoplastic pathology. It optimizes molecular tests in the latter due to more tumor
cells, DNA, and RNA.

Keywords: cryobiopsy; EBUS-TBNA; mediastinal lymph nodes; lung cancer; biomarkers

1. Introduction

Different conditions can cause mediastinal lymphadenopathies. Malignant pathology
is commonly attributed to lymphomas and metastatic lesions associated with primary
thoracic tumors, particularly lung and esophagus, which can spread to the mediastinal
nodes [1]. Endobronchial ultrasound-guided transbronchial fine needle aspiration (EBUS-
TBNA) and endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) are minimally
invasive helpful techniques used to approach the visceral mediastinal compartment. The
pathologist’s assistance is crucial in acquiring a rapid on-site evaluation of the sample
(ROSE) to optimize and manage the tissue samples beyond the morphological study [1–3].

Seventy percent of non-small cell lung cancer (NSCLC) patients are diagnosed in
advanced stages without any surgical options, and diagnosis is usually established through
cytological samples and small biopsies [4,5]. The proper management of these samples is
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crucial in making a cytohistological diagnosis of the neoplasm and making them profitable
for immunocytochemical/immunohistochemical studies (ICCs/IHCs), fluorescence in situ
hybridization (FISH), real-time polymerase chain reaction (RT-PCR), or next-generation
sequencing (NGS) [2,3,6,7]. Liquid biopsy is a valuable alternative for molecular testing in
lung cancer but requires precise technical requirements and validation studies, particularly
regarding circulating tumor RNA [3,8].

According to 2022 guidelines (SEAP/SEOM) for NSCLC, it is recommended to assess
the mutational status of EGFR, BRAF, KRAS, and MET, as well as ALK, ROS1, NTRK,
and RET translocations and PD-L1 expression levels. If NGS is available, the detection
of emerging immunomarkers such as HER2, MSI, STK11, KEAP1, or TMB should be
considered. Therefore, pathologists need to handle samples obtained from patients with
lung cancer in a specialized, systematic, and directed way to make them profitable for
diagnosis while preserving tissue for molecular determinations [6].

Cryobiopsy in interstitial lung disease is a widespread multidisciplinary procedure in
the pathologist’s diagnostic routine [9]. Endobronchial ultrasound-guided transbronchial
mediastinal lymph node cryobiopsy (EBUS-TBCNB), previously assisted by EBUS-TBNA,
is a valuable technique because of the larger tissue sample size obtained. EBUS-TBCNB
complements conventional approach techniques used for sampling NSCLC patients with
the intention of staging, categorizing tumor histological type, and responding to the molec-
ular requirements in lung cancer. It also facilitates the diagnosis of other inflammatory and
neoplastic pathologies involving the mediastinal lymph nodes [10–19]. However, no studies
have analyzed mediastinal lymph node cryobiopsy from the pathologist’s perspective.

Therefore, the study’s main objective was to obtain data on the overall diagnostic with
the EBUS-TBCNB technique associated with EBUS-TBNA. We further sought to assess the
relevance of the pathologist’s assistance in decision-making during ROSE, to check the
efficacy of this type of biopsy for molecular testing by quantifying the amount of DNA
and RNA in comparison with the cell blocks obtained in EBUS-TBNA, and to evaluate the
safety of the technique.

2. Materials and Methods

A prospective, descriptive, observational, and analytical study was conducted from
April 2022 to April 2023 on patients who underwent EBUS-TBCNB at the level 1 Tor-
recárdenas University Hospital in Almería, Spain. This hospital covers a health area of over
730,000 inhabitants. All the patients had previously undergone computed axial or positron
emission tomography/computed tomography studies.

The selection criteria were patients with accessible stations through EBUS-TBNA,
patients with mediastinal lymph node pathology (inflammatory or tumor) requiring histo-
logical confirmation diagnosis, NSCLC patients with mediastinal lymph node pathology
requiring staging or biomarker studies, patients with metastatic mediastinal lymph node
pathology related to other primary neoplasms other than lung that benefited from molecular
studies, patients with mediastinal lymph node pathology with suspected lymphoma, adults
over 18 years of age, and those with no contraindications for sedation or general anesthesia.

2.1. Technical EBUS-TBCNB Procedure

The procedure was performed under sedation with a level of consciousness measured
using the bispectral index (BIS) around 70–60. Using EBUS-TBNA (Olympus® BF-UC180F,
Tokyo, Japan), three punctures were performed with a needle size of either 22 gauge
(SonoTip®TopGain: Medi-Globe, Rohrdorf, Germany), 19 gauge (ViziShot 2 FLEX: Olym-
pus, Tokyo, Japan), or 21 gauge (ViziShot 2: Olympus, Tokyo, Japan). The pathologist
could visualize cytological extensions fixed in alcohol (96◦) and stained with Papanicolaou
in each puncture, indicating whether there was a representative lymph node component
and whether the diagnostic suspicion was benign or malignant. Material from the dif-
ferent punctures was processed in fixative (ThinPrep® CytoLyt Solution, Hologic Inc.,
Marlborough, MA, USA) for liquid-based cytology and, if applicable, flow cytometry in
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phosphate-buffered saline (PBS). The tissue casts or cylinders obtained were deposited in
10% diluted formaldehyde to generate cell blocks and processed as small biopsies.

After the final puncture, a 1.1 mm cryoprobe (Erbecryo 20402-401, Tubingen, Germany)
was inserted through the working channel of the linear echo-bronchoscope and moved
towards the puncture site through the hole created by the needle. An ultrasound image was
used to confirm the position of the cryoprobe within the lymph node; then, the cryoprobe
was frozen for 3–4 s. The ultrasound bronchoscope was then removed with the obtained
biopsy attached to the tip of the cryoprobe. The cryobiopsies were placed in a phosphate
buffer solution (0.15–0.2% NaH2PO4, 0.7–0.8% Na2HPO4, and deionized water). Then,
purified 12% formaldehyde was added, generating a 10% buffered formalin (Figure 1).
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its tip into the buffer solution (d). Samples were collected using cryobiopsy (e). 

The pathologist completed the deferred study of the cytological smears generated 
with the liquid cytology, cellblocks, and lymph node cryobiopsies (Figure 2). The same 
pathologist who checked the cytological material and cell blocks of the EBUS-TBNA di-
agnosed EBUS-TBCNB. 

Figure 1. Images of the cryoprobe tip inside the lymph node (red arrows) in an endobronchial
ultrasound-guided transbronchial mediastinal lymph node cryobiopsy procedure (EBUS-TBCNB).
See the detail in the image of the circle of the cryoprobe entry through the preceding linear EBUS
working channel (arrowhead) (a,b). The bleed point (black arrow) marks the puncture site of the
linear EBUS and cryoprobe approach (c). Introduction of the cryoprobe with the sample attached to
its tip into the buffer solution (d). Samples were collected using cryobiopsy (e).

The pathologist completed the deferred study of the cytological smears generated with
the liquid cytology, cellblocks, and lymph node cryobiopsies (Figure 2). The same patholo-
gist who checked the cytological material and cell blocks of the EBUS-TBNA diagnosed
EBUS-TBCNB.
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Figure 2. Chordonal material and small irregular fragments were obtained as cellblocks in linear EBUS
(a,b). Macroscopic images of cryobiopsies composed of fragments ranging from 3 mm to 4 mm (c–f).

2.2. Molecular Study

The molecular biomarkers (EGFR, BRAF, KRAS, MET, ALK, ROS1, NTRK y RET)
were performed using RT-PCR (MagCore® Plus II, RBC Bioscience, Taipei, Taiwan and
EasyPGX® qPCR instrument 96, Diatech Pharmacogenetics S.R.L. Jesi AN, Italy). DNA and
RNA purity and concentration were assessed using UV absorbance at 260 and 280 nm, em-
ploying the NanoDrop 2000 (ThermoFisher Inc., Waltham, MA, USA). The manufacturer’s
instructions were followed for assessing DNA purity, where the ratio of absorbance at 260
and 280 nm was considered sufficient if it was between 1.8 for DNA and 2.0 for RNA. The
UV absorbance at a ratio of 260/230 nm was utilized as a secondary criterion. A ratio of
2.0–2.2 was deemed sufficient for ensuring sample purity. In all EBUS-TBCNB cases where
RT-PCR was performed, extracted DNA and RNA quality were bounded in those purity
ranges. To ensure accurate amplification, we confirmed that the cut-off point for DNA
extraction was 20 ng/µL and, for RNA extraction, it was 15 ng/µL. The expression level of
PD-L1 was assessed using IHC (clone 22C3, DAKO). The BRAFV600 mutational study was
conducted using RT-PCR “Cobas® BRAF/NRAS FFPET Mutation Test LSR” Cobas BRAF
v2—BRAF V600 mutated [E/E2/D/R/K(M)] (Roche Diagnostic, Basilea, Switzerland).
NGS was performed with “Panel Archer FusionPlex Sarcoma” (sequencing trial using
Miseq System Illumina, San Diego, California, USA analyzed with Archer Analysis v5.0).
Detection of t(X;18) was performed using break-apart FISH.

2.3. Statistical Analysis

A descriptive study was conducted to examine the characteristics of the population
and technical parameters of the biopsy, namely, needle size, sample size, number of frag-
ments, diagnoses made, percentage of tumor cells, and DNA and RNA quantification.
Measures of central tendency, including mean and standard deviation, were used for
quantitative variables, while frequencies and proportions were utilized for qualitative
variables. Student’s t-test or Wilcoxon signed-rank test was used to establish whether there
were statistical differences in DNA and RNA quantification between the two techniques.
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The Kolmogorov–Smirnov test was performed to assess the normality of the continuous
variables. Analyses were performed with R Statistical Software (v4.1.2; R Core Team 2021)
and SPSS version 26 (IBM Inc., Armonk, NY, USA).

2.4. Ethical Aspects

The study was conducted following the Helsinki Declaration guidelines. The partici-
pants were given informed consent, and their data were pseudonymized for biomedical
research purposes. The study has been approved by the provincial research ethics commit-
tee of Almería (code: 25/2023).

3. Results

The study analyzed 27 patients and conducted 32 mediastinal lymph node cryobiop-
sies, and 29 were valid for diagnosis. The remaining three were limited to the lymph node
capsule corresponding to perinodal soft tissues, with two biopsies belonging to the same
patient. All lymph nodes were larger than 10 mm.

Table 1 summarizes the patients’ demographic data, smoking habits, and ROSE at-
tendance. Two stations were biopsied in five patients, and one was sampled in 22. The
stations that were sampled included G7 (23), 11R (4), 4R (2), 11L (1), 4L (1), and 10L (1).

Table 1. Patient characteristics and assistance in ROSE.

N (%)/Mean ± SD

Gender
Male 20 (74.07%)

Female 7 (25.93%)
Total 27 (100%)

Age 56.1 ± 14.6

Tobacco

Smoker 6 (22.22%)
Non-smoker 11 (40.74%)

Former smoker 10 (37.04%)
Total 27 (100%)

ROSE 1
Yes 22 (81.48%)
No 5 (18.52%)

Total 27 (100%)
1 ROSE: Rapid on-site evaluation.

Table 2 provides information regarding the technical parameters of the biopsy.

Table 2. Needle size used in linear EBUS and the number and average of the sample size.

N (%)

Needle size

19 G 4 (14.81%)
21 G 4 (14.81%)
22 G 19 (70.37%)
Total 27 (100%)

Number of cryobiopsy fragments 3.4 ± 1.4

EBUS-TBCNB maximum fragment sizes (mm) 3.5 ± 0.7

EBUS-TBCNB minimum fragment sizes (mm) 2.3 ± 0.7

EBUS-TBNA cell block sizes (mm) 1.2 ± 0.5
Linear EBUS: linear endobronchial ultrasound-guided.

Eighteen (66.67%) patients had malignant neoplasms: twelve had primary lung tu-
mors and six had extrathoracic malignancies. The remaining nine patients (33.33%) were
diagnosed with inflammatory conditions (two patients with invalid cryobiopsies were
classified as benign based on the EBUS-TBNA). All malignant neoplasms had a tumor



Diagnostics 2023, 13, 3476 6 of 13

cell percentage exceeding 30%. The histological diagnoses in the cryobiopsies and the
diagnostic categories assigned in the EBUS-TBNA [20] are listed in Table 3.

Table 3. Diagnoses performed in EBUS-TBNA and EBUS-TBCNB.

N (%)

Diagnostic categories in EBUS-TBNA 1

I 0 (0%)
II 9 (33.33%)
III 0 (0%)
IV 0 (0%)
V 0 (0%)
VI 18 (66.67%)

Total 27 (100%)

Histological diagnoses in EBUS-TBCNB

Adenocarcinoma metastases 8 (29.63%)
Squamous cell carcinoma metastases 1 (3.70%)

Small cell neuroendocrine carcinoma metastases 2 (7.41%)
Large cell neuroendocrine carcinoma metastases 1 (3.70%)

Melanoma metastasis 3 (11.11%)
Lymphoma 1 (3.70%)

Sarcoma 1 (3.70%)
Urothelial carcinoma metastases 1 (3.70%)
Granulomatous lymphadenitis * 5 (18.52%)

Reactive lymphadenitis ** 2 (7.41%)
Not valid for diagnosis 2 (7.41%)

Total 27 (100%)

Malignant neoplastic processes
Yes 18 (66.67%)
No 9 (33.33%)

Total 27 (100%)

Lung primary origin
Yes 12 (66.67%)
No 6 (33.33%)

Total 18 (100%)
1 The Papanicolaou Society of Cytopathology System for Reporting Respiratory Cytology. * Granulomatous lym-
phadenitis diagnosed in EBUS-TBCNB: sarcoidosis (n = 1) and pneumoconiosis (n = 4). ** Reactive lymphadenitis
diagnosed in EBUS-TBCNB: acute abscessed lymphadenitis (n = 1) and pseudogranulomatous lymphadenitis
associated with chemotherapy-induced changes in a testicular seminoma (n = 1).

The histo-architectural characterization in the 29 cryobiopsies had higher definition
and resolution than in the cell blocks produced through the associated EBUS-TBNAs
(Figures 3–5).

Out of the 12 cryobiopsies conducted for lung malignancies, nine NSCLC (eight
adenocarcinomas and one large cell neuroendocrine carcinoma) were valid for RT-PCR
and PD-L1 IHC testing, leaving the EBUS-TBNA material for IHC determinations (p40
and TTF1). Only PD-L1 was determined in one squamous NSCLC, as age did not require
other biomarkers to be tested. No ancillary biomarker determination was tested in the two
small-cell neuroendocrine carcinomas.

The associated bivariate analysis in Figure 6 showed that the amounts of DNA and
RNA extracted from the cryobiopsies of eight adenocarcinomas (29.63%) and one large cell
neuroendocrine carcinoma (3.70%) were significantly higher compared to the associated
EBUS-TBNA cellblocks (97.2 ± 22.4 ng/µL and 26.6 ± 4, 9 ng/µL versus 11.8 ± 4.3 ng/µL
and 7.7 ± 3.6 ng/µL, respectively).
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Figure 4. Histoarchitectural patterns in neoplastic cryobiopsy specimens. Acinar adenocarcinoma of
the lung with well-defined glands replacing part of the lymphoid nodal tissue (H&E ×5) (a). Small
cell lymphocytic lymphoma with diffuse pattern (H&E ×4) (b). Nodal metastasis from melanoma
is composed of discohesive epithelioid cells with marked anaplasia and diffuse growth (H&E ×10)
(c). Metastasis from adenocarcinoma of the lung with a papillary architectural pattern (H&E ×5) (d).
Metastasis from acinar adenocarcinoma with irregular and fused glands with associated fibrodesmo-
plastic stroma (H&E ×7.5) (e). Pulmonary squamous cell carcinoma forms well-defined polygonal
cell nests with dyskeratosis (H&E ×8) (f). Poorly differentiated sarcomatous neoplasm with diffuse
pattern (H&E ×7.5) (g). H&E: Hematoxylin–Eosin stain.
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Figure 5. Histoarchitectural patterns in non-tumor cryobiopsy samples. Microscopic view of the
nodular granulomatous lesion (black diamonds) in a patient with silicosis (H&E ×4) (a). Details of
silicoid granulomatous nodule with lamellar fibrosis (H&E ×5) (b). The well-defined architecture
of granulomatous sarcoid pattern in lymph node (black arrows) (H&E ×5) (c). Non-necrotizing
granulomatous inflammation in pneumoconiosis with multinucleated giant cells (asterisks) is easily
identified after cryobiopsy (H&E ×10) (d,e). H&E: Hematoxylin–Eosin stain.

Molecular results were as follows: one adenocarcinoma with EGFR mutation (L858R,
exon 21) with remaining native biomarkers; one adenocarcinoma with NTRK mutation
(NTRK3ex15) with remaining native biomarkers; six adenocarcinomas and one large cell
neuroendocrine carcinoma with native EGFR, BRAF, ALK, ROS1, RET, MET, and NTRK.
PD-L1 immunohistochemical expression levels in the 10 NSCLCs, including one squamous
cell carcinoma, were 80% (1), 20% (1), 15% (1), 5% (3), and <1% (4). Other molecular
results included three melanomas: two with a BRAF V600 mutation and one with native
BRAF V600 and one sarcoma. NGS was targeted to simultaneously detect and identify the
fusions of 26 genes (ALK NM, CAMTA1, CCNB3, CIC, EPC1, EWSR1, FOXO1, FUS, GLI1,
HMGA2, JAZF1, MEAF6, MKL2, NCOA2, NTRK3, PDGFB, PLAG1, ROS1, SS18, STAT6,
TAF15, TCF12, TFE3, USP6, and YWHAE) associated with soft tissue cancers from negative
patient RNA. SYT FISH (t(X;18) (p11;q11) translocation was used for synovial sarcoma along
with a break-apart probe (negative). Cryobiopsies performed on small cell lymphocytic
lymphoma and urothelial carcinoma metastasis were combined with EBUS-TBNA samples
for flow cytometry (only for lymphoma cases) and IHC (in both cases). EBUS-TBCNB
samples in all non-tumor lesions allowed for the planning of IHCs and histochemical (HCs)
studies. The needle size did not affect the measurements. No complications were detected
in the 32 EBUS-TBCNBs.
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4. Discussion

This study shows the results of 32 cryobiopsies performed in different mediastinal
lymph node stations in 27 patients for one year, highlighting the pathologist’s assistance
with interventional pulmonologists during EBUS-TBNA with EBUS-TBCNB procedures
and emphasizing the relevance of adequate management and the optimization of the sam-
ples obtained in both methods. In lung cancer diagnosis, the pathologist usually handles
cytology or small biopsies wherein the tumor fraction and percentage of viable tumor
components are limited for a comprehensive morphophysiological and molecular diagno-
sis [2–4,6]. Advances in lung cancer treatment entail making these tissues as profitable as
possible for the pathologist. Depending on the laboratory’s technology, the professionals’
experience, and the pathologist’s participation in ROSE, there are differences in results
between institutions [2–5].

Quality samples become essential for obtaining histological and molecular guarantees
in cases of lung cancer [4,5]. In the approach to identify and examine mediastinal lymph
nodes in lung cancer, the metastatic processes of extrathoracic tumors, lymphomas, or gran-
ulomatous diseases, EBUS-TBNA has shown excellent cost-effectiveness in hospitals with
experienced interventional teams, especially when optimizing with ROSE [2,3,6,7,20,21].
However, sometimes, sample limitation hinders the study of large IHC panels or disables
the determination of biomarkers requested by oncologists. In these cases, EBUS-TBCNB
becomes a valuable tool for diagnostic support.

Transbronchial cryobiopsy samples, due to their larger size, allow the pathologist to
recognize the histoarchitecture and better interpret histological patterns in an adequate
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clinical-radiological context. Additionally, in malignant neoplasms, they help obtain a
percentage of tumor cells valid for molecular tests [9,17].

Our EBUS-TBCNB series is one of the largest published [10,11,13]. The results of this
technique initiated by Ariza-Prota and collaborators [13] are promising, and our work offers
a novel perspective from the pathologist that has yet to be performed [10–14,16,17,19]. Our
experience in EBUS-TBNA with ROSE exceeds 300 cases and has facilitated the implemen-
tation of EBUS-TBCNB; the cryoprobe tip did not reach the interior of the lymph node in
only two patients. When the pathologist participates in EBUS-TBCNB, the benefits of ROSE
in the EBUS-TBNA that precedes are added, namely, clinical-radiological and pathological
contextualization, information directed to the pulmonologists during the performance of
the successive passes, greater certainty of adequacy, and increased representativeness of
the sample for complementary studies [3,6].

Depending on the diagnostic suspicion, the need for complementary studies for
molecular studies is assessed, especially in the second approach: the pathologist assesses
the validity of the EBUS-TBNA samples. Together with the pulmonologists, they decide
whether EBUS-TBCNB favors a more precise and comprehensive diagnosis. In our series,
the same pathologist managed the EBUS-TBNA study and the cryobiopsy fragments.

In 22 patients, the pathologist assisted in ROSE, and cryobiopsy was decided when
the possible diagnostic limitations were verified to determine if they exclusively handled
the material obtained in EBUS-TBNA. Within the five cryobiopsies without previous ROSE,
two had a high suspicion of small cell neuroendocrine carcinoma, wherein the molecular
needs were not so demanding, and three cases already had a previous diagnosis (two
NSCLC and one inflammatory), directing the EBUS-TBCNB for molecular determinations
and histological diagnosis.

EBUS-TBNA is a minimally invasive technique that achieves good results and diag-
nostic yield in lung cancer and malignant neoplasms in hilar and mediastinal nodes > 95%
and 80% of the samples that are suitable for IHC and molecular testing [15,18,21]. For the
pathologist, having EBUS-TBCNB samples available offers a solution for those cases where
EBUS-TBNA is insufficient or limited for diagnosis, with or without ROSE assistance. It
opens options for emerging biomarkers in NSCLC. The molecular yield of our series is
100% when performed in the 13 cases that required it (nine NSCLCs, three melanomas, and
one sarcoma).

The diversity of samples combining EBUS-TBNA and EBUS-TBCNB allows the pathol-
ogist to manage and make the material profitable in a targeted manner. In lung cancer, it
facilitates the application of the recommended molecular test guidelines. In other patholo-
gies, it favors the planning of complementary studies [6]. These decisions are usually
complicated due to the limitations of some EBUS-TBNA samples.

Cryobiopsies in cases of granulomatous diseases versus EBUS-TBNA cellblocks offer a
more complete architectural morphological histological study. In neoplasms, morphologic
and IHC diagnosis could be approximated on EBUS-TBNA cellblocks and cytology samples.
EBUS-TBCNB better defined histologic patterns, secured tissue for expanded IHC panels,
and warranted molecular studies. High-grade sarcoma was diagnosed using EBUS-TBCNB;
EBUS-TBNA oriented toward mesenchymal neoplasm, category VI [20]. Using IHC, the
use of cryobiopsy was decisive in ruling out the existence of neoplastic cells in one of
the granulomatous lymphadenitis of a patient treated for testicular seminoma, and the
architectural pattern was established in small cell lymphocytic lymphoma. Our results
support the value of EBUS-TBCNB as a complementary procedure rather than an alternative
to EBUS-TBNA.

EBUS-TBCNB did not generate any relevant complications, which aligns with the
literature [10–14,16,17,19]. Regardless, minor bleeding (less than 10 mL of blood) resulting
from the previous puncture with the aspiration needle used in EBUS-TBNA has been
detected in most cases. However, no intervention was necessary to address it. It is also
worth noting that, during subsequent EBUS-TBCNB procedures, there was no increase
in bleeding as the same working channel was utilized. Other complications, such as
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pneumothorax, mediastinitis, pneumomediastinum, and hemomediastinum, have been
described in a small percentage of cases [11,19,22]. The times employed ranged from 10
to 15 min in addition to the time spent in EBUS-TBNA, and none of the 18 tumor cases
required a re-biopsy.

Applying cold with the cryoprobe (3–4 s) probably poses a challenge in preanalytical
DNA and RNA extraction and analysis. However, the biomarker determinations in our
series, which were based on RT-PCR and NGS, have not been compromised, as in previously
published series [7,10–15,17–19]. The percentage of tumor cells recommended for NGS
is 20–30% and 5% for RT-PCR [6]. The tumor node cryobiopsy samples in our series
harbored greater than 30%, and the amounts of DNA and RNA extracted were high. The
quantification of DNA and RNA (ng/µL) in cryobiopsy samples has not been previously
published. The results of the nine NSCLCs demonstrate an amount of DNA and RNA
much higher than that extracted in the cell blocks in EBUS-TBNA. Although validation
in more extensive cases is required, this may be an alternative for studying biomarkers
in NSCLC.

It is also important to consider that EBUS-TBNA and EBUS-TBCNB obtain samples
from the same patient; therefore, they complement each other. Cryobiopsies, being larger
and having a higher percentage of tumors (>30%), are especially valuable for molecular
studies. If the percentage of tumors exceeds 30% in cryobiopsies, it makes them valid even
for NGS, which is sometimes difficult to ensure in cell blocks.

On the one hand, the most relevant limitation of this study is the potential selection
bias. The available data guarantee no clear confounding bias if results are extrapolated to
populations with inclusion criteria superimposable to those cited. On the other hand, this is
the first study to compare EBUS-TBCNB versus EBUS-TBNA from the pathologist’s point
of view. It is worth noting that the findings presented in this report should be approached
with caution due to the limited number of available samples, mainly due to the novelty
of the technique. Nevertheless, given that this study has demonstrated promising results,
it would be interesting for future research to compare their findings with ours to further
validate the techniques used.

5. Conclusions

EBUS-TBCNB can be a complementary technique to EBUS-TBNA. A larger sample
size allows a histo-architectural reading that facilitates the pathologist’s diagnosis of me-
diastinal neoplastic and inflammatory nodal disease. A higher percentage of tumor cells
in cryobiopsy with high-quality DNA and increased RNA quantities ensures greater cost-
effectiveness for molecular studies, adding value to NSCLC that can be used to address
emerging biomarkers. This procedure is fast, minimally invasive, and avoids the need
for re-biopsies.

The pathologist’s management of samples in situ in EBUS-TBNA facilitates the de-
cision of whether a patient benefits from EBUS-TBCNB. Our results, obtained from the
pathologist’s perspective, something that has been previously undocumented, support the
incorporation and standardization of this technique to optimize morphologic and molec-
ular diagnoses in cases of mediastinal adenopathies. Future studies could compare their
findings with ours.
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