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Abstract: The occurrence of new vertebral fractures (NVFs) after vertebral augmentation (VA) pro-
cedures is common in patients with osteoporotic vertebral compression fractures (OVCFs), leading
to painful experiences and financial burdens. We aim to develop a radiomics nomogram for the
preoperative prediction of NVFs after VA. Data from center 1 (training set: n = 153; internal validation
set: n = 66) and center 2 (external validation set: n = 44) were retrospectively collected. Radiomics
features were extracted from MRI images and radiomics scores (radscores) were constructed for each
level-specific vertebra based on least absolute shrinkage and selection operator (LASSO). The ra-
diomics nomogram, integrating radiomics signature with presence of intravertebral cleft and number
of previous vertebral fractures, was developed by multivariable logistic regression analysis. The
predictive performance of the vertebrae was level-specific based on radscores and was generally supe-
rior to clinical variables. RadscoreL2 had the optimal discrimination (AUC ≥ 0.751). The nomogram
provided good predictive performance (AUC ≥ 0.834), favorable calibration, and large clinical net
benefits in each set. It was used successfully to categorize patients into high- or low-risk subgroups.
As a noninvasive preoperative prediction tool, the MRI-based radiomics nomogram holds great
promise for individualized prediction of NVFs following VA.

Keywords: osteoporosis; vertebral fracture; vertebral augmentation; prediction; radiomics

1. Introduction

Osteoporosis is a prevalent degenerative skeletal disease marked by low bone mass
and microarchitectural deterioration of bone tissue, causing skeletal fragility and high
fracture risk [1]. By 2050, the proportion of osteoporotic fractures in all fractures will
increase to 50%, and osteoporotic fractures are also one of the leading causes of disability
and death in the elderly [2,3]. Importantly, osteoporotic vertebral compression fractures
(OVCFs) are the predominant fractures linked with skeletal fragility, and they result in
significant morbidity, mortality, and other adverse health consequences [4,5].

Considering the significant morbidity that is linked to OVCFs, it is not surprising that
there is a great deal of enthusiasm surrounding vertebral augmentation (VA). Vertebral
augmentation, including vertebroplasty (VP) or balloon kyphoplasty (BKP), is a minimally
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invasive procedure designed to “fix” acute vertebral fractures (VFs), thereby facilitating
biomechanical stability and functional recovery [6]. However, several studies have reported
an increased risk of new vertebral fractures (NVFs) associated with VA or additional VFs
occurring sooner in patients who undergo VA procedures than in patients with nonsurgical
management [7,8]. Approximately 20% of patients with OVCFs are estimated to experience
NVFs following VA, with most occurring within one year after the procedure, resulting in
substantial patient suffering [9–11]. Therefore, identifying the population that are at a high
risk of NVFs within one year prior to VA can aid clinicians with individualized treatment
and management of patients with VFs [12].

The determination of VFs can be assisted by imaging modalities such as magnetic
resonance imaging (MRI) and computed tomography (CT). In routine clinical practice,
MRI has proven to be the most appropriate diagnostic modality to identify acute benign
vertebral compression fractures caused by osteoporosis due to its excellent soft tissue
contrast [13,14]. Generally, MRI examinations are performed ahead of the VA procedure,
and it may be possible for clinicians to treat and monitor patients at risk for NVFs more
effectively if they can make use of preoperative MRI data [15].

In recent years, research involving radiomics analysis has rapidly grown. Radiomics
refers to the high-throughput extraction of numerous quantitative features from medical
images, which provides objective information that would be challenging for the human
eye to quantify. Radiomics analysis has been used in several previous studies to assess
osteoporosis and VFs with promising results [16,17]. We hypothesized that radiomics
analysis of MRI images would provide more quantifiable and objective information on
the spatial heterogeneity within fractured vertebrae than visual evaluation, potentially
improving the accuracy of the model for predicting VFs.

The incidence of fractures after VA procedures varies among vertebrae, and intrinsic
characteristics within vertebrae, such as volumetric bone mineral density (BMD), have been
revealed to display variation at different levels of the spine [18,19]. All of these findings
imply that there exists heterogeneity among vertebrae, highlighting that inappropriate
vertebral region of interest selection may potentially limit the performance of prediction
models [20]. MRI-based radiomic features have been reported to reflect intrinsic char-
acteristics and may represent a possible avenue for exploring the heterogeneity among
vertebrae [21].

Therefore, in this study, we aimed to compare the level-specific predictive performance
of vertebrae for NVFs using radiomics scores and then develop an MRI-based radiomics
nomogram as a clinical application tool for preoperative prediction of NVFs that occur
within one year following VA.

2. Materials and Methods
2.1. Study Participants

This retrospective multi-institutional study was reviewed and approved by the institu-
tional review boards of all participating institutions, and the requirement to obtain written
informed consent was waived.

The T1-weighted MRI images and clinical data of patients who underwent the VA
procedure at center 1 between September 2013 and May 2020 and center 2 between June
2013 and September 2020 were reviewed (Figure 1). The inclusion criteria were as follows:
(1) female patients aged >55 years and male patients aged >60 years; (2) patients diagnosed
with acute OVCFs who then received VA procedures; and (3) patients with complete clinical
and imaging data. The exclusion criteria were as follows: (1) patients with fractures caused
by high-energy trauma, infection, or tumor; (2) patients who died during the follow-up
period or declined to follow-ups; and (3) patients with secondary osteoporosis due to
hyperparathyroidism, inflammatory bowel disease, or renal failure.
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NVFs and 131 patients without NVFs, were assigned to the training and internal 
validation sets in a 7:3 ratio. Forty-four patients from center 2 were included in the external 
validation set, including fifteen patients with NVFs and twenty-nine patients without 
NVFs. 

2.2. Image Acquisition and Radiomics Feature Extraction 
Prior to the surgery, all patients underwent an MRI examination, and the MRI image 

acquisition settings for each center are presented in Supplementary Table S1. 
The radiomics workflow is shown in Supplementary Figure S1. The volume of 

interest (VOI) of T11-L5 vertebrae was manually delineated from preoperative spinal MRI 
using the publicly available 3D Slicer software version 4.13.0 and fractured vertebrae were 
excluded. 

Including repeatable features in prediction models can be crucial for ensuring model 
generalizability, and we followed a three-step image preprocessing procedure to identify 
repeatable radiomic features. First, image inhomogeneity was corrected using the N4 bias 
field correction algorithm. Next, to standardize the voxel spacing, all MRI images were 
resampled to a voxel size of 1 × 1 × 1 mm3; we then used Z Score to improve the 
reproducibility of multicenter radiomic studies on MRI datasets. A total of 1130 radiomics 

Figure 1. Flowchart of patient recruitment. Center 1, The Fourth Affiliated Hospital of Guangzhou
Medical University; Center 2, Huizhou Central People’s Hospital.

Information from VA procedures (surgical procedures, location of treated vertebrae,
and number of treated vertebrae) was collected from the medical records, as well as baseline
clinical data (age, sex, body mass index (BMI), and smoking status). MRI findings, such as
the presence of an intravertebral cleft (IVC) and previous VF, and BMD were available for
patients who performed preoperative MRI and dual-energy X-ray absorptiometry (DXA).

All enrolled patients were followed up every three months after the surgery until the
end of the one-year follow-up period or the occurrence of NVFs, whichever came first.
If patients presented symptoms suggestive of NVFs during the follow-up period, such
as acute back pain, they underwent an MRI examination immediately. During the last
follow-up visit, postoperative spinal MRI was performed to determine whether NVFs had
occurred. Patients who were diagnosed with acute NVFs had bone marrow edema present
on preoperative spinal MRI. In total, 219 patients from center 1, including 88 patients with
NVFs and 131 patients without NVFs, were assigned to the training and internal validation
sets in a 7:3 ratio. Forty-four patients from center 2 were included in the external validation
set, including fifteen patients with NVFs and twenty-nine patients without NVFs.

2.2. Image Acquisition and Radiomics Feature Extraction

Prior to the surgery, all patients underwent an MRI examination, and the MRI image
acquisition settings for each center are presented in Supplementary Table S1.

The radiomics workflow is shown in Supplementary Figure S1. The volume of interest
(VOI) of T11-L5 vertebrae was manually delineated from preoperative spinal MRI using the
publicly available 3D Slicer software version 4.13.0 and fractured vertebrae were excluded.

Including repeatable features in prediction models can be crucial for ensuring model
generalizability, and we followed a three-step image preprocessing procedure to identify
repeatable radiomic features. First, image inhomogeneity was corrected using the N4
bias field correction algorithm. Next, to standardize the voxel spacing, all MRI images
were resampled to a voxel size of 1 × 1 × 1 mm3; we then used Z Score to improve the
reproducibility of multicenter radiomic studies on MRI datasets. A total of 1130 radiomics
features were extracted from each VOI using the PyRadiomics platform (version 3.0.1)
implanted in Python software (version 3.7.1).
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2.3. Radiomics Feature Selection and Radiomics Score Construction

To evaluate whether there were significant differences in radiomics features between
patients with NVFs and those without NVFs, Mann–Whitney U tests were applied. Addi-
tionally, the least absolute shrinkage and selection operator (LASSO) algorithm, a powerful
machine learning method for regression with high-dimensional data, was used to further
screen the radiomics features with a p value less than 0.05 from the Mann–Whitney U tests.
A fivefold cross-validation was conducted on the training set to tune the penalty parameter.
The level-specific vertebral radiomics score (radscore) was calculated by linearly combining
the final included radiomics features and weighting them according to their respective
LASSO coefficients.

2.4. Construction and Evaluation of a Predictive Radiomics Nomogram

In the three datasets, the discrimination of the radscores was evaluated using the area
under the curve (AUC) of the receiver operator characteristic. Moreover, discrimination
of other predictive variables of NVFs after VA was also assessed and validated and com-
pared with the radscores of different levels of the vertebrae. The radiomics signature was
constructed by the radscores of the vertebrae with the best predictive performance.

Each candidate predictive variable, including the radiomics signature and clinical
variables, was assessed using a univariate logistic regression algorithm in the training
set. A subsequent multivariate logistic regression analysis was conducted with variables
with a p value less than 0.05 in the univariate analysis. Based on the multivariate logistic
regression analysis incorporating the selected factors, a predictive radiomics nomogram
was constructed.

The AUC was used to determine the nomogram discrimination, and the validity of the
nomogram was evaluated using the calibration curve. To determine the clinical usefulness
of the nomogram, decision curve analysis (DCA) was performed by calculating the net
benefits at different threshold probabilities. Based on the cutoff score of the nomogram, the
set of all patients was then divided into a low-risk group and a high-risk group.

2.5. Statistical Analysis

All statistical analyses were performed using free R (version 4.1.3) and SPSS (version
26.0). The normally distributed continuous variables were compared using the t test, while
nonnormally distributed continuous variables were compared using the Mann–Whitney U
test. The 2-group categorical variables were compared using the χ2 test. The cumulative
incidence curves were estimated by using the Kaplan–Meier method and compared with
the log-rank test. The ROC curves were plotted using the “pROC” package. Logistic
regression, nomogram construction, and calibration plots were performed with the “rms”
package. DCA was performed with the function “ggDCA”. For all analyses, p < 0.05 was
considered statistically significant, and all tests were 2-tailed.

3. Results
3.1. Characteristics of the Study Sets

Table 1 shows detailed baseline characteristics of the training set (153 participants;
median [interquartile range (IQR)] age, 76 [68, 82] years), internal validation set (66 partic-
ipants; median (IQR) age, 73 [67, 81] years), and external validation set (44 participants;
median (IQR) age, 73 [70, 80] years). Significant statistical differences in IVC were observed
across all study sets of patients with and without NVFs.

Overall, we analyzed MRI images of 1436 vertebrae in the T11–L5 segments, and 229,
178, 153, 208, 208, 220, and 240 vertebrae were included in the T11, T12, L1, L2, L3, L4,
and L5 segments, respectively. The median time to fracture occurrence was 6 months for
the training set, 5.5 months for the internal validation set, and 6 months for the external
validation set.
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Table 1. Baseline patient characteristics (n = 263).

Training Set (n = 153) Internal Validation Set (n = 66) External Validation Set (n = 44)

Characteristic without
NVFs

with
NVFs p-Value without

NVFs
with

NVFs p-Value without
NVFs

with
NVFs p-Value

Age, yr,
median 74 (66–82) 79 (72–82) 0.016 73 (65–81) 75 (69–81) 0.169 73 (70–76) 77 (71–82) 0.124

BMI (kg/m2) 23.09 ± 1.78 23.26 ± 1.68 0.555 23.35 ± 1.72 23.24 ± 1.90 0.817 23.15 ± 1.98 23.19 ± 2.08 0.958
BMD T-score −3.16 ± 0.61 −3.24 ± 0.65 0.426 −3.13 ± 0.54 −3.20 ± 0.60 0.592 −3.20 ± 0.74 −3.44 ± 0.54 0.278

Sex
Male 25 (28.1) 23 (35.9) 0.302 12 (28.6) 8 (33.3) 0.686 8 (27.6) 3 (20.0) 0.722Female 64 (71.9) 41 (64.1) 30 (71.4) 16 (66.7) 21 (72.4) 12 (80.0)

Smoking
Absent 70 (78.7) 53 (82.8) 0.523 33 (78.6) 20 (83.3) 0.755 26 (89.7) 12 (80.0) 0.394Present 19 (21.3) 11 (17.2) 9 (21.4) 4 (16.7) 3 (10.3) 3 (20.0)
Surgical

procedure
VP 57 (64.0) 46 (71.9) 0.308 25 (59.5) 17 (70.8) 0.358 20 (69.0) 11 (73.3) 0.763BKP 32 (36.0) 18 (28.1) 17 (40.5) 7 (29.2) 9 (31.0) 4 (26.7)
IVC

Absent 78 (87.6) 41 (64.1) 0.001 39 (92.9) 17 (70.8) 0.029 27 (93.1) 10 (66.7) 0.036Present 11 (12.4) 23 (35.9) 3 (7.1) 7 (29.2) 2 (6.9) 5 (33.3)
Number of

treated
vertebra
1/2/3/4 70/16/3/0 52/5/4/3 0.046 35/6/1/0 16/4/2/2 0.183 26/3/0/0 12/1/2/0 0.235

Location of
treated

vertebra
non-TL-
Junction 25 (28.1) 27 (42.2) 0.069 17 (40.5) 12 (50) 0.453 9 (31.0) 5 (33.3) 0.877

TL-Junction 64 (71.9) 37 (57.8) 25 (59.5) 12 (50) 20 (69.0) 10 (66.7)
Number of

previous VF
0/1/2 62/20/7 24/23/17 <0.001 24/11/7 8/8/8 0.141 19/9/1 7/5/3 0.192

BMD, bone mineral density; BMI, body mass index; BKP, balloon kyphoplasty; IVC, intravertebral cleft; NVF,
new vertebral fracture; TL-Junction, the treated vertebrae located at the level of T12–L2; VF, vertebral fracture; VP,
vertebroplasty.

3.2. Construction and Validation of the Radiomics Score

In total, 1130 radiomics features were extracted from each VOI of the vertebrae on T1-
weighted MR images. Then, Mann–Whitney U tests and the LASSO algorithm confirmed
the final key features of each vertebra. The formula and distribution for the radscore of
each vertebra in all datasets are presented in Supplementary Appendix S1 and Figure S2.

The radscores of patients with NVFs were usually higher than that of patients
without NVFs. Among all these radscores, RadscoreL2 indicated the most favorable
prediction of NVFs with an AUC of 0.850 (95% confidence interval (CI), 0.773–0.909)
in the training set, which was validated in the internal validation set with an AUC
of 0.783 (95% CI, 0.644–0.887) and in the external validation set with an AUC of 0.751
(95% CI, 0.587–0.876) (Table S2). The radiomics signature, constructed by the radscore
of L2 and adjacent vertebrae, demonstrated good predictive performance similar to
RadscoreL2 with an AUC of 0.853 (95% CI, 0.787–0.905) in the training set, 0.809 (95%
CI, 0.693–0.895) in the internal validation set, and 0.798 (95% CI, 0.649–0.904) in the
external validation set.

We also compared the predictive performance of the radscore with that of clinical
risk variables for NVFs after VA. In the three datasets, age, IVC, and number of previous
VFs had moderate predictive performance (AUC > 0.6) among all clinical risk variables,
while the predictive performance of other variables was poor (AUC > 0.5) (Table S2).
Most of the radscores for constructed vertebrae showed better predictive performance
than clinical risk variables.

3.3. Prediction Radiomics Nomogram Development and Validation

In the training set, four variables, including age, radiomics signature, IVC, and number
of previous VFs, were found to be significant at a level of p < 0.05 based on the univariate
logistic regression algorithm (Table 2). Among them, three variables, including the number
of previous VFs, IVC, and radiomics signature, were selected using the multivariate logistic
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regression algorithm. Then, a radiomics nomogram incorporating these three variables
was developed based on the multivariate logistic regression model (Figure 2).

Table 2. Logistic regression analysis of NVFs-associated variables in the training set.

Univariate Analysis Multivariate Analysis

Variable OR (95% CI) p-Value OR (95% CI) p-Value

Age 1.505 (1.072, 2.113) 0.018 * 1.235 (0.795, 1.917) 0.347
Sex 0.845 (0.614, 1.164) 0.303 - -

Smoking 0.899 (0.648, 1.247) 0.523 - -
BMI 1.102 (0.799, 1.521) 0.553 - -
BMD 0.874 (0.629, 1.212) 0.419 - -

Radiomics
signature 6.049 (3.415, 10.714) <0.001 * 5.495 (3.035, 9.951) <0.001 *

IVC 1.775 (1.267, 2.488) 0.001 * 1.524 (0.990, 2.346) 0.056
Surgical

procedure 0.844 (0.609, 1.170) 0.309 - -

Number of
treated vertebra 1.160 (0.843, 1.596) 0.364 - -

Location of
treated vertebra 0.744 (0.539, 1.025) 0.071 - -

Number of
previous VF 2.041 (1.437, 2.900) <0.001 * 1.907 (1.200, 3.031) 0.006 *

BMD, bone mineral density; BMI, body mass index; CI, confidence interval; IVC, intravertebral cleft; VF, vertebral
fracture. * p < 0.05.
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Figure 2. The MRI-based radiomics nomogram for NVFs prediction.

The radiomics nomogram showed favorable discrimination with an AUC of 0.886 (95%
CI, 0.834–0.938) in the training set (Figure 3A). The calibration curve demonstrated excellent
calibration of the radiomics nomogram (Figure 4A). Furthermore, the Hosmer–Lemeshow
test yielded a nonsignificant statistic (p = 0.627), indicating a robust fit. As depicted in
Figure 3B, the significant discrimination of the radiomics nomogram was confirmed in the
internal validation set (AUC (95% CI), 0.834 (0.729–0.940)). In addition, the performance
was confirmed in an external validation set with an AUC of 0.867 (95% CI, 0.752–0.982).
As shown in Figure 4B,C, there was good consistency between the actual and nomogram-
predicted NVF rates in the two validation sets, with nonsignificant p values (0.639 and
0.576, respectively) derived from the Hosmer–Lemeshow test.

DCA demonstrated in the training set that predicting NVFs within one year after
the VA procedure using the radiomics nomogram adds a greater net benefit than treating
all patients or treating none for a wide range of threshold probabilities, indicating the
radiomics nomogram as a clinically useful tool (Figure 5A). Additionally, similar findings
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were also observed when DCA was applied to both the internal and external validation
sets (Figure 5B,C).
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represents the hypothesis that no patients had NVFs. (A) Training set, (B) internal validation set,
(C) external validation set.

3.4. Risk Stratification

With total points of 55.49 as the cutoff score of the training set, the preoperative
radiomics nomogram identified low-risk and high-risk categories of patients after VA. In
the training set, the cumulative 1-year occurrence incidences of NVFs were 68.35% and
13.51%, respectively, for high-risk patients and low-risk patients (p < 0.001, log-rank test,
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Figure 6A). In the two validation sets, two distinct prognostic strata were also confirmed
(p < 0.001, log-rank test, Figure 6B,C).
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4. Discussion

Preventing and treating NVFs following VA pose a considerable challenge for clinicians
because NVFs commonly occur within one year after surgery and can lead to pain and
financial burden. In the present study, we developed an MRI-based radiomics nomogram
combining the radiomics signature, IVC, and number of previous VFs for individualized
preoperative prediction of NVFs after VA that achieved high discrimination performance,
favorable calibration, and good clinical usefulness. In addition, the radiomics nomogram
could be used to successfully categorize patients who underwent VA procedures into
two risk subgroups. The similar performance of the radiomics nomogram in the internal
validation set and the external validation set that were obtained from other institutions
suggested the reproducibility and reliability of the proposed nomogram.

As osteoporosis progresses, bone density decreases and bone microstructure dete-
riorates, resulting in an increased risk of fractures. Importantly, the primary goal of
osteoporosis treatment is to reduce the risk of clinical fractures, particularly OVCFs. DXA
is commonly used in clinical practice to measure bone loss and determine the risk of osteo-
porosis fracture. However, DXA is widely underused in some countries, and BMD, which
is derived from DXA, can only reveal bone mass and cannot reflect bone quality [22,23].
It has been shown that numerous patients with fragility fractures were not diagnosed
with osteoporosis based on BMD [24]. In addition, the predictive performance of BMD in
our study (AUC ≤ 0.575 in three sets) is limited, and other tools for osteoporotic fracture
prediction warrant further investigation.
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IVC, one of the included variables in the radiomics nomogram, refers to a radiolucent
zone that is filled with liquid or gas within a fractured vertebra. The presence of an IVC
may indicate delayed tissue mineralization caused by decreased osteoblast activity and
excessive tissue absorption due to increased osteoclast activity [25]. IVC has been reported
as an independent risk factor and potential predictor for NVFs following VA [26,27]. A
history of previous VFs is also an important risk factor for developing NVFs. The risk
of developing NVFs is approximately five times higher in patients who have previously
experienced a fracture, and more than 20% of patients will experience an additional VF
within one year of their first fracture [28].

Radiomics features can capture intrinsic characteristics, such as lesion heterogeneity,
by the conversion of medical images into high-dimensional data that can be mined for
analysis [29]. As a result, radiomics-based tools have been developed to enhance diagnostic
accuracy for osteoporosis and improve fracture prediction [30,31]. In the current study,
the discrimination of radiomics scores was favorable (AUC ≥ 0.792) and consistently
superior to clinical variables (AUC ≤ 0.677) in the training set and also in the validation
sets. These results suggest that the radiomics score has the potential to be an effective tool
for identifying patients at high risk of VFs following VA.

Notably, level-specific vertebrae not only differ in the related incidence of VFs but
also present disparities in intrinsic characteristics, such as BMD and fat fraction [18,32,33].
These intrinsic characteristics have been established to be associated with osteoporotic
fractures and can assist with the identification of such fractures [34,35]. The observed
inconsistency reflects the heterogeneity among vertebrae and thereby emphasizes the need
for extensive investigation into this phenomenon. Radiomics features were extracted, and
radiomics scores were constructed for each level of vertebrae separately in this study. In
accordance with previous reports, wavelet-based features achieved the highest weights
in the current study among all selected radiomics features [36,37]. These features, which
may further reflect the spatial heterogeneity of a lesion at multiple scales, can provide more
detailed information that is complementary to visual assessment. This finding may provide
insight into the level-specific predictive performance of vertebrae based on radiomics
scores. Furthermore, the predictive performance was highest at the thoracolumbar junction,
especially at the L2 vertebrae, which may be attributed to the higher susceptibility to and
earlier initiation of bone loss in this region, and these subtle internal changes within the
vertebrae are well captured by the radiomic features [38].

Our radiomics nomogram surpasses the limitation of previous studies that failed to dif-
ferentiate between various levels of vertebrae, resulting in superior predictive performance
(AUC (95% CI), 0.886 (0.834–0.938) vs. 0.810 (0.773–0.843), respectively) [20]. Moreover,
the three selected variables included in the nomogram can be easily obtained in clinical
practice without any additional burden.

Treatment strategies vary depending on the fracture risk group. In general, antiresorp-
tive agents are recommended for treating osteoporosis and reducing the risk of fractures.
Indeed, the best course of action for patients who are at high risk of fracture is to initiate
treatment with an anabolic agent as soon as possible [39,40]. Our radiomics nomogram
effectively identifies high-risk individuals among all patients, thereby contributing to better
treatment outcomes for this population.

Additionally, the present study has some noteworthy points and limitations. First,
while the number of patients in the external validation set satisfies the fundamental analyti-
cal requisites of radiomics modeling, more external data will be required in the future to
further validate our radiomics nomogram [41]. Second, manual vertebral segmentation
is time-consuming and laborious, which may lead to potential limitations on the appli-
cation of the nomogram. Automated vertebral segmentation based on deep learning is
convenient and has satisfactory accuracy, possibly providing a solution for this issue [42].
Third, previous studies have indicated that intervertebral discs or paravertebral muscles
may also exert an influence on the occurrence of VFs [43,44]. Therefore, incorporating
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more information into prediction models could enable accurate fracture prediction and
represents a promising direction for future research.

5. Conclusions

The present study demonstrates the added value of applying radiomics features
extracted from MRI images in the preoperative prediction of NVFs that occur within one
year after the VA procedure, and vertebrae have level-specific predictive performance
based on radiomics scores. The presented radiomics nomogram has the potential to
serve as a noninvasive tool for individualized preoperative risk prediction of NVFs with
favorable discrimination, calibration, and clinical usefulness, optimizing clinical treatment
and routine management.

Supplementary Materials: The following supporting information can be downloaded at the fol-
lowing: https://www.mdpi.com/article/10.3390/diagnostics13223459/s1. Figure S1: The study
flowchart and the workflow of radiomics; Figure S2: The distribution for radiomics scores of
each vertebra; Table S1: Details of 1.5 Tesla T1-weighted MRI image acquisition parameters;
Table S2: Predictive performance of level-specific Radscore compared with clinical variables;
Supplementary Appendix S1.
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