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Abstract: Background: Recent research underscores the clinical relevance of muscle conditions
such as sarcopenia and their links to bone mineral density (BMD), yet notable gaps persist in the
understanding of their interconnections. Our study addresses this by introducing a novel approach
to decipher the correlation between BMD and the texture of the multifidus muscle, utilizing spinal
computed tomography (CT) and dual-energy X-ray absorptiometry (DXA) to evaluate muscle texture,
BMD, and bone mineral content (BMC) at the total lumbar vertebra and total hip. Methods: Our
single-institution study examined 395 cases collected from 6 May 2012 to 30 November 2021. Each
patient underwent a spinal CT scan and a DXA scan within a one-month interval. BMD and BMC
at the total lumbar vertebra and total hip were measured. The texture features of the multifidus
muscle from the axial cuts of T12 to S1 vertebrae were assessed via gray-level co-occurrence matrices.
CT texture analysis values at angles of 45 + 45 and 90 degrees were calculated and correlated with
BMD and BMC. A regression model was then constructed to predict BMD values, and the precision
of these correlations was evaluated using mean square error (MSE) analysis. Results: Total lumbar
BMC showed a correlation of 0.583–0.721 (MSE 1.568–1.842) and lumbar BMD of 0.632–0.756 (MSE
0.068–0.097). Total hip BMC had a correlation of 0.556–0.690 (MSE 0.448–0.495), while hip BMD
ranged from 0.585 to 0.746 (MSE 0.072–0.092). Conclusions: The analysis of spinal CT texture
alongside BMD and BMC measures provides a new approach to understanding the relationship
between bone and muscle health. The strong correlations expected from our research affirm the
importance of integrating bone and muscle measures in the prevention, diagnosis, and management
of conditions such as sarcopenia and osteoporosis.

Keywords: dual-energy X-ray absorptiometry (DXA); computed tomography Hounsfield unit (CT
HU); bone mineral density (BMD); multifidus muscle; morphometric texture analysis

1. Introduction

Ageing invariably brings about noticeable changes, such as a decrease in bone mineral
density (BMD), muscle mass, and strength. These shifts escalate the risk of disability, falls,
fractures, and frailty in the elderly, posing a substantial clinical and public health concern.
A myriad of shared factors, encompassing genetic, nutritional, lifestyle, and hormonal
influences, have been attributed to muscle and bone health [1–5], with their interactions
shaping bone strength. Dynamic muscle loading, consequential to muscle contractions and
ground impacts during weight-bearing activities, triggers adjustments in weight-bearing
bones [6]. Decoding this symbiotic relationship can steer us towards interventions that can
bolster musculoskeletal function and curtail adverse clinical outcomes.
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In the geriatric population, the predisposition towards functional disabilities, fall
incidents, bone fractures, and the manifestation of frailty is escalating, presenting an un-
deniable clinical and societal challenge. Recent scientific investigations have shed light
on the intricate nexus between muscle and bone, revealing shared determinants spanning
genetics, nutrition, habitual lifestyle, and hormonal interplay [1,3,5]. Furthermore, an
interdependent relationship emerges when considering bone strength, where one posits
that the dynamic load exerted on weight-bearing bones, originating from muscle contrac-
tions and ground impact during locomotion, plays a pivotal role [5]. Delving into this
symbiotic relationship could provide a blueprint for tailored interventions, targeting the
enhancement of musculoskeletal health and subsequently curtailing adverse outcomes,
prominently falls and fractures [6]. The bedrock of evidence underscoring this muscle–bone
interplay in an aging demographic predominantly stems from meticulous observational
epidemiological research.

Existing research, predominantly drawn from older women, consistently highlights
a positive correlation between lean mass and both whole-body and regional areal bone
mineral density (BMDa (g/cm2)) [2,7–9]. Some studies even underscore the role of relative
appendicular skeletal muscle mass (RASM) in influencing regional BMDa [10]. Despite the
crucial role of lean mass, the influence of fat mass on BMDa is disputed [11,12]. However,
the link between muscle strength and BMDa in postmenopausal women, although contin-
gent on lean mass, is well established [9]. Sarcopenia, characterized by low muscle mass,
has also been connected to lower BMDa [10,13].

In contrast, data from male subjects suggest a more complex interplay between bone
and body composition. Studies indicate both positive [7,14] and negative [15] correlations
between fat mass and BMDa, while others focus solely on lean mass [16] or RASM [2,3].
Some even contest the lean mass–BMDa correlation after adjustments for BMI [4] or skeletal
size [17]. Similar to the findings in women, muscle strength in men has been recognized
as a determinant of BMDa regardless of weight, but not independent of lean mass [9]. A
comprehensive examination of the link between BMDa and sarcopenia in men, especially
following a rigorous definition of sarcopenia, is notably lacking [18].

To fill these gaps, we propose a novel approach, inspired by the trabecular bone score
(TBS) [19], but utilizing the gray-level co-occurrence matrix (GLCM) [20–22], to extract
45 distinct texture analysis values from CT scans. Harnessing machine learning, we aim
to establish correlations and build a predictive model, leveraging our rich dataset and
follow-up patient data. The objective is to trace the temporal dynamics of bone health.

Our goal is to provide an objective method to quantify BMD at varying scan intervals
and monitor its changes over time using our innovative CT model. We aim to transcend
traditional gender-based research, encompassing a wider demographic spectrum, including
men, women, the elderly, and the young.

Objectives

We deploy a cross-modal approach, integrating spinal CT and DXA scans conducted
within a one-month period, adhering to the concept of opportunistic CT. While we steer
away from conventional measures like RASM, our primary focus rests on the multifidus
muscle. Through this approach, we intend to shed light on the intricate relationship
between BMD and core muscle, thereby enriching the understanding of musculoskeletal
health.

2. Materials and Methods
2.1. Study Design and Approval

This research, carried out between 9 May 2011 and 30 November 2022, was approved
by the institutional review board (P01-202109-21-014). The study’s design revolved around
texture analysis’s capability of monitoring bone mineral status, especially with a focus on
sarcopenia and the evaluation of the multifidus muscle.



Diagnostics 2023, 13, 3466 3 of 13

Our initial cohort consisted of 1722 cases from 863 patients who had undergone both
spine CT and DXA scans at the same institution. To ensure data relevance, we applied
a selection criterion of a temporal gap of less than one month between the CT and DXA
scan dates, resulting in a refined cohort of 395 cases from 248 patients. Exclusions were
made for cases with an absence of a measurable axial cut between the T12 and S1 vertebrae
in the CT images; documented instances of compression or burst fractures between T12
and S1; previous surgical interventions such as vertebroplasty or kyphoplasty for spinal
compression fractures; the presence of metal artifacts from unstable burst fractures; and
difficulties in discerning trabecular bones due to severe osteolytic or pathological changes.
After making these exclusions, our analysis was based on a final cohort of 395 cases from
248 patients, as depicted in Figure 1 (Table 1).
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Figure 1. Flowchart illustrating the selection process of patients undergoing concurrent spine CT and
DXA scans.

Table 1. Process of patients undergoing concurrent spine CT and DXA scans.

Data Description Number of Cases (n)

Assessed for eligibility n = 1722 cases (863 patients)

Included in study
(DXA and CT taken within a month) n = 1126 (590 patients)

Spine CT
(Actual measurable axial cuts for T12-S1) n = 856 (417 patients)

Excluded

History of Lumbar body compression or burst fractures (n = 155)
(45 patients)

History of surgery for a previous fracture
- Vertebroplasty (n = 46) (25 patients)
- Kyphoplasty (n = 51) (23 patients)

- Metal artifacts (n = 92) (31 patients)
Difficulty in identifying trabecular bones due

to severe osteolytic or pathological changes. (n = 117) (45 patients)

Final Analysis for the Study n = 395 (248 patients)

By opting for a stringent selection and focusing on an extended region of interest from
T12 to S1, this study aims at using a holistic approach to evaluate sarcopenia, with a special
spotlight on the multifidus muscle’s role. This methodical approach ensures a comprehen-
sive and insightful exploration of sarcopenia’s implications for musculoskeletal health.



Diagnostics 2023, 13, 3466 4 of 13

2.2. CT and DXA Imaging Protocols

CT scans were conducted utilizing a Siemens SOMATOM 128, Definition AS+ scan-
ner (Siemens Healthcare, Forchheim, Germany). Each scan followed a uniform protocol,
comprising a single-energy CT scan set at 120 kVp and 247 mA, with dose modulation
and a collimation of 0.6 mm. An effective pitch of 0.8 was sustained, and a B60 (sharp)
reconstruction kernel was applied. The spine CT scans, performed without contrast, main-
tained a reconstructed slice thickness of 5.0 mm. For DXA, we employed a standardized
instrument according to the typical guidelines (GE Lunar Prodigy, GE Healthcare, Seoul,
Republic of Korea) [23], with reports generated using specialized software (Physicians
Report Writer DX (Version 11.4); Hologic, Discovery, WI, USA). Our rigorous commitment
to these standardized protocols ensures consistent and replicable results.

2.3. Regions of Interest

For accurate statistical assessments from muscle imagery, our regions of interest (ROIs)
focused solely on the section of the multifidus muscle, sidestepping potential measurement
biases. Among the diverse techniques for defining ROIs, we opted for the thresholding
method [24]. A 2-dimensional (2D) slice image was chosen from the spine CT’s axial cut for
every patient, capturing the widest axial representation of the multifidus muscle between
T12 and S1. As illustrated in Figure 2, we executed our texture analysis within a hand-
drawn region encompassing the majority of the muscle space. This approach facilitated an
in-depth evaluation over an extensive ROI, enriching the depth and scope of our insights.
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Figure 2. Schematic flow for BMC and BMD estimations from computed tomography. BMC, bone
mineral content; BMD, bone mineral density.

Estimation of Multifidus Muscle Texture Analysis Values Using CT

Figure 2 delineates the flow of multifidus muscle texture analysis estimations. Specifically,
from the spine CT axial cuts of each patient, we selected a slice image showcasing the maximum
axial muscle area of the multifidus muscle. In total, 45 feature values {x_j}_(j = 1, . . . , 45) were
garnered from each area. Out of these, five features were rooted in an intensity histogram (of CT
HU values), while the remainder stemmed from the gray-level co-occurrence matrix (GLCM), a
well-regarded method in texture analysis. GLCM functions (Table 2) spotlight the texture of an
image, fetching statistical metrics from a matrix detailing the frequency of specific pixel pair
values in an image [18,19]. As reflected in Table 2, we employed diverse statistics (k) in the
histogram and an assortment of directions (l), levels (m), and statistics (n) in GLCM. The feature
index was denoted as j = k + n + 5 (m − 1) + 20 (l − 1).
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Table 2. Gray-level co-occurrence matrix feature parameters.

Analytical Tool Parameter Value/Name/Function Feature #

Histogram Statistics (k) mean (k = 1), standard deviation (k = 2),
skewness (k = 3), kurtosis (k = 4) entropy (k = 5) 5

Texture (GLCM)

Directions (l) horizontal (l = 1), vertical (l = 2)

2 × 4 × 5 = 40
Levels (m) 16 (m = 1), 32 (m = 2), 64 (m = 3), 128 (m = 4)

Statistics (n) contrast (n = 1), correlation (n = 2), energy (n = 3),
homogeneity (n = 4), variance (n = 5)

Given that each patient had axial cuts from both the right and left of the multifidus
muscle of the spine CT, a combined total of 90 features (45 from each side) were accumulated.
We used these features in tandem to calculate a comprehensive correlation value. A
MATLAB™ software (R2023b) function was deployed to produce nonsymmetric versions
of the matrices.

Two linear regressors were employed to extract information from the CT pertaining
to multifidus muscle texture analysis values. The primary regressor utilized 45 features
from one case to estimate a value for each scan, while the secondary regressor was de-
signed with 90 combined features to capture a more comprehensive texture analysis.
Each regression output is represented as a linear amalgamation of features and one bias:
yˆ_j = ∑_(j = 1)ˆJ
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〖w_j x_j〗 + b, where x_j signifies the jth feature. Optimal parameters
were determined through a minimization approach, correlating with the DXA reference.

Moreover, to elevate the transparency of the regression models, LASSO was incorpo-
rated. LASSO applies the l_1 penalty for sparsity, thereby refining the model’s interpretabil-
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3. Results
3.1. Patient Demographics

Our study encompassed a total of 395 cases from 248 patients, with 115 men and 133 women
participating. The average age and BMI of the participants were 63.12 ± 10.16 years and
24.09 ± 4.45 kg/m2, respectively. The average time interval between the spinal CT and
DXA was 7.13 ± 6.12 days (Table 3).

Table 3. Demographic and clinical characteristics of the study participants.

Case (Number) 395 (248)

Mean age (years) 63.12 ± 10.16

The time between CT and DXA dates (days) 7.13 ± 6.12

Sex (male/female) 115/133

BMI (kg/m2) 24.09 ± 4.45

3.2. Correlation Analysis

In our research, the texture analysis values derived from the spinal CT scan axial cuts
were compared with the BMD and BMC measurements obtained via DXA. Our analysis
revealed nuanced correlation strengths between the texture values obtained from the spinal
CT scans and DXA measurements. The total lumbar BMC showcased a moderate to strong
correlation, represented by values of 0.583 to 0.721 (MSE 1.568–1.842). In contrast, the total
lumbar BMD exhibited a pronounced strong correlation, delineated by figures ranging from
0.632 to 0.756 (MSE 0.068–0.097). Meanwhile, the correlation for total hip BMC leaned more
towards the moderate spectrum, with values spanning 0.556 to 0.690 (MSE 0.448–0.495).
Lastly, the total hip BMD correlation hovered between moderate and strong, marked by a
spectrum of 0.585 to 0.746 (MSE 0.072–0.092).
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Figures 3–6 vividly represent these findings, showcasing scatter plots that draw a
link between the texture values of multifidus muscles and the actual BMD and BMC
measurements ascertained via DXA.
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It is pivotal to emphasize the scope of our study, which ventured into the realm of
spinal CT texture analysis, investigating its capacity to serve as an indirect metric for muscle
health, particularly in relation to conditions like osteopenia, osteoporosis, and sarcopenia.
While the correlations with DXA measurements were indeed statistically significant, they
presented a modest intensity, which might hint at intrinsic aspects tied to DXA scanning
and the muscle health assessment potential of CT texture analysis.

Our endeavor is distinctive, marking a preliminary exploration that employs an expan-
sive ROI—from T12 to S1—as opposed to the conventional DXA analysis which typically
covers L1 to L4. Even though the correlation might appear reserved, this methodology
paves the way for alternative avenues in muscle health evaluation, especially in situations
where DXA scans might not be the optimal choice.

4. Discussion

Our research focused on the potential of machine learning methodologies, specifi-
cally linear regression (LR) models [25], and texture analysis of computed tomography
Hounsfield units (CT HUs), in the detection and assessment of muscle and bone health. By
extracting a broad set of features from spinal CT scans, we aimed to provide estimates of
BMD that correlate with DXA measurements.

In our study, the texture analysis from spinal CT scans was juxtaposed with DXA’s BMD
and BMC metrics. The correlations we observed offer meaningful insights. For instance, the
total lumbar BMC’s moderate to strong correlation (0.583–0.721; MSE 1.568–1.842) suggests a
significant association between the spinal textures and bone mineral content. Moreover, the
notably robust correlation for lumbar BMD (0.632–0.756; MSE 0.068–0.097) underscores the
potential diagnostic capabilities of spinal CT texture analysis. The moderate link with total
hip BMC (0.556–0.690; MSE 0.448–0.495) raises questions on regional variability in muscle
health, and the hip BMD’s range (0.585–0.746; MSE 0.072–0.092) bolsters the merit of CT-
derived metrics in clinical assessments. These findings accentuate the diagnostic relevance
of spinal CT texture, potentially broadening its application beyond conventional contexts.

Furthermore, we adopted a broader range of ROIs from T12 to S1 for CT texture
analysis, as opposed to the typical L1 to L4 range used in DXA. This opportunistic usage of
the existing spinal CT scans not only leveraged an underutilized imaging resource but also
widened the area of investigation, offering a potentially more comprehensive assessment
of spinal bone health.

In contrast to previous studies, our investigation is not limited to the L1 region.
Instead, we considered a broader range, spanning from T12 to S1, a factor that enhances
the robustness of our findings [26,27]. We chose to employ spine CT scans for this texture
analysis due to their frequent usage during health checkups, often alongside DXA scans
for osteoporosis diagnosis. These scans encompass regions of interest (T12-S1), which
are integral to DXA BMD measurements. Moreover, the CT HU measurement provides a
straightforward representation of BMD using the tissue density of vertebral trabecular bone
mass. To further refine this process, we utilized the gray-level co-occurrence matrix (GLCM),
a widespread method in texture analysis. Extracted statistical parameters from GLCM,
including energy, contrast, entropy, and others, facilitate a quantitative understanding of
the spatial relationship between pixels in the analyzed area [22].

BMD, as valuable as it is, might not capture the entire essence of bone health. Hence,
our method, which compared BMD with multifidus muscle’s ROI on CT scans using texture
analysis, is meant to complement, not replace, traditional muscle quantity measurements.
It brings to light additional aspects of bone and muscle health, particularly the bone’s
microarchitecture, which plays a pivotal role in fracture risk assessment [28,29].

While we acknowledge the importance of considering various modulating factors
such as physical activity, medications and drugs, and supplements intake, our current
study primarily aimed to establish a generalized correlation by quantifying the multifidus
muscle through DXA and CT texture analysis across a diverse demographic. The objective
was to explore a broader understanding, setting a basis for more specialized investigations
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in the future where these modulating factors can be intricately analyzed to unveil their
nuanced influences on muscle and bone health.

Our approach, which melds the traditional DXA BMD and our innovative CT texture
analysis, offers a dual perspective on bone health [20]. While DXA BMD continues to
be the cornerstone for assessing bone mineral content and density, the texture analysis
method offers a deeper dive into the intricate microstructural details of the muscles, giving
practitioners a more robust diagnostic tool.

Building on these results, the study shows potential avenues for the application of
machine learning in the field of medical imaging. By employing traditional radiomics steps,
including pre-processing, manual segmentation, and feature extraction, we were able to
predict BMD. This implies that CT HU texture analysis could serve as an effective tool for
BMC estimation, offering a promising alternative to conventional DXA imaging.

In this study, we harnessed the power of machine learning, specifically the artificial
neural network (ANN) and a straightforward linear regression (LR) model, to enhance the
precision and efficiency of our analysis. The rapid advances in computing power have
made machine learning a transformative force in various fields, including medical imaging,
where it is significantly enhancing diagnostic accuracy.

A subset of machine learning, radiomics, has grown exponentially due to its capacity
to extract quantifiable features from regions of interest (ROIs) in images. These features
play a crucial role in achieving prognostic or predictive objectives. In this study, we utilized
conventional radiomics steps, such as pre-processing, manual segmentation, and feature
extraction, to predict bone mineral density (BMD). The features we focused on included
energy, kurtosis, and skewness from intensity, as well as texture analysis employing the
gray-level co-occurrence matrix (GLCM).

However, our study still carries certain limitations. Firstly, the study sample was
solely recruited from one medical unit, which might introduce a geographical bias and
could potentially distort the results as the sample may be typical for the analyzed territorial
area. Efforts for multi-center collaboration in future research could help in generalizing
the findings. Secondly, this study was cross-sectional, preventing us from determining the
time sequence of the observed relationships, and prospective data would be essential to
overcome this limitation. Thirdly, the sample size is relatively small and lacks diversity as
factors such as BMI, age, and sex were not thoroughly considered in the analysis, limiting
the external validity of our findings. Particularly, in postmenopausal women, we have taken
into account the heightened osteoporotic risk factors that lead to increased bone loss during
aging. This consideration allows for a more nuanced and comprehensive understanding
of the various factors modulating health and influencing BMD in the study population.
Finally, all samples were collected over quite an extended period. This extended timeframe
raises the potential for variability and errors in the CT and DXA analyses due to different
individuals performing the analyses, possibly affecting the consistency and reliability of
the results. Nevertheless, these constraints do not overshadow our primary finding: the
value of CT scans for multifidus muscle estimation, particularly considering their potential
in screening patients for sarcopenia risk without additional diagnostic tests.

In recognizing the multifactorial influences on health, we acknowledge that comorbidi-
ties are pivotal factors that can modulate the outcomes of interest in our study. While our
primary focus has been on the quantification of the multifidus muscle, future iterations of
this research will aim to incorporate a more comprehensive view by considering the impact
of various comorbidities, enabling a more holistic understanding of their contributory roles.

Although our research is a significant stride towards integrating machine learning with
radiomics for muscle quality assessment, it also highlights the need for further research in
this area. Given the modest to strong correlations achieved, CT-derived multifidus muscle
estimates may not yet be ready to serve as an additional diagnostic tool for sarcopenia.
However, they do offer an alternative perspective, which, in conjunction with traditional
methods like RASM, could potentially provide a more holistic and accurate assessment of
bone health.
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In summary, our study underscores the potential of CT HU texture analysis and
machine learning models in providing a new lens for sarcopenia detection and monitoring.
Despite certain limitations, this approach offers a promising starting point for future studies
aiming to leverage the underutilized resource of spinal CT scans in muscle and bone health
assessment. Further investigations involving larger and more diverse patient groups, and
refined methodologies, could potentially corroborate and expand upon our findings.

5. Conclusions

The analysis of spinal CT texture alongside BMD and BMC measures provides a new
approach to understanding the relationship between bone and muscle health. The strong
correlations expected from our research affirm the importance of integrating bone and
muscle measures in the prevention, diagnosis, and management of conditions such as
sarcopenia and osteoporosis.
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