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Abstract: Thalassemia represents one of the most common genetic disorders worldwide, charac-
terized by defects in hemoglobin synthesis. The affected individuals suffer from malfunctioning
of one or more of the four globin genes, leading to chronic hemolytic anemia, an imbalance in the
hemoglobin chain ratio, iron overload, and ineffective erythropoiesis. Despite the challenges posed
by this condition, recent years have witnessed significant advancements in diagnosis, therapy, and
transfusion support, significantly improving the prognosis for thalassemia patients. This research
empirically evaluates the efficacy of models constructed using classification methods and explores
the effectiveness of relevant features that are derived using various machine-learning techniques.
Five feature selection approaches, namely Chi-Square (χ2), Exploratory Factor Score (EFS), tree-
based Recursive Feature Elimination (RFE), gradient-based RFE, and Linear Regression Coefficient,
were employed to determine the optimal feature set. Nine classifiers, namely K-Nearest Neighbors
(KNN), Decision Trees (DT), Gradient Boosting Classifier (GBC), Linear Regression (LR), AdaBoost,
Extreme Gradient Boosting (XGB), Random Forest (RF), Light Gradient Boosting Machine (LGBM),
and Support Vector Machine (SVM), were utilized to evaluate the performance. The χ2 method
achieved accuracy, registering 91.56% precision, 91.04% recall, and 92.65% f-score when aligned with
the LR classifier. Moreover, the results underscore that amalgamating over-sampling with Synthetic
Minority Over-sampling Technique (SMOTE), RFE, and 10-fold cross-validation markedly elevates
the detection accuracy for αT patients. Notably, the Gradient Boosting Classifier (GBC) achieves
93.46% accuracy, 93.89% recall, and 92.72% F1 score.

Keywords: thalassemia; classification; feature selection; filter-based; wrapper and embedded method

1. Introduction

A series of hereditary blood diseases known as thalassemia are characterized by the
abnormal or reduced production of one or more hemoglobin genes [1]. It ranks among
the most common five birth complications [2]. There is a high prevalence of thalassemia
worldwide, particularly in Southeast Asian nations. αT and βT are the two main classifica-
tions of defective globin [3]. Alpha-thalassemia may also result in hemoglobin H (HbH)
disease, anemia, and hydrops fetalis syndrome. The amount of alpha-chain produced
determines the disease’s severity. The major form of alpha-thalassemia has placed a heavy
burden on society and harms the general population’s standard of living. Children with βT
major experience impaired growth, hemolytic anemia [4], and aberrant development of
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the skeleton. For the remainder of their lives, the afflicted youngsters will require regular
blood transfusions. Intermediary βT is less severe than βT major and may call for sporadic
blood transfusions. Patients who depend on transfusions will experience an iron burden [5]
and need chelation therapy to get rid of extra iron. Some young patients with βT major
may benefit from bone marrow transplants [6]. Normal life expectancy is experienced by
those who have the thalassemia trait. By the age of 30, βT major patients frequently pass
away from cardiac problems brought on by iron overload.

The past couple of decades have witnessed a huge amount of study in machine
learning. Novel ML algorithms can more effectively analyze medical data as a result of
advances in the field and ongoing technological development. Researchers are creating
stronger ML models to deal with progressively more complicated and substantial medical
data thanks to this general rise. We are motivated to examine the development of ML
as a thalassemia diagnostic tool in this paper. We can track the sort of change occurring
in medical research by looking at the machine-learning methods applied to thalassemia
prediction. We will scrutinize and estimate the empirical data obtained through ML
techniques used to predict thalassemia trait (TT) in order to identify the most significant
research trends in this field, highlight the challenges of using ML techniques for thalassemia
prediction, point out the research gaps, lay the groundwork for future studies, and assess
the impact of using machine learning on improving the outcomes of disease prediction.
Additionally, this study might help researchers look into the unique ML approach applied
to thalassemia applications throughout the last five years.

This paper is significant for ongoing research about the detection, diagnosis, and
self-management of thalassemia. We review, analyze, and summarize approaches that pre-
process and extract features from datasets related to thalassemia and use machine-learning
algorithms to diagnose, classify, and detect it. These algorithms for thalassemia detection
and diagnosis are evaluated using performance matrices. Future avenues for study will
be determined by scientists working in the field. We aim to help academics, doctors,
engineers, and administrators to create trustworthy and efficient data-driven interventions
in the healthcare business. It is also aimed to signify the application of machine-learning
research on real-world health applications. It is a comparative study that examines AI
and ML methods for TT self-management, identification, and diagnosis. Initiation of this
effort leverages investigation into the effectiveness of current ML approaches on publicly
accessible thalassemia datasets.

The following research questions are most significant that our endeavor strives to answer:

R1 Which kind of datasets are utilized by ML-based prediction and management tech-
niques for TT?

R2 Which ML methods are employed in the TT diagnostic?
R3 Which thalassemia variants can be detected using ML-based methods? Or what

specific forms of thalassemia are being detected using ML-based methods?
R4 What standards are applied to evaluate ML classifiers for illness prediction?
R5 Which issues are addressed by ML-based applications in illness management and diagnosis?
R6 How effectively ML approaches will work with openly available datasets?

The most frequently used ML tasks and techniques, the effect of ML tasks and tech-
niques on the performance of classification in thalassemia research, the overall perfor-
mance of classifiers when using ML techniques, and comparisons of various classifier-
preprocessing combinations in terms of accuracy rate are just a few of the issues we have
addressed. Applications that patients can use to aid in diagnosis and management have
been covered in detail. Additionally, we have looked at the main subtypes of thalassemia,
diseases, and other detrimental health impacts associated with TDT. We also focused on
ML approaches for assessing the health risks of thalassemia. This study is the first that
we are aware of discussing TT diagnosis and management using ML and AI. It includes
a systematic review of certain crucial aspects of the field, such as datasets (Table 1), ML
applications for TT assistance, pre-processing, and feature extraction methods (Tables 2–5),
previously ignored by studies. As a result, efforts have been undertaken to investigate
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the body of research on ML approaches to TT diagnosis in the context of this study. The
main contribution of the study is to provide new researchers with a baseline by evaluating
the efficacy of models constructed using nine classification methods and exploring the
effectiveness of relevant features (Table 6) that are derived using five feature selection
approaches on two publicly available datasets. Previously, one study only used the itera-
tive Chi-Square (Iχ2) [7] feature selection method, and another study used two techniques
(i) Feature Reduction using Principal Component Analysis (PCA) and (ii) Singular Value
Decomposition (SVD) [8]. Results of the experiments (Tables 7–11) show not only the
comparison of selected feature sets with nine classifiers (Table 10) but also the effects of
normalization and balancing using SMOTE (Table 11) presented for the evaluations. Lastly,
the results of the experiments are also compared with previous approaches (Table 12).

2. Thalassemia

The generation of healthy alpha- or beta-globin chains, which make up hemoglobin, is
impacted by a series of autosomal recessive hemoglobinopathies known as thalassemia. α-
or β-globin chain [1,6] amalgamation problems may result in anemia, early oxidation of
the blood, and inefficient erythropoiesis. Thalassemia patients may have extramedullary
hematopoiesis and bone marrow enlargement as a result of chronic, severe anemia. Pa-
tients with microcytic anemia and normal or increased ferritin levels should be suspected
of having thalassemia. Although genetic testing is necessary to confirm the diagnosis,
hemoglobin electrophoresis can highlight shared traits across various thalassemia subtypes.
Generally, thalassemia in carriers and trait states is asymptomatic.

Hydrops fetalis is a common birth defect brought on by alpha-thalassemia major.
Beginning in early childhood (often before the age of two), βT major requires lifelong
transfusions. Based on gene deletion or mutation, αT and βT intermedia present differently,
and severe variants cause symptomatic anemia and need transfusions, whereas milder
ones merely need monitoring. Transfusions, iron chelation therapy, hydroxyurea [9],
hematopoietic stem cell transplantation [10], and Luspatercept [11] are all used in the
treatment of thalassemia to reduce iron overload brought on by gastrointestinal absorption
of iron, hemolytic anemia [12], and recurrent transfusions. Thalassemia consequences
include perivascular iron deposition, bone marrow enlargement, and extramedullary
hematopoiesis. A few of the morbidities that may arise from these issues include damage
to the skeletal system, endocrine system [13], heart [14–16], and liver [5]. Life expectancy
for people with thalassemia has greatly risen over the past 50 years thanks to better
monitoring [5] of iron overload, increasing availability of transfusions of blood, and iron
chelation treatment. Genetic counselling and screening in high-risk populations can reduce
the prevalence of thalassemia [1]. Africa, India, the Mediterranean, Southeast Asia, and
the Middle East [17–19] have the greatest rates of thalassemia prevalence. Preventative
initiatives incorporating premarital and preconception counselling and testing may be
contributing to a decline in incidence in these areas. Carriers of αT and βT make up around
5% and 1.5%, respectively, of the global population.

The globin chains in a physiological situation are a balanced mixture of α globin chains
and non-α globin chains, primarily β-chains, which, when combined with α-chains, form
adult hemoglobin (HbA), with δ-chains, form a minor portion of adult hemoglobin, called
HbA2, or with γ-chains, form fetal hemoglobin (HbF). If one of the globin chains is not
produced as much as it should while the other chains are still being produced normally,
the developing red blood cell (RBC) will accumulate the other (unpaired) globin chains. In
this manner, if α-gene is not produced in adequate quantities, an accumulation of β-gene
will increase causing αT; likewise, if the production of β-gene chains declines, ultimately,
accumulations in α-gene chains cause βT [20].

2.1. Alpha (α) Thalassemia

The term “alpha-thalassemia” (or “αT”) denotes a class of genetic blood illnesses
categorized in a normal blend of β-globin chains [21] but diminished the creation of α-
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globin chains, which are both components of the hemoglobin molecule. Growing RBCs
symbolize the buildup of unpaired globin chains. The formation of α-globin chains is
regulated by four genes, two on each chromosome, implicating the possibility of several
types of carriers.

2.1.1. Silent Carrier

One (out of four) non-functional genes is present in a thalassemia alpha plus (α+)
carrier [3], also referred to as αT minimal. Due to this, it may be very challenging to
diagnose these carriers using a straightforward microscopic examination of their blood in a
lab. These types of carriers can only be accurately identified through very specialized DNA
analysis tests conducted in laboratories.

2.1.2. Alpha Zero (α0) Thalassemia Carrier

Two (out of four) α-genes are either missing (deleted) or inactive. The two defective
or deleted genes [22] might be situated either on the same chromosome (cis position) or on
two distinct chromosomes (trans-position), depending on their specific location.

2.1.3. Alpha (α) Intermedia Thalassemia

The condition identified as HbH ailment [23] is present when three α-globin genes
are defective or absent, resulting in clinically significant anemia. This stops the additional
α-chains from uniting with the α-globin chains to make common HbA, even if the α-globin
genes are still completely functioning. Instead, a new hemoglobin (β4) called HbH is
formed in the patient’s blood by joining the free-globin chains together. HbH can efficiently
deliver oxygen to the tissues, just like common HbA, despite not being the hemoglobin
typically found in human adult RBCs. Nevertheless, because of its relative instability, the
molecule constantly breaks down, which results in premature red cell death or breakdown
(hemolysis), which can cause mild to severe anemia in the affected person as well as
other related health concerns such as splenic enlargement that ranges from mild to severe,
tiredness, gallstone development, and deformed bones.

2.1.4. Hb Constant Spring

Undetectable HbH, mutant allele causes a reduction in pf alpha globin activity Bart’s—Hydrops
Fetalis [1]. This leads to no production of any α-chains, resulting in hemoglobin; a different
type of hemoglobin termed Hb Barts (γ4) is created when free α-globin chains, which
typically combine with α-globin chains to form the fetus’s hemoglobin (HbF), come together.
Since this form of hemoglobin is unable to transport oxygen, life cannot be sustained by
it [24]. Severe anemia brought on by this condition affects the unborn child and damages
its heart.

2.2. Beta (β) Thalassemia

Minor, intermedia, and major are the three main types of βT [21,25].

2.2.1. Beta (β) Thalassemia Minor

Caused by a mutation in one gene, they are formerly identified as “βT carrier” [26], or
heterozygous βT”, and a majority of individuals have two different alleles.

2.2.2. Beta (β) Thalassemia Intermedia

The mutation of two beta genes escalated thalassemia minor to thalassemia interme-
dia [27,28].

2.2.3. Beta (β) Thalassemia Major

Two genes of the individuals defected with severe impairment in beta gene produc-
tion are also known as “Cooley anemia” [29] and “Mediterranean anemia”. Like minor
thalassemia, it has two different or multiple alleles of β0 or β+ genes. Balance in the globin
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chain is controlled by a specific form of beta gene modification. β0 means no generation of
β-globin at all controlled by the defective allele. β++ denotes an allele with some residue
beta globin generation (typically about 10%). The drop in the production of β-gene in β+ is
minuscule. There are over 300 distinct βT alleles [30].

2.3. Other Variants of Thalassemia Carrier

One of the chromosomes that a person inherits from their mother or father is the only
one that has a mutant gene [31]. They do not exhibit any clinical symptoms; thus, they do
not need any kind of medical care or ongoing monitoring. They have some modifications
in their RBCs, which are typically smaller and sometimes contain less hemoglobin, and are
only detected by special blood tests but are not adequate to entail improvement.

Thalassemia can result in numerous types of disorders due to affected alleles, which
might differ in their medical significance and requirement of blood transfusions. It com-
prises of two basic groups: one, TDTs that involve transfusion and two, NTDT [1,32]
without the requirement of blood transfusion rendering to phenotyping. Without routine
RBC transfusions, TDT patients would have numerous problems and have limited life
expectancy. Patients with severe HbE/βT [33], βT major, HbH hydrops, or transfusion-
dependent HbH illness, as well as those who have survived HbBart’s hydrops, fall into this
group. For lifetime, the cornerstone of TDT care is transfusion therapy, while ineffective
transfusion therapy might cause issues such as deprived development, deformities of
face and bone or even making them fragile, spleen and liver enlargement, and everyday
physical activity impairment.

Iron toxicity to vital organs is one of the foremost medical complications for tha-
lassemia carriers. Higher intestinal absorption of nutritional iron and repetitive blood
transfusions are the sources of iron accumulation. The iron content per unit of transfused
blood is 200 mg, so patients who are regularly transfused develop iron overload [3,7]. Iron
toxicity affects prime organs such as the liver and heart [8,9] and causes several endocrine
disorders through the hypothalamus/pituitary axis, hypothyroidism, including growth
obstruction, diabetes mellitus [34–37], and hypogonadism.

3. Systematic Literature Review

This portion of the article reviews five specific topics: databases, data preprocess-
ing, the classification of thalassemia and health potential risks using ML, management
applications based on ML, and performance metrics for assessing the success of the classifi-
cation model.

3.1. Selection of Articles

Numerous attempts have been made to track down articles that use artificial in-
telligence and ML techniques for thalassemia research. The most prominent databases,
including IEEE Xplore, ScienceDirect, and PubMed, were searched for a research paper
on 8 May 2023. The fact that both databases contain a sizable collection of high-impact
academic research publications in the fields of medicine and computer science serves as the
main argument for their use. ML and AI are closely related to one another. Consequently,
in scientific works, ML approaches are sometimes referred to as artificial intelligence ap-
proaches. Two searches using the terms “thalassemia” AND “Machine Learning” and
“thalassemia” AND “Artificial Intelligence” are carried out to address this issue and to be
more specific in discovering all pertinent papers. Our area of search is limited to publica-
tions published over the previous five years (2019–2023), which significantly dropped the
collection to 113 (ML: 69, AI: 44) from the total 143 papers received from these searches
(ML: 81 and AI: 162). A manual evaluation of each recovered document comes next. The
main objective of this manual examination is to ascertain both the duplication of the article
and its contribution to thalassemia research. Studies that do not use ML and AI methods
are removed. The list is reduced by manual inspection to 39 papers.
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3.2. Datasets Review

Researchers gathered most of the datasets used in the studies from their affiliated
organizations or public health institutes, and a small portion utilized publicly available ones.
The study analyzed CBC results that included age range, gender, and blood indicators such
as RBC’s hemoglobin concentration, MCHC, MCV, and RDW. Considering the possibility of
developing further diseases requires considering attributes such as family history, changes
in urine color diabetes, spleen enlargement [21], and donors’ characteristics such as age and
gender [22]. In addition, datasets are frequently divided as training and testing sets with
ratios of 80:20 or possibly different ones such as a ratio of 70:30 or 50:50. Nevertheless, the
work reported in [1] is deviated from this norm by employing two different datasets where
one served as a test-bed for evaluating numerous classifiers, whereas another dataset served
solely to evaluate the most successful classifier. Table 1 presents a complete breakdown of
all essential data points and their respective features.

3.3. Preprocessing Techniques Review

The pre-processing of the dataset is carried out for a better representation to get distinct
qualities. An overview of the preprocessing methods employed by researchers in a few
specific academic papers is given in Table 2. Missing values and irrelevant characteristics
are eliminated or managed in the data by using straightforward cleaning and normalization
techniques [38,39]. SMOTE [39,40] is the sole method used for data balance, while Iχ2 [7]
is a unique approach used for feature selection. Also, a combination of SVD [8] and
PCA [41] as a feature reduction technique with data balancing technologies such as SMOTE
and ADASYN is used. Filtering and thresholding, object detection, erosion and dilation,
boundary detection, and lane extraction [42] are used for image datasets. DSIFT and
DTL2 [43] are used for features of images.

3.4. Classifiers for Detection of Thalassemia

Thalassemia diagnostics might be more practical with the use of ML and quicker.
The researchers employed a variety of ML algorithms to diagnose different variants of
thalassemia or even discriminate alpha and beta variants from IDA. The goal of this part is
to review the algorithms that are used in the key research mentioned. The next sections
provide details of these algorithms. Table 3 provides an overview of the classifiers used by
scholars in a few particular scholarly works.

Table 1. An overview of some key features used by thalassemia diagnosis (datasets and features).

Ref. Description Availability Features

[7]

Two datasets used are homogenous with 159 records
(87 females and 72 males) with ages over 18 years. The
other dataset is heterogenous with a record of 1883 as
264 IDA, 27 βT & 1572 are normal.

Private All CBC parameters, HbA, HbF, MCV,
and MCH

[44]
Out of 3947 observations, 210 recordings of both classes
(βT and non-βT) are taken in equal numbers to lessen
bias. The mean age is around 25.

Private Hb, MCV RBC count, PCV, MCH,
RDW-CV, and MCHC

[8,38]

A total of 5066 individuals (53% males and 47% females)
records are pulled from the PTPP database. Among
them, 2015 are β-thalassemia carriers, while 3051 are β

thalassemia non-carriers; 54% of the carriers are adults,
and 46% are children.

Private Age, Sex, Hb RBC, MVC, Hct, MCHC,
MCH, PLT, RDW, and WBC

[45]

The dataset consisted of 594 cases (330 females and
264 males with average age of 29.7 years) with
229 healthy individuals, 160 patients with the α+-trail
phenotype, and 205 individuals with a two-allele
α-trail metamorphosis.

Private Age, Gender, RBC count, Hct, Hb, MCH,
MCV, RDW, and MCHC
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Table 1. Cont.

Ref. Description Availability Features

[46–50] The ten-variable dataset 150 has thalassemia, and
68 people are normal. Private

Basophils, Monocytes, Eosinophils,
Segment Neutrophils, Rod Neutrophils,
Lymphocytes, PLT, Hb, HCT, and WBC

[40]

A total of 379 participants, including 79 positive cases of
Thalassemia, made up the Kaggle dataset including a
limited amount of data collected by Google form. https:
//www.kaggle.com/datasets/plenoi/thalassemia
(accessed on 5 July 2023)

Public Age, Gender, RBC, HGB, PCV, RDW,
MCHC, PLT, TLC, MCV, and MCH

[51]

Out of the 350 patients at the Taipei Veterans General
Hospital, 122 (34.8%) had no thalassemia variation,
179 (51.1%) had α-variant, and 49 (14%) had βT. Data
are collected from January 2018 to January 2020.

Private

WBC, Hb, RBC, HCT, MCV, MCH,
MCHC, RDW, PLT, RDW, RDWI, E&F,
S&L, G&K, MDHL, MCHD, HH index,
αT, and Bt

[52]
The hospital’s Laboratory Information System (LIS) is
used to collect data on 1213 Chinese with low HbA2
levels from December 2018 to August 2020.

Private RDW, Hct, MCV, RBC, Hbf, Hba, Hb,
MCH, pregnancy, and age

[53,54]

Out of 342, only 152 individuals had thalassemia; data
were collected from January 2016 to May 2019, in Elazig
Public Health Laboratory. From January to July of 2018,
190 records (2 to 88 years) were declared as anemic.

Private Hb, HCT, RBC, MCH, MCV, RDW,
and MCHC

[55] A total of 907 adults aged 18 and above were included
in the study, and 59% had TT, while 41% had IDA. Private Hb, MCV, MCH, RDW, MCHC, and RBC

[39]

The study analyzed data on 45,498 individuals from
2012 to 2016 by the Palestine Avenir Foundation’s
Thalassemia and Hemophilia Middle. 44,360 tests are
normal, but 1138 individuals are confirmed to
be carriers.

Private CBC, RBC, Hct, Hb, MCV, MCHC, MCH,
plt, RDW, and WBC

[56]
As per the opinion of doctors, tests are carried out on
four types of data. To increase the precision level, it is
vital to test the model with more genuine data.

Private Hb, MCV, and MCH

[57]
CBC testing yielded results from a total of 750 tests
conducted on individuals (males = 390 & females = 360)
aged between 17 to 32 years old.

Private RBC, Hb, HCT, and MCV

[58]
The dataset comprised a total of 8693 CBC test records
along with 2918 genetic test data used for labeling type
of thalassemia.

Private HB, RBC, RDW, MCV, HCT, MCH, PLT,
MCHC, WBC, patient’s sex and age

[59]
A dataset of 49 patients (31% high, 16% moderate, 10%
low risk, and 43% zero signs) is collected from case files
in the southwest section hospital of Nigeria.

Private

Age, gender, ethnicity, marital status,
family history, social class, diabetes
spleen enlargement, parent carriers, and
urine color changes

[60]
Two datasets are involved as the first dataset had
6058 entities and the second, autonomous dataset had
2637 rows.

Private

Production machine, production date,
Hb, Hct, extracted plasma, production
site, donor sex, donor age, donor Hb,
program and blood bag type

[61] 268 individuals Private RBC, HGB, MCV, and MCH

[42] 524 electrophoresis images Private Hb variants (HbA, HbA2)

[62] From flow cytometry 302,652 cells and 3289 images Private Morphological

[63] 111 TDT patients in Iraq with an age range of 6 to
12 years Private

Iron grade constraints (transferrin
saturation percentage, iron, ferritin) and
inflammatory (tumor necrosis factor-α
and interleukin-1β)

[64] Blood smears from 110 individual cases Private Morphological

https://www.kaggle.com/datasets/plenoi/thalassemia
https://www.kaggle.com/datasets/plenoi/thalassemia
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Table 1. Cont.

Ref. Description Availability Features

[65] 1069 MRI images Private Morphological

[41] Twenty blood smear images Private Morphological

[66] 7108 erythrocytes Private Shape, texture feature with gray level
co-occurrence matrices (GLCM), color

[67] Data collected from laboratories at Philippine General
Hospital compares Private

Perimeter (P)
Area (A)
Central Pallor (CP)
Diameter (D)
Deviation Value (DV)
Target Flag (TF)
Shape Geometric Factor (SGF)

[68] Standing image datasets from Philippine General
Hospital and Mendeley online. Private Codocytes and Elliptocytes

[43]

Disease-Specific Face (DSF) dataset totals
350 face images https:
//ieee-dataport.org/documents/disease-specific-faces
(accessed on 5 July 2023)

Public Morphological

[69]
1815 images of affected and normal blood cells
https://www.kaggle.com/datasets/kmader/malaria-
bounding-boxes (accessed on 5 July 2023)

Public Morphological

Table 2. An overview of the existing preprocessing and feature selection techniques.

Ref. Field of Use Preprocessing

[38] Classification of βT Carriers Cleaning (missing value), data transformation (normalization), data
reduction (attribute sub-selection)

[39] Identifying βT carriers Data cleaning (missing values)
Normalization, balancing technique: SMOTE

[40] αT Prediction Data Balance: SMOTE

[7] Differentiation of IDA and βT Iχ2 feature selection

[8] Prediction of βT Data balance: SMOTE and ADASYN, Feature Reduction: PCA and SVD

[42] Assessment of Thalassemia Object detection, filtering and thresholding, erosion and dilation, boundary
detection, and lane extraction

[41] Classification of Thalassemia using fusion PCA to eliminate feature redundancy

[43] Facial diagnosis DSIFT and DTL2

3.4.1. Classifiers for Alpha thalassemia

To diagnose α+-thalassemia carriers, the DeepThal [45] framework uses 594 cases in
total. The dataset consists of three classes: 205 individuals with a two-allele αT mutation,
160 individuals with α+-thalassemia, and 229 individuals who are healthy. As stipulated
by CNN, accuracy is 80.77%, and sensitivity is 70.59%. The likelihood of thalassemia
had been predicted using several well-known ML algorithms, [40] including LR, KNN,
SVM, RF, Nave Bayes, Adaptive (ADA), Xgboost, DT, GBC, and MLP. SMOTE is used
to balance the dataset. The ADA algorithm gave the greatest accuracy-related outcome,
which is 100%, out of the ten algorithms. The SVM and Monte-Carlo cross-validation
method [51] is used to distinguish between αT and βT. The dataset includes 350 registered
patients from January 2018 to January 2020 at Taipei Veterans General Hospital, with 122
(34.8%) having non-thalassemia, 179 (51.1%) having αT, and 49 (14%) having βT. The SVM
model outperformed all other indices with 0.76 AUC and 0.26 error rate on average. In

https://ieee-dataport.org/documents/disease-specific-faces
https://ieee-dataport.org/documents/disease-specific-faces
https://www.kaggle.com/datasets/kmader/malaria-bounding-boxes
https://www.kaggle.com/datasets/kmader/malaria-bounding-boxes
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terms of specificity (0.967), accuracy (0.915), PPV (0.942), AUC (0.948), and NPV (0.901),
RF classifier [52] with the greatest overall performance outperformed seven equations
in the independent test set. The technique is used to swiftly differentiate carriers of αT
from those with low HbA2 levels. Thalassemia prediction is proposed by utilizing deep
learning methods [58] utilizing genetic testing as the benchmark for performance. The
thalassemia genetic test (2918) is the initial step. Identification of αT gene deletions serves
as the inclusion criterion. The RBC indices from 8693 CBC tests, along with the patient’s
age and sex, make up the other part. With 89.7% accuracy, the DNN model surpassed the
statistical technique. All other characteristics—except RBC, HB, and MCV—are proven to
be less significant than RDW and age.

3.4.2. Classifiers for Beta Thalassemia

The Iχ2 feature selection method [7] is used for selecting 20 features out of 25 total
given features of the dataset. On two datasets, 24 classifiers are applied, with the best
accuracy of 97.48% obtained by Gaussian Support Vector Machine (MGSVM) on the first
homogenous dataset of 159 and 99.73% with Coarse Tree (CT) on the second heterogeneous
dataset of 1883. In India, βT diagnosis of expectant mothers is carried out utilizing three
classifiers. To eliminate bias, use NB, C4.5 DT, and a back-propagation ANN [44] implemen-
tation in R Studio on a balanced number of selected βT and non-BTT individuals. C4.5 DT
outperforms with an accuracy of 88.56% as opposed to ANN’s accuracy of 85.95% and NB’s
accuracy of 82.49%. Rustam et al. [8] suggest a hybrid feature selection approach using
SVD and PCA along with deep learning and supervised ML in several extensive trials.
Data imbalance between carriers and non-carriers of βT is resolved by using ADASYN and
SMOTE. The study employs multiple scenarios, such as the first one, which uses classifiers
trained on the original dataset to discriminate βT carriers from non-carriers. The target
variables in the second scenario are classified using ML models that have been trained
on resample data. The third scenario combines SMOTE and ADASYN with two feature
reduction strategies (PCA and SVA). The results of the experiments show that by combining
SMOTE with the integrated framework of SVD and PCA, the proposed method beats the
alternatives with a 0.96 accuracy score with RF. The three ML algorithms that make up
the proposed SGR-VC [38] are SVM, GBM, and RF. Studies showed that the model, which
utilized all RBC indices, has a 93% accuracy rate in identifying B-thalassemia carriers. A
RF [46] method with 500 DT is recommended for precisely and thoroughly classifying
thalassemia syndrome. As training data, the information from 150 thalassemia patients
is separated into multiples of five ranging from 50% to 85%. With numerous ranges of
training data, the algorithm has accuracy, recall, and precision are 98.99%, 100%, and
98.20%, respectively. Thalassemia diagnostic involves data from 150 individuals from
Indonesia’s Hospital, with 10 attributes for SVM [47] base classification with a variety
of kernel functions, i.e., polynomial, linear, and RBF. Gaussian RBF kernel gives 99.63%
accuracy. By default, authors examine the normality of the case distribution concerning the
characteristic using the Shapiro–Wilk method. Three situations are used to discriminate βT
and IDA [53]. Both genders are tested individually in the other two situations, whereas they
are evaluated jointly in the first scenario. SVM, ELM, KNN, LR, and RELM classification
methods are used to classify each situation. Both the RELM and ELM algorithms produced
an accuracy of 96.30% for female patients, 94.37% for male patients, and 95.59% when
evaluating male and female patients simultaneously. TSVM [48] inspired by SVM is used
to discover nonparallel hyperplanes to resolve a binary classification problem. Three com-
monly used kernels from earlier research are used to achieve this. RBF TSVM provided the
most impressive results, as seen by its accuracy of 99.32%, precision of 99.75%, and f1 score
of 99.24%. The least accurate TSVM, with an average recall of 99.79%, is polynomial. CART
and BLTREED [55] are applied to the hematological parameters to separate βT and IDA in-
dividuals. The test dataset shows that for discriminating βT from IDA, CART outperforms
BLTREED in terms of negative predictive value and sensitivity. Contrarily, CART has a high
proportion of false positives. AUC results generally exhibited that the BLTREED model
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performed better. The density peaks (HCDP)-based hierarchical clustering [49] without
and with kernel function is suggested for thalassemia identification. Some of these tasks
include extracting the best clusters, calculating local density, and displaying a hierarchy.
As a result, the polynomial kernel function is employed as the basis for the modification
of this method. SVM [50] with grid search hyperparameter optimization is suggested
to classify thalassemia data. RBF kernel-SVM gives more accuracy without optimizing
hyperparameter. With holdout validation and 428.13 for C and 0.0000183 as gamma, the
recommended approach produced 100% accuracy with 90% training data. Additionally,
with C = 4832.93 and gamma = 0.0000183, it obtained 100% accuracy using 10-fold cross-
validation. The results are noticeably superior to those obtained by applying the identical
RBF kernel to an SVM with the default values give 73.33% accuracy, and with holdout
plus 10-fold cross-validation, it goes to 57.14%. A hybrid data mining algorithm [39] is
described for automatically detecting βT carriers using CBC test results of 45,498 patients.
The put-forth identification paradigm involves two main steps. In the initial stage, the
dataset’s significantly uneven class distribution is addressed using SMOTE oversampling.
The next step is to train a collection of popular algorithms for classification, including DT,
NB, MLP, and KNN. The NB classifier differentiates between carriers and non-carriers and
βT the best at SMOTE 400% oversampling ratio. This blend has a 99.47% specificity and
98.81% sensitivity, respectively.

A fuzzy-based classification approach [56] is used to detect thalassemia using CBC
data. This study discusses both model building and model software implementation. The
findings of the CBC test, along with the hemoglobin levels, MCV, and MCH, are used
to identify the type of thalassemia. Major, minor, intermedia, and normal are the four
output models. The results are contrasted with opinions on thalassemia held by medical
professionals to assess the model’s predictions against four data values. To verify that this
model is accurate, further real-world data must be used. A novel technique [57] found
on DHS is anticipated for the distinction of the βT and IDA. The method is successfully
evaluated utilizing 132 CBC sample data that have been gathered. The most effective
CBC indices are chosen to be used as the input of system using a PBIS approach. The
results demonstrate that, with an accuracy of nearly 98%, the recommended strategy
performs better than competing approaches in the literature. The current ANN, ANFIS,
and MLP techniques, in that order, perform the best in terms of categorizing anemia.
βT and IDA are distinguished from one another using ML techniques such as SVM and
KNN on RBC indices [54]. The classifier’s input parameters are the RBC indices, and the
performance of SVM and KNN is contrasted to determine which is more successful. Using
ML algorithms with fewer input parameters results in higher performance. Two groups,
one with 152 patients and the other with 190 patients that include both genders, make up
the dataset. With the chosen settings, the accuracy rate in datasets of male and female rose
from 95% to 95.3%. Alternatively, the NCA technique of component-based analysis feature
selection is used to choose features from the datasets with an outstanding performance of
97% AUC. The distinction of IDA from βT is diagnosed by the ANN [61] technique. The
dataset is obtained from 268 people’s CBC test parameters, where the diagnostic approach
gives 92.5% accuracy, 92.33% specificity, and 93.13% sensitivity.

Automated evaluation of thalassemia has been studied using a unique deep-learning-
based method [42] for thalassemia screening. The main goal of the project is to automatically
obtain the tracks from electrophoresis envision strips and classify individuals as normal
or abnormal with thalassemia. The suggested procedure involves database creation, lane
extraction, object detection, and electrophoresis picture pre-processing. A thalassemia
classification accuracy of 95.8% for the suggested technique is demonstrated using data from
524 cases. Score-CAM can be useful for understanding how the network decides as well
as for boosting the end-user’s trust. Multilayer perceptron algorithms [62] potentially use
cellular data from flow cytometry to predict specific cell genotypes. Particularly, the three
potential MLP models perform well with 0.90 AUC in predicting FCD-HT cells. Meanwhile,
the deep learning framework (T2D5) can also be suggestive of specific genotyping objectives
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when applied to DIC microscope pictures. Imagine that both tests can prove beneficial as
additions to the genotyping techniques for modified cell lines that are already in use.

A typical screening approach for αT is the recognition of uncommon hemoglobin H
(HbH) presence in RBCs. A convolutional neural network-based technique [64] is used to
identify HbH. The method shows almost 91% sensitivity and 99% specificity for cells of
HbH+ pictures taken at 40, 60, and 100 objectives. AI-based method with regard to a test
set of 40 whole slide images (WSIs) demonstrated strong inter-rater reliability as well as
increased specificity and sensitivity of slide-level categorization. Thalassemia is detected
using both medical reports and blood smear images of patients. The blood analyzer
extracts clinical data, while the CNN [41] extracts picture features from the blood smear
image. Both landscapes are then integrated to create a meaningful feature set. Reduced
computational complexity is achieved in this study by using PCA to eliminate feature
redundancy. With the aid of integrated characteristics, thalassemic and normal patients
are classified using classification methods including Naive Bayes, KNN, and RF, which
achieved 99.1% accuracy and 100% specificity and sensitivity.

A novel AI-based system employs Deep Learning (DL) and an innovative combination
of measures for diagnosing Thalassemia [70]. Several data engineering approaches, ranging
from annotation of data to preparation, are utilized to create and evaluate a supervised
semantic image segmentation model. To provide smoother and more precise predictions,
transfer learning and Prediction Time Augmentation (PTA) are used. Quantitative findings
revealed that 88% with PTA and 82% without PTA, respectively, represent the mean IoU
score for predicting thalassemia. Results also indicated that the increases in thalassemia
prediction when the total measure of loss scores falls.

Thalassemia peripheral blood smear images are segmented to create single erythro-
cyte sub-images. Morphological characteristics, such as distance angle signatures (DAS),
moment invariants, cell, and central pallor geometry parameters, to improve the accuracy
of erythrocyte categorization, morphological characteristics of the cell, including its core
pallor, are paired with aspects of texture and color. Nine different erythrocyte morphologies
that are found in thalassemia patients are classified using a multi-layer perceptron [66].
Based on the combination of attributes, the testing results using 7108 erythrocytes showed
an accuracy of 98.11%.

Medical professionals such as technicians, hematologists, and pathologists identify
RBC features including perimeter, area, shape geometric factor (SGF), target flag, diameter,
and central pallor [67]. By identifying the edges and dividing overlapping cells, Sobel
edge detection and watershed segmentation are effectively used to improve the picture for
identifying RBCs. Inaccurate cell segmentation is still a problem with it. With the usage of
a support vector machine, the result for categorizing RBCs nonetheless had a high accuracy
of 93.33%. The physician in charge of the laboratories at Philippine General Hospital
compares and assesses the data collected. Additionally, the method can link illnesses to
detected aberrant RBCs. Codocyte and elliptocyte identification from blood smear images
is automated using a Raspberry Pi [68]. The Elliptocytes and Codocytes in the PBS can
be classified by the detection system using image with SVM. Codocytes and elliptocytes
may be found in PBS pictures with an average classification accuracy of 94.31%. This will
allow more investigations into the identification of aberrant RBCs and assist in locating
early pathognomonic indicators of anemia and Thalassemia.

Deep transfer learning is used to distinctively recognize faces with thalassemia. Such
a technique needs to be validated on single illnesses as well as on numerous diseases with
healthy control. The two deep learning techniques of fine-tuning DTL1 and DTL2 [43]
are employed for this purpose. DSIFT, a manually created feature, is used in comparison
with using conventional ML techniques. The experimental findings of greater than 90%
accuracy have demonstrated that CNN is the best appropriate transfer learning method for
the brief dataset. Deep learning categories micrographs of malaria and anemia. Without
using the conventional CBC test methodology, CNN [69] is used to process the images.
Partially taken from the public domain and additionally gathered by the authors, data of
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1815 images of effected and normal blood cells on a disc are preserved. The image pixels are
multiplied by 255 to normalize the data, and the output is structured as a tensor (a vector).
The developed model further tests on images to categorize them as normal blood cells,
sickle cell anemia, thalassemia, malaria, and megaloblastic anemia, with a 93.4% accuracy.

3.4.3. Classifiers for Risk Assessment of Thalassemia

Under the guidance of ML algorithms [59], a prediction model for the risk of tha-
lassemia is developed with an accuracy of 94.12% using the factors and data that have been
discovered and obtained. We run the thalassemia risk prediction model using the WEKA.
Clinical criteria including household history, diabetes, enlarged spleen, color of urine, and
parental carriers are also found using data of 51 people. Demographic parameters such
as gender, age, marital status, ethnicity, and socioeconomic class are also detected. Risk is
distributed as follows: 43% of instances are zero; 10% are low; 16% are moderate; and 31%
are high. Eight [60] popular ML algorithms are tested against the first dataset to determine
which one outperformed the others when repeated 50 times. These algorithms include
MLR, NN, DT, SVM, RF, lgbmR, KNN, and RANSAC with a median MSE for Hb prediction
of 3.89 and a 95% confidence interval of 3.3–4.5 (median R2 = 0.903, 95% confidence interval
0.885–0.921); MLR produced the best results. The two models (MLR with three and four
features, respectively) with the optimal balance between complexity and performance are
evaluated using the second 2637 dataset after retraining on the 6058 dataset.

Iron overload and immunological initiation should be treated to alleviate depression
brought on by TDT, according to the nomological network incorporating experience, routes,
and behavioral phenome manifestations [63]. This network also assesses overall cruelty
and illness jeopardy and, as a result, forms a novel pharmacological target. Children with
TDT (n = 111) and children in good health (n = 53) had iron status measures including iron,
transferrin saturation percentage, ferritin, and inflammatory biomarkers like tumor necrosis
factor measured and interleukin-1β, with the data analyzed using ML. TDT children with
and without depression are differentiated using cluster analysis, which also identifies two
subgroups of depressed children, one having a low sense of worth and the other who
scored higher on social irritability. Four depressed crucial indications, key depressive,
social irritability, physio somatic, and poor self-esteem, are confirmed as genuine constructs
by exploratory. To accomplish unsupervised enactment of LIC (liver iron content) using five
classes, four CNN models [65] 2D, 3D, LSTM of HippoNet-, and an ensemble HippoNet
are employed. HippoNet-Ensemble outpaced the other networks in terms of accuracy and
also outperformed HippoNet-LSTM in terms of sensitivity and specificity. Interobserver
variability is 0.92 against 0.90 for multiclass accuracy. The summary of the thalassemia risk
diagnostic used by researchers in a few articles is given in Table 3.

Table 3. An overview of Existing ML Classifiers used for Thalassemia Diagnosis (NA means informa-
tion not available).

Ref. Field of Use Classifier Compared with Performance

[7] Differentiation of IDA
from βT

MATLAB (R2020a)
classification learner toolbox

SVM, ANN, PCA and MLPs,
ANFIS, MLPs, Math, Regular
over-learning machine

SVM 97.48% accuracy with
the 1st dataset & 99.73%
accuracy with the 2nd dataset

[44]
Recognition of
βT among
antenatal women.

C4.5 DT, NB and ANN using
R studio Each selected classifier Accuracy of 85.95%

with ANN

[8] Prediction of βT
DT, GBM, ADA, SVC, RF, ETC,
LR LSTM, GRU, CNN,
and CNN-LSTM.

Each selected classifier with
different senarios

SMOTE with PCA and SVD
had 96% accuracy

[45] Prediction of the α+-T
CNN, SVM, MLP, RF, PLS, LR,
ET, LGBM, XGB, DT, and
KNNs implemented in Python

Each selected classifier CNN accuracy of 80.77%
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Table 3. Cont.

Ref. Field of Use Classifier Compared with Performance

[38] Classification of
βT Carriers

SGR-VC ensemble (SVM,
GBM, and RF)

Compared to each classifier
in the model separately 93% accuracy

[46] Classification of
thalassemia RF RF with different percent of

training data 98.99% accuracy

[40] αT Prediction

KNN, NB, RF, LR, SVM, ADA
Boosting, Xgboost, DT, MLP,
and Gradient Boosting
classifier using Google Colab

Each selected classifier ADA accuracy 100%

[47] Classifier for
thalassemia

RBF, Polynomial, and linear
kernel functions with SVM

SVM with different kernel
and percent of training data

Gaussian RBF kernel with
SVM accuracy 99.63%

[51] Discriminating αT
and βT SVM with R. SVM with 13 indices NA

[52] αT carrier
discrimination

RF with R software
version 3.6.2.

13 built ML models such as
DT, KNN, SVM, ADA,
LR, NB

Accuracy 91.5%

[53] Discrimination of βT
and IDA

LR, KNN, SVM, ELM,
and RELM

DT, KNN, NB, DT, MLP,
SVM, ANN, PCA, ANFIS,
RBF, Math

96.30% accuracy for females,
94.37% for males, and 95.59%
in co-evaluation of males and
females with ELM and RELM

[48] Thalassemia
Classification TSVM TSVM with different kernel

and percent of training data 99.32% accuracy

[55] Finding of βT
from IDA BLTREED and CART Each selected classifier BLTREED model

96% accuracy

[49] Thalassemia
Classification

Based on density peaks, a
hierarchical clustering
algorithm with or without a
kernel function

With different number
of folds NA

[50] Thalassemia
Classification

SVM with hyperparameter
optimization using Grid Search

With different values of
hyperparameter(C, gemma)

100% accuracy (90% training)
gamma = 0.0000183 and
C = 428.13

[39] Identifying βT carriers KNN, NB, DT and MLP in
Weka (3.8.1) Each selected classifier 99.71% Accuraccy

[56]
Prediction of
thalassemia for
children.

Fuzzy-based NA NA

[57] Discrimination
between IDA and βT

Dynamic Harmony
Search (DHS). ANN, ANFIS, SVM, KNN Accuracy of

approximately 98%

[58] Predicting thalassemia
DNN model with 11 features
then removing some of the
11 features

With different Combinations
of featutes 89.7% accuracy

[54] Discrimination of βT
and IDA KNN & SVM

ANNs, specialized ANNs
Single Vector Analysis, MLP,
LR, ANFIS, DT, NB, Neural
Network, PBIS-ANN J48,
mathematical method based
on SVM and
Heuristic algorithm

Accuracy 95.3%, Female,
94.5% Male

[59] Thalassemia risk NB and MLP in Weka Each selected classifier Accuracy 94.12% NB,
100% MLP
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Table 3. Cont.

Ref. Field of Use Classifier Compared with Performance

[60]
Iron content and
Hemoglobin
Estimation

MLR, RF, KNN, DT, SVM,
lgbmR, RANSAC and NN
using Python

Each selected classifier with
different features NA

[61] Discriminating
between IDA and βT ANN using MATLAB

MLP, SVM, KNN, RBF, PNN,
ANFIS (radial basis function)
Probabilistic neural network
(PNN) adaptive
network-based fuzzy
inference system

92.5%, accuracy

[42] Assessment of
Thalassemia

MobileNetV2, InceptionV3,
Densnet201, ResNet18,
ResNet50, ResNet101,
SqueezeNet

DT, ANN, KNN, SVM, Naïve
Bayes, MLP,
genetic programming

Accuracy 95.8% for
InceptionV3

[62] Predicting cell
genotypes for βT

MLP, CRISPR genome
editing technology. NA 82% accuracy

[63]
Depression due to
transfusion-dependent
thalassemia

EFA and Cluster analysis, NA NA

[64] Detecting approach
for αT

Region-Based Convolutional
Network (RCNN) NA Accuracy 97.6%

[65] Liver iron content
(LIC) evaluation

Deep-learning CNN—
HippoNet-2D, 3D, LSTM, and
HippoNet-Ensemble

NA 90% for multiclass accuracy

[41]
Classification of
Thalassemia using
fusion

RF, Naive Bayes, and KNN. ANN, MLP, CNN, LR, PCA Accuracy of 99.1%

[66] Thalassemia diagnostic MLP With a combination of
different features Accuracy of 98.11%

[67] Identification of
Abnormal RBCs SVM with Raspberry Pi NA Accuracy of 93.33%

[68] Early indicators
of Thalassemia. SVM with Raspberry Pi NA Accuracy of 94.31

[43] Facial diagnosis CNN CNN and SVM with
different variation of features 90% accuracy

[69] Thalassemia detection CNN NA 93.4% accuracy

3.5. Thalassemia Applications

The rule-based chatbot [71] for the management of βT endorses the outlook on health
superiority that intends to improve patient confidentiality and timely care while addressing
patient safety and efficacy. The chatbot offers accurate time for mandatory examinations and
assessments, which can help to improve health outcomes and decrease the number of times
patients need to see medical experts for checkups. Landbot is used to build the chatbot-
based expert system. The chatbots were reviewed by 34 patients, the majority of whom
(72%) found them simple to use, and more than 90% of them thought using them would be
useful. To assist patients, doctors, and other healthcare professionals, an online specialist
system [72] with a rapid response code is devised for βT administration. The overarching
objectives are to promote patients’ lifetime healthcare and offer treatment suggestions.

Real-time patient information, including medical history, medication information, and
appointment information, is provided via the system. Additionally, evaluated in real-world
situations, it has been demonstrated to improve thalassemia management. For MHA



Diagnostics 2023, 13, 3441 15 of 33

(microcytic hypochromic anemia) patients, accurate classification between IDA and TT is
critical. TT patients out of a total collection of 798 patients with MHA had a high number
of TT (43.33%) and TT simultaneous with IDA (TT&IDA) patients (14.04%). To form a
discriminant model, five ML algorithms are used: L-SVC, XGB, SVM, RF, and LR [73]. The
information and links for the online thalassemia application are included in Table 4.

Table 4. An overview of existing Thalassemia management applications.

Ref. Application Purpose & Link

[71] The rule-based chatbot

Thalassemia management support suggests exact scheduling for necessary tests
and evaluations
https://chats.landbot.io/v3/H-947072-772QZJR6XMJAGCJW/index.html (accessed on
5 July 2023)

[72] Web-based expert system
Management of βT. Real-time patient information, including medical history, medication
information, and appointment information.
A QR code scanner or smartphone can decode the URL for each patient using a QR code.

[73] Webpage tool of TT@MHA

Prediction based on patients’ provided parameters (RDW-SD, MCHCs, MCV, RBC, Hb,
Age group, Sex, Pregnancy)
https://dxonline.deepwise.com/prediction/index.html?baseUrl=%2Fapi%2F&id=2640
8&topicName=undefined&from=share&platformType=wisdom (accessed on 5 July 2023)

[74] Web-based tool ThalPred
Prediction based on patients‘ provided parameters (Hb RBC, MCV Hct, RDW,
MCHC, MCH)
http://codes.bio/thalpred/ (accessed on 5 July 2023)

TT@MHA, with the RF model, gives better results, and the values for specificity,
sensitivity, AUC, and accuracy are 91%, 91.91%, 94.2%, and 91.53%, respectively. The
RBC indicators for differentiating TT from IDA are demonstrated using the interpretable
rules developed from the RF model. Seven RBC parameters are used in an SVM model to
construct a web-based utility called “ThalPred” [74]. AUC, MCC, and external accuracy of
ThalPred’s predictions are 95.59%, 87%, and 98%, respectively. Without having to navigate
the underlying mathematical and computational complexities, users may easily acquire the
appropriate screening test result with ThalPred’s.

3.6. Performance Measures

Various performance indicators used in the selected research publications are shown
in Table 5. Accuracy (Acc), specificity (Spec), precision, sensitivity (Sen), area under curve
(AUC), F1-score, and positive predictive value are mostly used as performance measures.

Table 5. Performance analysis techniques used by researchers in the selected papers.

Acc Recall

Precision/
Positive

Predictive
Values

F1-Score Sen Spec MCC
Negative
Predictive

Values
FPR FNR Youden’s

Index AUC Ref.

X X X X [7,38]

X X X X [39]

X X X X [8]

X X X X X X [44]

X X X X X [45]

X X X [46]

X X X X [48]

https://chats.landbot.io/v3/H-947072-772QZJR6XMJAGCJW/index.html
https://dxonline.deepwise.com/prediction/index.html?baseUrl=%2Fapi%2F&id=26408&topicName=undefined&from=share&platformType=wisdom
https://dxonline.deepwise.com/prediction/index.html?baseUrl=%2Fapi%2F&id=26408&topicName=undefined&from=share&platformType=wisdom
http://codes.bio/thalpred/
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Table 5. Cont.

Acc Recall

Precision/
Positive

Predictive
Values

F1-Score Sen Spec MCC
Negative
Predictive

Values
FPR FNR Youden’s

Index AUC Ref.

X [49]

X [50]

X X X X X [51]

X X X X X [52]

X X X X X [53]

X X X X X X X X [54]

X X X X X X X X X [55]

X X X X X [57]

X X X X X X X X [58]

X X X X [59]

X X X [60,61,66]

X X X X [62]

X X [63]

X X X X X [64]

X X X [74]

X X X
Our

method

In the majority of the papers, negative predictive values are also observed. Acc
(22 times) and its combination with sensitivity and specificity are the performance metrics
that are thought to be used by researchers most frequently. This combination is used
10 times. In six articles, the terms precision, accuracy, and recall are combined. The
Matthews correlation coefficient (MCC) (two times), FPR (four times), FNR (three times),
Youden’s index (two times), and positive predictive value (in three articles) are other
performance matrices that are not frequently used by scientists.

The first section of this paper includes a systematic review of AI-based and ML-based
thalassemia diagnostic methods. The IEEE Xplore, ScienceDirect, and PubMed databases
are used to choose the primary literature. Additionally, two search phrases are employed
to narrow down the pool of quality primary research papers for this analysis and fewer
skewed selection studies. A rigorous screening resulted in the selection of 39 research
papers for this study. This analysis focuses on five particular topics: databases, data
preparation, the classification of thalassemia and health threats using machine learning,
management applications based on ML, and measures of performance for evaluating the
effectiveness of the classification model. In the chosen studies (Table 1), researchers em-
ployed either privately developed, exclusive datasets, or open-access datasets. Numerous
scholars have developed their individual distinct (Self-compile) datasets in several studies
using data that they received from a specific system or hospital.

According to our study, several experiments are carried out, each using a distinctive
dataset. These trials do, however, endure two critical shortcomings. Initially, the established
models of classification concentrate on a certain modality, using data that are taken from a
single hospital and processed using a single instrument. Consequently, the categorization
model developed from the data gathered could not be applied on a bigger scale. There
is a lot of diagnostic equipment available nowadays that gathers TT data, which is the
cause of this. Each system may have a standard that includes a range of characteristics
and conditions. It is suggested that data should be acquired from a variety of clinics and
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a variety of diagnostic tools. The classification model produced by such a multimodal
dataset may be used on a larger scale and is more trustworthy. Second, just a few features
are available in special databases. Due to over- or under-fitting, the described classification
model suffers. Therefore, using a structured, easily available TT dataset is a smart move to
treat TT conditions in its early stages. The majority of researchers evaluated the effectiveness
of their classifiers using accuracy, specificity, and sensitivity. This blend is frequently used
for TT prediction using ML approaches. Accuracy, specificity, sensitivity, and precision
are other fusions that are frequently used by the research community. The analysis of data
preparation, normalization, feature selection, and ML classification approaches is covered
in the next section of the study with a working example. Nine ML basic classifiers are used
with two public datasets from Kaggle [75] in the experiment.

4. Material and Methods

This section examines normalization, resampling, nine classification and five feature
selection techniques on two public datasets. Figure 1 illustrates the steps of the used
methodology in detail.
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Figure 1. Our proposed Methodology.

4.1. Dataset

We have used two datasets. The first dataset is taken from Kaggle [75], which contains
records of 616 thalassemia patients. It has 13 features, 387 of which are classified as
thalassemia and 229 as normal. The features of the dataset include CBC parameters and
indices, including Hb concentration, MCV, Hct, MCHC MCV, MCH, RBC count, RDW, and
more. One of the reasons for selecting this public dataset is that mostly reported works use
these features and the total number of features are close to the dataset with highest number
of features [51]. Diagnostic attributes for the desired variable are found in the dataset and
include both normal and αT carriers. The dataset contains 56% females and 44% meals
with two main classes as one normal and other αT trail (Alpha-thal-1, Alpha-thal-2, and
HbH disease). The second dataset is also taken from Kaggle [76], which contain records of
203 individuals of both genders. It has 15 features (Hb, PCV, RCB, MCV, MCH, MCHC,
RDW, WBC, Neut, Lymph, PLT, HBA, HBA2, HBF, and Sex), 55 of which are normal and
148 alpha carrier.

4.2. Data Preparation

Data might include noise, consistency issues, and incompleteness since information is
typically gathered from several sources. These traits may produce incorrect results. This
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issue may be resolved by preprocessing the dataset before applying classification models
to enhance the accuracy of the classification process.

Data Cleaning

For datasets to manage missing values and incorrect inputs, data cleaning is a crucial
step that must be undertaken. Thus, addressing missing numbers and eliminating discrep-
ancies may aid in enhancing the quality of data for subsequent use. The process of cleaning
the data is initiated first. A duplicate value along with null value checks performed on
the dataset. The dataset is then checked to determine whether there are any noisy values.
The dataset has also had inadequate features eliminated since they had no bearing on the
classification outcome, such as SEA-THAI, which is only used to identify deletions of the
Southeast Asian and Thai patients. 3.7/4.2, ETC, and CS/PS are additional qualities that
are eliminated.

4.3. Normalization

Before training any classifier, normalization is a crucial data mining procedure that
should be used. The goal is to ensure that all characteristics have a similar variety of values
and to prevent the training process from being impacted by attributes with a broader range
of values. In this study, the normalization method described in Equation (1) is used to
normalize all numerical characteristics to the range [0, 1].

Normalization(ei) =
ei − Emin

Emax − Emin
, (1)

where Emax and Emin stand for the feature’s maximum and minimum values, respectively.

4.4. Using SMOTE to Address the Unbalanced Data Issue by Data Resampling

When one class of instances dominates the dataset by a large margin over the other
classes, the dataset is said to be unbalanced [40]. The majority class in an unbalanced dataset
is distinguished from the minority class by the number of occurrences; in an unbalanced
dataset, the majority class has a greater number of instances [77]. Unbalanced datasets
present a significant problem when training classification models [78]. This is because the
most common classification algorithms prioritize accurately classifying the main class to
make the most of inclusive classification accuracy while neglecting occurrences of the minor
class, which are frequently more significant. When compared to random oversampling,
SMOTE does not duplicate existing data entries but instead creates new synthetic data for
the minority sample [79]. SMOTE is a potent and popular oversampling technique that is
frequently used in literature to address the problem of unbalanced data. Various medical
research projects have recently utilized SMOTE [39,40,80]. More specifically, SMOTE
determines the k examples that are physically nearby to the minority example for each
occurrence in the minority class. The usual Euclidean distance is used to determine this
distance. The next phase is the generation of fresh synthetic samples.

4.5. Feature Selection

Increasing prediction accuracy while maintaining the diversity of features is difficult.
Therefore, before using an ML model to predict outcomes, a feature selection procedure
should be carried out to choose important features from the original feature set. The
selection procedure used for features also enhances the performance of ML models by
lowering the amount of time required to compute and the issue of over fitting. The
information might not be sufficient to create predictions if we simply choose a few attributes
to provide as input for an ML model. The dimensionality curse causes the generalization
performance to suffer when there are a lot of features since it prolongs execution time. To
make accurate forecasts, only the factors that have the most effects on the outcomes should
be chosen. The current survey article covers numerous kinds of feature selection [81,82]
methodologies together with their distinct selection criteria for the pertinent aspects of
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standard data. In this work, we have used five variants of three well-known approaches [83,84]
that are one, Linear Regression Coefficient, then RFE using Tree [85] and Gradient-Based
Estimators from embedded features; χ2 [86] from the filtering approach; EFS from the
Wrapper approach [87]. Details of the features with selected features are shown in Table 6
for both datasets.

Table 6. Feature selection methods and feature sets.

Feature Selection Feature Set (First Dataset) F# Feature Set (Second Dataset) F#

Feature importance using RF MCV, MCH, RDW F11 Hb, PCV, RBC, MCV, MCH,
WBC, Lymph, HBA2 F21

Feature importance using GBDT Age, Hb, MCV, MCH, RDW,
RBC count F12

Hb, PCV, MCV, MCH, MCHC,
RDW, WBC, Neut, Lymph,
PLT, HBA2, HBF

F22

Estimation of coefficients using
linear regression Sex, Hb, MCH, RDW F13 Hb, RBC, HBA2, HBF, Sex F23

χ2

MCV, MCH, RDW, Hb, RBC
count, Hct F14 PLT, lymph, MCV, MCH, Neut F24

MCV, MCH, RDW, ‘Hb F15 PLT, lymph, MCV, MCH F25

MCV, MCH F16 PLT, lymph, MCV F26

Exhaustive Feature Selection (EFS) Age, Sex, Hb, MCV F17 Hb, PCV, RBC, MCV F27

4.5.1. Filter-Based Feature

One filter-based feature selection approach, namely Chi-square, is primarily used in
the proposed study. Using this function “weeds out”, the characteristics are most likely to
be class autonomous and so insignificant for sorting since the χ2 test detects dependency
between stochastic variables. Following is a list of the steps that make up this procedure.
All of the characteristics from the original dataset should first be selected. Then, employing
the χ2 function from the scikit-learn, its score for each characteristic is calculated using
Equation (2).

χ2 = ∑
( fo − fe)

2

fe
, (2)

where fe denotes the anticipated frequency and fo denotes the observer. To build a model,
due to its greater dependence on the target feature, the feature with the greatest χ2 value is
picked. For experiment purposes, three set of highest value features are selected.

4.5.2. Wrapper Methods

This approach primarily employs a searching approach to estimate the variable subsets
of autonomous attributes S′ ⊆ S by giving S′ as input to the selected algorithm and then
measuring the efficiency. The techniques are continued until the required suboptimal
subsets are identified when the cardinality of features in a dataset is N, in which case 2N

subsets are viable.
The process to choose the finest feature subgroup uses EFS with random forest. The

first step is the selection of all the characteristics from the original dataset. Secondly,
initialize the four minimum and five maximum features variables to begin the feature
selection process. Repeat the process with different values.

4.5.3. Embedded Methods

The filter and wrapper techniques are combined in this hybrid approach. The al-
gorithms also include their method for choosing features in this section. These assist in
creating the ideal subset and providing it to the training model. Algorithms play a role in
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the development of embedded feature selection techniques. Linear Regression Coefficient,
RFE with Tree and Gradient-Based Estimators, are used for feature selection.

4.6. Classification Model

Nine well-known classification methods are used in the classification process to predict
thalassemia. The chosen algorithms include KNN (K-Nearest Neighbors), DT (Decision
Tree), GBC (Gradient Boosting Classifier), LR (Logistic Regression), ADA (AdaBoost),
XGB (Extreme Gradient Boosting), RF (Random Forest), LGBM (Light Gradient Boosting
Machine), and SVM (Support Vector Machine). The majority of the algorithms are fairly
simple to use and use and are often utilized in earlier studies in the same field. In our study,
we picked a standard application for these methods, which might be highly useful for
academics and experts to replicate our results and compare them. Finding the prediction
technique with the maximum generalization performance is the goal of this step.

4.7. 10-Fold Cross-Validation

One of the approaches for classification validation is K-fold cross-validation. By
randomly dividing our dataset into other groups, we can validate our findings. In this,
one set is utilized for training and the other, K-1 set, for validation. With 10-fold cross-
validation, we will now verify our result. The dataset is mixed up and divided into 10 sets,
and one set is chosen for validation, while the other four are used for training.

5. Result

The tests conducted per technique are shown and discussed in this section. We consider
four experimental circumstances; the details and results from the first dataset are shown
in Tables 7 and 9. A comparison of both datasets with feature selection and preprocessing
is presented in Tables 10 and 11. In the first two experiments, the conventional classifiers
KNN, DT, GBC, LR, ADA, XGB, RF, LGBM, and SVM are used with and without feature
selection. In the next two experiments, oversampling, normalization, and 10-fold are
involved with the identical classifiers discussed in the previous scenario on the newly
resampled data.

We employ the most popular assessment measure used in the literature for medical
applications to assess the effectiveness of classification models. These measures include
classification accuracy, F1 score, and recall. Each research investigation divides the dataset
as 80:20 for the classification algorithms. The testing set is used to evaluate the models after
they have been developed using the training set.
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Table 7. A performance comparison of the classifiers and the feature selection methods (first dataset).

Features Measures
(%) SVM

SVM
Hyperparameter
(C, gamma,
kernel = ‘rbf’)

GBC ADA LR DT XGBC RF LGBM KNN
n = 3

KNN
n = 6

* C = 100, gamma = 0.0001

All features
(First dataset)

Accuracy 83.87 86.29 85.48 83.87 88.31 83.12 87.01 88.31 85.71 85.71 87.66

F1 Score 82.55 84.607 83.6 82.19 88.02 82.88 86.74 88.02 85.3 85.42 87.33

Recall 84.82 85.3 84.05 83.51 88.19 83.52 87.08 88.19 85.3 85.74 87.41

* C = 10, gamma = 0.01

F11

Accuracy 83.87 87.1 89.52 86.29 84.42 82.47 86.36 82.47 85.71 85.06 85.71

F1 Score 82.56 85.6 88.23 84.95 83.51 80.99 85.32 81.39 84.79 84.35 84.68

Recall 84.82 86.55 88.99 86.61 84.65 81.11 85.75 82.32 85.66 83.84 83.72

* C = 100, gamma = 0.0001

F12

Accuracy 83.06 87.1 85.48 80.64 90.91 90.9 88.96 88.31 86.36 85.71 83.76

F1 Score 81.77 85.6 83.97 78.64 89.63 89.52 86.74 86.22 83.62 82.95 80.25

Recall 84.23 86.55 85.36 79.82 90.07 89.52 85.37 85.44 82.38 81.9 78.84

* C = 1000, gamma = 0.0001

F13

Accuracy 84.68 86.29 86.29 84.68 86.36 79.22 79.22 84.42 78.57 81.17 84.42

F1 Score 82.1 84.61 84.61 82.1 85.93 78.51 78.4 83.62 77.67 80.26 83.62

Recall 84.11 85.3 85.3 84.11 87.36 79.58 79.24 84.09 78.38 80.8 84.09

* C = 10, gamma = 0.001

F14

Accuracy 83.06 86.29 87.01 84.68 91.56 82.47 84.42 87.01 83.77 84.42 85.06

F1 Score 81.77 84.78 85.6 83.18 91.04 80.31 83.03 85.86 82.01 82.6 83.38

Recall 84.23 85.95 86.55 84.76 92.65 79.69 83.31 86.17 81.96 82.04 82.96



Diagnostics 2023, 13, 3441 22 of 33

Table 7. Cont.

Features Measures
(%) SVM

SVM
Hyperparameter
(C, gamma,
kernel = ‘rbf’)

GBC ADA LR DT XGBC RF LGBM KNN
n = 3

KNN
n = 6

* C = 10, gamma = 0.001

F15

Accuracy 83.87 86.29 88.71 86.29 85.71 83.12 88.31 87.01 85.06 83.12 83.76

F1 Score 82.56 84.78 87.4 84.95 84.89 82.45 87.55 86.35 84.25 82.14 82.65

Recall 84.82 85.95 88.39 86.61 84.51 82.64 86.93 86.14 83.97 81.79 82.05

* C = 1000, gamma = 0.01

F16

Accuracy 83.87 84.68 83.87 88.71 87.66 77.92 80.52 81.89 82.47 84.42 85.06

F1 Score 82.56 82.8 81.55 87.4 86.61 76.15 78.95 80.5 81.13 82.88 83.06

Recall 84.82 83.45 81.55 88.39 86.76 76.36 79.19 81.01 81.51 82.63 81.92

* C = 1000, gamma = 0.0001

F17

Accuracy 82.26 86.29 84.68 79.84 88.31 83.12 83.12 87.01 84.42 83.12 87.01

F1 Score 80.99 84.95 82.99 78.84 87.71 82.02 82.35 86.5 83.8 82.25 85.85

Recall 83.63 86.61 84.18 82.5 88.24 82.02 83.05 87.54 84.77 82.7 85.15

* Value of SVM Hyperparameter (C, gamma).

Table 8. A performance comparison of the classifiers and the feature selection methods (second dataset).

Feature Measures SVM

SVM
Hyperparameter
(C, Gamma,
Kernel = ‘rbf’)

GBC ADA LR DT XGBC RF LGBM KNN
n = 3

KNN
n = 6

* C = 0.1, gamma = 1

All features
(second
dataset)

Accuracy 73.17 73.17 70.73 63.41 66.67 64.71 70.59 64.71 70.59 82.35 80.39

F1 Score 42.25 42.25 57.29 38.81 45.02 61.36 62.22 47.84 62.22 62.32 52.78

Recall 50.0 50.0 56.96 43.33 52.78 61.36 62.12 52.52 62.12 61.11 52.78
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Table 8. Cont.

Feature Measures SVM

SVM
Hyperparameter
(C, Gamma,
Kernel = ‘rbf’)

GBC ADA LR DT XGBC RF LGBM KNN
n = 3

KNN
n = 6

* C = 10, gamma = 0.01

F21

Accuracy 73.17 73.17 63.41 58.54 54.90 52.94 54.90 50.47 58.82 49.02 52.94

F1 Score 42.25 65.85 44.34 45.59 35.44 49.67 46.71 44.36 51.34 36.00 34.62

Recall 50.0 50.17 46.21 45.76 48.28 50.39 50.47 52.82 54.46 43.65 46.55

* C = 10, gamma = 0.1

F22

Accuracy 73.17 73.17 75.61 70.73 66.67 58.82 64.71 72.55 66.67 68.73 70.59

F1 Score 42.25 42.25 66.94 60.32 40.00 47.11 44.02 48.11 49.03 53.64 41.38

Recall 50.0 50.0 66.06 59.85 45.95 47.20 46.81 52.22 50.39 53.96 48.65

* C = 0.1, gamma = 1

F23

Accuracy 73.17 73.17 60.98 70.73 72.55 68.62 64.71 72.52 74.51 72.54 74.50

F1 Score 42.25 42.25 52.87 64.66 48.11 53.62 50.96 56.46 63.51 59.43 49.19

Recall 50.0 50.0 53.18 65.61 52.22 53.95 51.25 56.66 62.45 58.88 53.57

* C = 0.1, gamma = 1

F24

Accuracy 73.17 73.17 75.61 68.29 72.55 62.75 62.75 64.71 70.59 68.63 72.55

F1 Score 42.25 42.25 61.17 51.76 42.05 43.03 38.55 39.29 47.06 46.03 42.05

Recall 50.0 50.0 60.30 52.42 50.0 45.46 43.24 44.59 50.87 49.52 50.0

* C = 0.1, gamma = 1

F17

Accuracy 73.17 73.17 70.71 65.85 88.23 64.70 70.59 76.47 74.51 82.35 80.39

F1 Score 42.25 42.25 57.29 45.64 46.88 44.02 55.03 50.32 54.12 60.33 52.78

Recall 50.0 50.0 56.97 47.88 50.0 43.88 61.67 50.56 56.67 61.11 52.78

* Value of SVM Hyperparameter (C, gamma). * Value of SVM Hyperparameter (C, gamma).
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Table 9. Performance of Classifier with (a) SMOTE and 10-fold (b) with Normalization, SMOTE, and
10-fold (first dataset).

Feature Parameter and Value (%) Classifier Parameter and Value (%) Classifier

(a) SMOTE and 10-fold (b) Normalization, SMOTE and 10-fold

F11

Accuracy 91.03

ADA

Accuracy 91.02

GBCF1 Score 91 F1 Score 91.31

Recall 91.67 Recall 93.89

F12

Accuracy 93.46

GBC

Accuracy 91.03

GBCF1 Score 93.65 F1 Score 91.21

Recall 95.46 Recall 94.03

F13

Accuracy 89.82

GBC

Accuracy 91.65

GBCF1 Score 89.53 F1 Score 91.73

Recall 87.92 Recall 94.03

F14

Accuracy 86.25

KNN (n = 3)

Accuracy 89.23

LGBMF1 Score 87.63 F1 Score 89.47

Recall 95.14 Recall 91.53

F15

Accuracy 89.23

XGBC

Accuracy 86.84

XGBCF1 Score 89.71 F1 Score 86.73

Recall 93.06 Recall 86.67

F16

Accuracy 90.48

DT

Accuracy 88.64

DTF1 Score 90.73 F1 Score 88.6

Recall 91.81 Recall 88.19

F17

Accuracy 90.51

GBC

Accuracy 92.79

RFF1 Score 90.04 F1 Score 92.68

Recall 88.19 Recall 93.89

Table 10. A performance comparison of classifiers on first and second datasets with various features.

Features Accuracy (%) Classifier Feature Accuracy (%) Classifier

First Dataset Second Dataset

All Feature 88.31 LR All Feature 82.35 KNN n = 3

F11 89.52 GBC F21 73.17 SVM

F12 90.91 LR F22 75.61 GBC

F13 86.36 LR F23 74.50 KNN (n = 6)

F14 91.56 LR F24 75.61 GBC

F17 88.31 LR F25 88.23 LR

Table 11. A performance comparison of classifiers on first and second datasets with Normalization,
SMOTE, and 10-fold.

Features Accuracy (%) Classifier Features Accuracy (%) Classifier

First Dataset with Normalization, SMOTE and 10-Fold Second Dataset with Normalization, SMOTE and 10-Fold

F11 91.02 GBC F21 85.0 RF

F12 91.03 GBC F22 90.0 ADA

F13 91.65 GBC F23 83.33 SVM

F14 89.23 LGBM F24 86.67 GBC

F17 92.79 RF F25 86.67 RF
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In this procedure of comparison analysis, Python is the programming language utilized
to create the analytical model on Google Code lab. There are 616 samples in the repository,
229 of which are normal, and 387 of which are positive for thalassemia. Five feature
selection algorithms, including χ2, EFS, RFE by using tree-based and gradient-based, and
Linear Regression Coefficient are used to choose the best feature subsets for classification.
Nine models as KNN with n = 3 and n = 6, DT, GBC, LR, ADA, XGB, RF, LGBM, and SVM
simple also with hyperparameter tuned with different generated values of C, gamma, and
kernel = ‘rbf’ are used to evaluate the performance.

5.1. Experiment I: Classification without Feature Selection

This experiment evaluates each of the aforementioned techniques for classification
without using the feature selection approach on the dataset previously assembled. Results
of all the classifiers are available in Table 7. The original feature set used the LR classifier
to obtain maximum accuracy of 88.31%, recall of 88.19%, and f-score of 88.02% with first
dataset. KNN shows the highest accuracy of 82.35%, recall of 61.11%, and f-score of 62.32%
with second dataset (Table 8).

5.2. Experiment II: Classification with Feature Selection

We initially use the feature selection strategy on the first dataset, followed by classifiers,
to elevate the classification models generalization potential for identifying αT patients
(Table 7). Six characteristics, including MCV, MCH, RDW, Hb, RBC count, and Hct, are
chosen by χ2 to provide the greatest accuracy of 91.56%, recall of 91.04%, and 92.65% f-score
with LR. With Age, Sex, Hb, and MCV as inputs, EFS and LR yield a maximum of 88.31%
accuracy, 87.71% F1-score, and 88.24% recall. GBC and tree-based RFE (Age, Hb, MCV,
MCH, RDW, RBC count) achieved accuracy, F1-score, and recall of 89.52%, 88.23%, and
88.99%, respectively. Age, Hb, MCV, MCH, RDW, and RBC count are used as features
to obtain maximum accuracy when gradient-based feature selection and LR. Finally, the
Linear Regression Coefficient with four features (Sex, Hb, MCH, and RDW) obtained by
LR estimation of coefficients offers 86.36% accuracy, 85.93% f-score, and 87.36% recall. LR
shows accuracy of 88.23% (Table 8) with second dataset with four attributes (Hb, PCV, RBC,
and MCV) given by EFS. All models built from the chosen subsets of features using various
feature techniques perform better than the feature subsets from the original first dataset,
according to the analysis of findings (Table 7). However, for the second dataset, only EFS
as result is presented in Table 8.

5.3. Experiment III: Classification with SMOTE, Feature Selection, and 10-Fold Cross-Validation

SMOTE is applied to mitigate the issue of the unbalanced data labels to enhance the
generalize efficiency of the classification model for detecting αT carriers. Then, we reassess
them after using the same classifiers and 10-fold cross-validation. The findings from this
experiment are presented in Table 9. GBC outperforms with 93.46% accuracy, 95.46% recall,
and 93.65% f-score on first dataset. XGB plus feature importance using GBDT gives 83.33%
accuracy with second dataset.

5.4. Experiment IV: Classification with Normalization, SMOTE, Feature Selection, and 10-Fold
Cross-Validation

Data normalization added in above scenario of involving resampling technique with
selected features and 10-fold validation. RF gives the highest accuracy of 92.79% with
recall 93.89% and 92.72% with EFS, as experiment result of first dataset shown in Table 9b.
ADA shows the highest accuracy of 90% (Table 11) for the second dataset with feature
importance using GBDT (Hb, PCV, MCV, MCH, MCHC, RDW, WBC, Neut, Lymph, PLT,
HBA2, and HBF).

Accuracy of both datasets is compared side by side in Table 10 with and without feature
selection. Results shows signification improvements such as normalization, SMOTE and
10-fold validation applied in combination with feature selection for evaluation in Table 11.
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Results of our model on both datasets are also compared with techniques presented by
other researchers in Table 12.

Table 12. A performance comparison of existing techniques with our proposed method (NA means
data not available).

Ref. Method Features Accuracy

[45]
CNN, SVM, MLP, RF, PLS, LR, ET,
LGBM, XGB, DT, and KNNs
implemented in Python

Age, Gender, MCHC, RDW, Hct, MCV,
RBC, Hb, MCH 80.77% with CNN

[40]

KNN, SVM, LR, NB, MLP, RF, ADA
Boosting, Xgboost, DT, and GBC
using Google Colab
Data Balance: SMOTE

TLC, MCV, MCH, RDW, MCHC, PCV,
RBC count, HGB, PLT, age, gender 100% with ADA

[51] SVM.
Hb, WBC, HCT, RBC, MCH, MCV, RDW,
PLT, MCHC RDW, RDWI, E&F, S&L,
G&K, MDHL, MCHD, HH index, αT, βT

NA

[52] RF with R software version 3.6.2. RDW, Hct, MCV, RBC, Hbf, Hba, Hb,
MCH, pregnancy and age, 91.5%

[58] DNN model with 11 features then
removing some of the 11 features

HB, RBC, RDW MCV, HCT, WBC, MCH,
PLT, MCHC, patient’s sex and age but
RDW, age, sex, WBC, and PLT are
more important

89.7%

Our Model
(First dataset)

LR without feature selection Age, Sex, Hct, Hb, MCH, MCV, MCHC,
RDW, RBC count 88.31%

χ2 feature section with LR Classifier MCV, MCH, RDW, Hb, RBC count,
and Hct 91.56%,

SMOTE, Feature importance base
selection, and GBC Age, Hb, MCV, MCH, RDW, RBC count 93.46%

Normalization, SMOTE, Exhaustive
Feature Selection with RF Age, Sex, Hb, MCV 92.79%

Our Model
(Second dataset)

KNN (n = 3) without feature selection
Hb, PCV, RCB, MCV, MCH, MCHC,
RDW, WBC, Neut, LYMPH, PLT, HBA,
HBA2, HBF, Sex

82.35%

Exhaustive Feature Selection (EFS)
with LR classifier HB, PCV, RBC, MCV 88.33%

SMOTE, Feature importance base
selection, and XGB

Hb, PCV, RBC, MCV, MCH, WBC,
Lymph, HBA2 88.33%

Normalization, SMOTE Feature
importance using GBDT with ADA

Hb, PCV, MCV, MCH, MCHC, RDW,
WBC, Neut, LYMPH, PLT, HBA2, HBF 90.0%

6. Discussion

The first section of this paper includes a systematic review of AI-based and ML-
based thalassemia diagnostic methods. This analysis focuses on five particular topics:
databases (Table 1), data preparation (Table 2), the classification of thalassemia and health
threats using machine learning (Table 3), management applications (Table 4) based on
ML, and measures of performance for evaluating the effectiveness of the classification
model (Table 5). The analysis of data preparation, normalization, feature selection, and
ML classification approaches is covered in the second section of the study with a working
example. Nine ML basic classifiers are used with two public datasets from Kaggle in the
experiment. The performance evaluation parameters for determining the categorization
of αT include accuracy, recall, and F1-score. In addition, feature selection is beneficial;
however, it has certain issues. These issues include (i) the complexity of time and (ii) the
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automatic determination of the optimum range of attributes. A simple feature selection
with minimal time complexity is used to solve these issues.

Without feature selection in the first dataset, the LR classifier can achieve its maximum
accuracy of 88.31%, recall of 88.19%, and f-score of 88.02%. Six features chosen by χ2
have helped LR achieve maximum accuracy of 91.56%, 91.04% recall, and 92.65% F1-score.
SMOTE improves overall performance as GBC outperforms with 93.65% F1-score, 95.46%
recall, and 93.46% accuracy with 10-fold. However, normalization reduces the effectiveness
of resampling techniques that use selected features with 10-fold validation. The maximum
accuracy is provided by RF, with accuracy of 92.79%, recall of 93.89%, and EFS of 92.72%.
However, the outcome is still superior to the first two experiments. Table 9 shows that
the suggested model, when combined with SMOTE and 10-fold cross-validation, achieved
good classification accuracy. The second dataset KNN (n = 3) achieved 82.35% accuracy,
62.32% f-score, and 61.11% recall with all attributes. Only LR shows higher accuracy
of 88.23% with four features (Hb, PCV, RBC, and MCV) chosen by Exhaustive Feature
Selection (EFS). After applying normalization and SMOTE, ADA gives maximum accuracy
of 90%. To emphasize the success of the approach even more, the comparative findings
are provided in Table 12. Comparing the many cutting-edge methodologies, our model
generated the highest accuracy. All of the models on the list have an average of nine
features and an accuracy range of 80.77% to 100%. Two models employ a variety of AI
and ML strategies; one achieved an accuracy of 80.77% using CNN, [45] and the other
gave 100% accuracy by combining data balancing methodology. SMOTE is followed by
ADA [40]. The next three approaches each employ a single classifier; the first uses SVM [51],
the second uses RF [52] while achieving an accuracy of 91.5%; and the third employs a
different form of DNN, which achieves an accuracy of 89.7%.

In contrast to our suggested methodology, only one employs SMOTE [40] for im-
balanced data when it comes to preprocessing, data balancing or feature selection. All
methods employ between nine and sixteen features; however, our feature selection process
only uses a maximum of six, with an accuracy rate that is greater than the majority of the
strategies described. As in Table 7, feature selection enables 91.5% accuracy to be attained
with fewer characteristics. Normalization, SMOTE, and 10-k cross-validation are used
to further enhance the result, which increased from 92.79% to 93.46%. You can see that
different classifiers employ varying numbers of features in the results as diverse feature
selection techniques are used in combination with nine classifiers. The minimal number of
TT participants is a drawback of our study. Therefore, it is feasible that other researchers
may make hypotheses utilizing this unique approach and make an effort to refute our
findings in regions where they are more prevalent. Comparable studies, however, lacked a
control group, and the bulk of studies [7,46–50,59,63] similarly paid little attention to the
group sizes we believed to be equal. As a consequence, we think that our study offers a
more accurate evaluation.

7. Conclusions

This paper aims to investigate the influence of feature selection methods on the
precision of thalassemia predictions. Experiments were conducted using all features to
discern the impact of feature selection on performance, followed by a selected subset of
features. Nine classification algorithms were assessed: KNN, DT, GBC, LR, ADA, XGB, RF,
LGBM, and SVM. The effectiveness of the model was measured using accuracy, F1-score,
and recall metrics. Our experimental results emphasize the strength of the proposed method
in pinpointing carriers of αT. Without feature selection, the peak accuracy achieved was
88.31%, which improved to 91.56% when the χ2 feature selection methods were employed
in conjunction with the LR classifier by using the first dataset. For the second dataset,
accuracy was improved to 88.23% EFS, and LR from 82.35% was achieved from KNN
(n = 3). Additionally, our findings indicate that oversampling with SMOTE, RFE, and
10-fold validation effectively enhances the detection rate of αT carriers. Notably with
the first dataset, the GBC classifier stands out, delivering 93.46% accuracy, 93.89% recall,
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and 92.72% F1-score. Maximum accuracy of 90% showed by ADA in conjunction with
SMOTE, feature importance using GBDT, and 10-fold validation for the second dataset.
For optimal performance of the model, comparing various feature selection strategies and
classifier combinations, is imperative. However, predicting which combination will be most
effective without extensive experimentation, and analysis is challenging. Future works will
consider devising hybrid algorithms that adopt multiple feature selection techniques to
extract the richest feature subsets. Additionally, leveraging real-time medical datasets from
thalassemia patients could further enrich the model structure.
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Abbreviations

Acronyms Meaning
αT Alpha-thalassemia
ADA AdaBoost
ANFIS Adaptive neuro-fuzzy inference system
ADASYN Adaptive Synthetic
ANN Artificial neural network
AUC Area Under the ROC Curve
βT Beta-thalassemia
BLTREED Bayesian Logit Treed
CBC Complete Blood Count
CNN Convolutional Neural Network
CNN-LSTM CNN Long Short-Term Memory Network
CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
DSIFT Dense Scale Invariant Feature Transform
DTL2 CNN as a feature extractor
DT Decision Tree
DHS Dynamic Harmony Search
E&F England and Fraser
ETC Extra Tree Classifier
ET Extremely Randomized Trees
ELM Extreme Learning Machine
FNR False-negative rate
FPR False-positive rate
GBM Gradient Boosting Machine
GBC Gradient Boosting Classifier
GBDT Gradient Boosting Decision Trees
G&K Green and King
GRU Gated Recurrent Unit
Hb/HBA Hemoglobin
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HBA2 Hemoglobin A2
HBF Fetal hemoglobin
HGB Hemoglobin in grams per deciliter of blood
HH index Huber–Herklotz index
IDA Iron deficiency anemia
IoU Intersection Over Union
KNN K-Nearest Neighbors
LR Logistic Regression
LSTM Long Short-Term Memory
LGBM Light Gradient Boosting Machine
L-SVC Liner SVC
lgbmR Light GBM Regressor
Hct Hematocrit
MCV Mean Cell Volume
MCH Mean Cell Hemoglobin
MCHC Mean Cell Hemoglobin Concentration
MCHD Index, Mean Cell Hemoglobin Density
MDHL Mean Density of Hb/liter of blood
MLPs Multilayer perceptron
MLR Multiple Linear Regression
NB Naive Bayes
NCA Component Analysis Feature Selection
NN Neural Networks
NPV Negative predictive value
Neut Neutrophils
PBIS Pattern-based index selection
PCA Principal component analysis
PCV Polycythemia vera
PLT Platelet
PTPP Punjab Thalassemia Prevention Program
PPV Positive predictive value
PLS partial least squares
RANSAC Random sample consensus
RF Random Forest
RBC Red blood cell
RBF Gaussian radial basis function
RDW Red Cell Distribution Width
RDWI Red Cell Distribution Width Index
RELM Regularized Extreme Learning machine
SVD Singular Value Decomposition
SVC Support Vector Classifier
SVM Support Vector Machine
S&L Shine and Lal
SMOTE Synthetic Minority Oversampling Technique
TSVM Twin Support Vector Machines
TT Thalassemia Trait
WBC White blood cell
XGB Extreme Gradient Boosting
Xgboost Extreme Gradient Boosting
χ2 Chi-square
Iχ2 Iterative Chi-Square
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