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Abstract: We developed a novel quantification method named “shape feature” by combining the
features of amyloid positron emission tomography (PET) and brain magnetic resonance imaging
(MRI) and evaluated its significance in predicting the conversion from mild cognitive impairment
(MCI) to Alzheimer’s disease (AD) in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort.
From the ADNI database, 334 patients with MCI were included. The brain amyloid smoothing score
(AV45_BASS) and brain atrophy index (MR_BAI) were calculated using the surface area and volume
of the region of interest in AV45 PET and MRI. During the 48-month follow-up period, 108 (32.3%)
patients converted from MCI to AD. Age, Mini-Mental State Examination (MMSE), cognitive subscale
of the Alzheimer’s Disease Assessment Scale (ADAS-cog), apolipoprotein E (APOE), standardized
uptake value ratio (SUVR), AV45_BASS, MR_BAI, and shape feature were significantly different
between converters and non-converters. Univariate analysis showed that age, MMSE, ADAS-cog,
APOE, SUVR, AV45_BASS, MR_BAI, and shape feature were correlated with the conversion to AD.
In multivariate analyses, high shape feature, SUVR, and ADAS-cog values were associated with an
increased risk of conversion to AD. In patients with MCI in the ADNI cohort, our quantification
method was the strongest prognostic factor for predicting their conversion to AD.

Keywords: positron emission tomography; magnetic resonance imaging; Alzheimer’s disease;
shape feature; Alzheimer’s disease neuroimaging initiative cohort

1. Introduction

Significant efforts are underway to identify and develop reliable biomarkers for
Alzheimer’s disease (AD), to allow the targeting of those individuals who would most
benefit from early treatment intervention [1], particularly those with mild cognitive im-
pairment (MCI) [2,3]. However, because the etiology of MCI is heterogeneous, the rate of
cognitive decline varies considerably across patients with MCI, and some do not convert
to AD [4]. Thus, identifying patients with MCI who would benefit from treatment is
essential [5]. It is widely assumed that imaging biomarkers for predicting conversion from
MCI to AD are grouped into those based on beta-amyloid deposition, pathological tau, or
neurodegeneration [6]. Amyloid positron emission tomography (PET) radiotracers, such as
F-18 flutemetamol, F-18 florbetapir (AV-45), and F-18 florbetaben, have been developed
for the assessment of beta-amyloid deposition in the brain [7–9]. Additionally, measures
of brain atrophy on magnetic resonance imaging (MRI) have been used as biomarkers of
neurodegeneration or neuronal injury [6,10,11].

As MCI progresses, brain atrophy increases and the shape of the brain changes on
MRI. However, biomarkers of neurodegeneration cannot be used directly to represent the
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pathophysiological process of AD because they exhibit topographical overlap with non-AD
pathologies [6,12]. Amyloid PET is correlated with the presence and density of amyloid
deposition [8,9] and has been shown to be a predictor of future cognitive decline [13]. As
amyloid deposition increases, the cortical uptake of amyloid radiotracers increases, and
cortical gray–white matter differentiation is no longer possible on amyloid PET images.
Furthermore, the cortical shape changes to a smoother form, and the differentiation of
the gyral cerebrospinal fluid space on amyloid PET images is reduced by partial volume
effects [14,15]. Studies have used each biomarker type to predict the conversion from MCI
to AD; however, only a few studies have integrated amyloid and neurodegenerative mark-
ers. Obtaining integrated biomarkers that combine information from both beta-amyloid
deposition on amyloid PET and brain atrophy on MRI would enhance the predictive power
of these biomarkers. Therefore, developing quantification methods that combine infor-
mation from various biomarkers is necessary. We hypothesized that the predictive power
of biomarkers would be significantly enhanced if we used an integrated biomarker that
combined information from beta-amyloid deposition on amyloid PET and brain atrophy
on MRI.

In this study, we developed a novel shape feature quantification method for AV-45
PET and brain MRI and evaluated its prognostic significance in predicting the conver-
sion from MCI to AD in patients from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) cohort.

2. Materials and Methods
2.1. Patients

Data were obtained from patients recruited to the ADNI with available baseline data
on AV-45 PET and MRI (http://ida.loni.usc.edu accessed on 6 September 2023). The ADNI
was launched in 2003 as a public–private partnership, under the guidance of Principal
Investigator Michael W. Weiner, MD, from VA Medical Center and the University of
California in San Francisco, CA, USA. Patients were recruited from over 50 sites across
the USA and Canada. The primary purpose of the ADNI was to test whether serial MRI,
PET, other biological markers, and clinical and neuropsychological assessments could be
combined to measure the progression of MCI and early AD (for up-to-date information,
please refer to http://www.adni-info.org accessed on 6 September 2023). Written informed
consent for cognitive testing and neuroimaging was obtained from all patients before their
participation, and the procedures were approved by the Institutional Review Boards of all
participating institutions.

For this study, 334 patients with MCI with baseline AV-45 PET data, baseline brain
MRI data, and 4-year follow-up clinical evaluation data were selected. These patients were
grouped into MCI converters or non-converters based on whether they had converted
to AD within the 4-year follow-up period. The cognitive function of the patients was
evaluated using the Clinical Dementia Rating Sum of Boxes (CDR-SB), Alzheimer’s Disease
Assessment Scale–Cognitive Subscale (ADAS-cog), Functional Activities Questionnaire
(FAQ), and Mini-Mental State Examination (MMSE).

2.2. AV-45 PET/CT and MRI

All PET and MRI data were retrieved from the ADNI database in the most advanced
preprocessed stage. AV-45 PET images were acquired 50–70 min after the injection of F-18
AV-45 370 MBq (10 mCi); the images were then co-registered to each other, averaged across
time frames, and standardized to the same voxel size (1.5 × 1.5 × 1.5 mm). The images
were acquired at the 57 sites participating in the ADNI, and scanner-specific smoothing
was applied. Because of the lack of scaling or warping processes, brain size and shape were
not altered after preprocessing. For MRI, imaging was performed at 3T using T1-weighted
imaging parameters. T1-weighted magnetization-prepared rapid gradient-echo sequences
were used to correct image geometry distortion and image intensity nonuniformity, and a

http://ida.loni.usc.edu
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histogram peak sharpening algorithm was used. The postprocessed images used for the
analysis in this study can be downloaded from the ADNI database.

2.3. Quantitative PET Image Analysis

The semiautomatic quantification of brain beta-amyloid deposition was performed
using the brain amyloid smoothing score (BASS), which was calculated using the follow-
ing formula:

BASS =
Spherical surface area having the same volume as the VOI t50%

Surface area of VOI t50%
(1)

where VOI is the volume of interest and VOI t50% is the VOI segmented with a standardized
uptake value (SUV) threshold of 50%.

The postprocessed images received from ADNI were converted to a file with the
filename extension “nii”. The segmented brain was generated by combining segmented
gray and white matter images using the SPM12 software package (https://www.fil.ion.ucl.
ac.uk/spm/ accessed on 6 September 2023) running within MATLAB 2022a (MathWorks,
Cambridge, UK). The algorithm was described in a unified segmentation paper [16]. A mask
image was created using a gray matter image plus a white matter image with a threshold of
50%. Using the “regionprops3” function within MATLAB 2022a (MathWorks, Cambridge,
UK), we calculated the surface area and volume of the mask image and selected the largest
value. We calculated the volume and surface area of the AV45 image by considering the
voxel size. The BASS value was derived using Formula (1).

The rationale for the definition of the BASS is as follows. Because a sphere is a three-
dimensional object with the smallest surface area for a given fixed volume, a VOI with
a smoother, more sphere-like surface would have a higher BASS value (Figure 1). When
a receiver operating characteristic (ROC) value was calculated using BASS values and
conversion using thresholds of 30%, 40%, 50%, 60%, and 70%, the area under the ROC
curve (AUC) value was highest at the threshold of 50%, and this value was used (Figure A1).
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Figure 1. Representative segmentations used to measure the BASS and BAI. The volume of interest
(VOI) from a patient with conversion to AD showed a smooth surface on AV-45 PET (high BASS
score) and an irregular surface on brain MRI (high BAI score) (A). The VOI from a patient without
conversion to AD showed a sharp surface on AV-45 PET (low BASS score) and a regular surface on
brain MRI (low BAI score) (B). The VOI from a patient with conversion to AD showing a smooth
surface on AV-45 PET (high BASS score) and a regular surface on brain MRI (low BAI score) (C). The
VOI from a patient with conversion to AD showed a sharp surface on AV-45 PET (low BASS score)
and an irregular surface on brain MRI (high BAI score) (D). Abbreviations: BASS, brain amyloid
smoothing score; BAI, brain atrophic index; AV-45, F-18 florbetapir; SUVR, standardized uptake
value ratio; AD, Alzheimer’s disease.
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To acquire the SUV ratio (SUVR) from the PET images, baseline structural MRIs were
first co-registered with each participant’s AV-45 PET images. These images were then
used to extract the mean weighted cortical retention uptake from the frontal, parietal,
cingulate, and temporal regions. The SUVR was calculated using a composite reference
region comprising the entire cerebellum, pons, and eroded subcortical white matter [17].

2.4. Quantitative MRI Analysis

A semiautomatic quantification of brain atrophy was performed by calculating the
brain atrophic index (BAI) using the following formula:

BAI =
Surface area of segmented brain

Spherical surface area having the same volume as the segmented brain
(2)

In MRIs, segmented gray matter and white matter images were also generated
from postprocessed images received from the ADNI using the SPM12 software package
(https://www.fil.ion.ucl.ac.uk/spm/ accessed on 6 September 2023) running within MAT-
LAB 2022a (MathWorks, Cambridge, UK). A mask image was created using a gray matter
image plus a white matter image. Using the “regionprops3” function within MATLAB
2022a (MathWorks, Cambridge, UK), we calculated the surface area and volume of the
mask image and selected the largest value. We calculated the volume and surface area of the
AV45 image by considering the voxel size. The BAI value was derived using Formula (2).

The rationale for the definition of the BAI is as follows. Because a sphere is a three-
dimensional object with the smallest surface area for a given fixed volume, a VOI with a
more irregular surface would have a higher BAI value (Figure 1).

2.5. Prediction of Cognitive Decline in Patients with MCI

A semiautomatic quantification of brain beta-amyloid deposition and brain atrophy
was performed using the shape feature, which was calculated using the following formula:

Shape feature = BASS × BAI (3)

When an ROC value was calculated using shape feature values and conversion using
thresholds of 30%, 40%, 50%, 60%, and 70%, the AUC value was highest at the threshold of
50%, and this value was used (Figure A1). These longitudinal changes were calculated by
comparing the measurements at 2-year follow-up visits with those acquired at baseline.

2.6. Statistical Analyses

Continuous data are expressed as means ± standard deviations, and categorical data
are presented as frequencies. Continuous data analysis was performed using the inde-
pendent sample t-test, and categorical data were analyzed using Pearson’s chi-square
test. A comparison ROC curve was used to compare the parameters of the shape feature,
BASS, BAI, and SUVR. Correlations between the shape feature and SUVR were assessed
using Spearman’s rank correlation coefficient. ROC analysis was performed to identify the
optimal conversion-predicting cutoff values for age, MMSE, ADAS-cog, apolipoprotein
E4 (APOE4) levels, SUVR, AV45_BASS, MRI_BAI, and the shape feature. The univariate
analysis of predictors of conversion was performed using the Kaplan–Meier method and
log-rank test. A Cox proportional hazards model with a stepwise variable selection was
used for multivariate analysis. Correlations between the shape feature and neuropsycholog-
ical tests were assessed using Spearman’s rank correlation coefficient. MedCalc (Windows
XP, version 12.3, Broekstraat, Mariakerke, Belgium) was used to perform all statistical
analyses. p-values < 0.05 were used to denote statistical significance.

https://www.fil.ion.ucl.ac.uk/spm/
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3. Results
3.1. Patient Characteristics

The mean age of the patients was 71.2 ± 7.1 years, and 108 (32.3%) of the 334 patients
with MCI had converted to AD during the 48-month follow-up period. Conversion to
AD was significantly associated with age, MMSE score, ADAS-cog score, and APOE4. No
significant differences in sex and educational level were observed between converters and
non-converters. The patient demographics are shown in Table 1.

Table 1. Study population demographic characteristics.

Characteristics Non-Converters Converters p-Value

Number 226 108
Age (years) 70.5 ± 7.1 72.7 ± 6.8 0.01

Sex 0.90
Male 126 (55.8) 61 (56.5)

Female 100 (44.2) 47 (43.5)
Education (years) 16.4 ± 2.5 16.1 ± 2.6 0.26

MMSE 28.4 ± 1.6 27.3 ± 1.8 <0.001
ADAS-cog 12.2 ± 5.2 20.8 ± 6.8 <0.001

APOE4 <0.001
0 139 (61.5) 31 (28.7)
1 73 (32.3) 58 (53.7)
2 14 (6.2) 19 (17.6)

SUVR 1.14 ± 0.18 1.39 ± 0.22 <0.001
AV-45_BASS 0.38 ± 0.06 0.44 ± 0.07 <0.001

MRI_BAI 3.86 ± 0.51 4.23 ± 0.52 <0.001
Shape feature 1.47 ± 0.28 1.83 ± 0.31 <0.001

Values are presented as means ± standard deviations or numbers (percentages). Abbreviations: MMSE, Mini–
Mental State Examination; ADAS-cog, Alzheimer’s Disease Assessment Scale–Cognitive Subscale; APOE4,
apolipoprotein E4; SUVR, standardized uptake value ratio; AV-45, F-18 florbetapir; BASS, brain amyloid smoothing
score; BAI, brain amyloid index.

3.2. Imaging Parameters

The mean SUVR, AV45_BASS, MR_BAI, and shape feature values were 1.22 ± 0.23,
0.40 ± 0.07, 3.98 ± 0.54, and 1.59 ± 0.33, respectively. Representative SUVR, AV45_BASS,
MR_BAI, and shape feature examples are presented in Figure 1. SUVR, AV45_BASS,
MR_BAI, and shape feature values were significantly higher in converters than in non-
converters. The imaging parameters used in the 334 patients included in this study are
summarized in Table 1.

3.3. ROC Curve Analysis

The usefulness of the SUVR, AV45_BASS, MR_BAI, and shape feature in the conversion
to AD is presented by ROC curves (Figure 2 and Table 2). The ROC curves of the SUVR
and shape feature were not significantly different (p = 0.994). Thus, the shape feature can
be considered equivalent to SUVR. In contrast, a significant difference in the ROC curves
was observed between SUVR and AV45_BASS (p = 0.001). SUVR was found to be a better
parameter than AV45_BASS. Furthermore, a significant difference in the ROC curves was
observed between SUVR and MR_BAI (p = 0.002), with SUVR being a better parameter
than MR_BAI.

Table 2. Comparison of ROC curves.

Variable AUC 95% CI Comparison of ROC Curves between Each Variable
and SUVR (p-Value)

SUVR 0.807 0.761–0.848 -
Shape feature 0.807 0.761–0.848 0.9936
AV45_BASS 0.732 0.681–0.779 0.0008

MR_BAI 0.692 0.640–0.742 0.0015

Abbreviations: ROC, receiver operating characteristic; AUC, area under the ROC curve; CI, confidence interval;
SUVR, standardized uptake value ratio; BASS, brain amyloid smoothing score; BAI, brain atrophic index.
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No significant difference in the ROC curves between SUVR and shape feature (p = 0. 994). Thus,
they can be considered as comparable parameters. A significant difference in the ROC curves was
observed between SUVR and AV45_BASS (p = 0.001); SUVR was a better parameter than AV45_BASS.
A significant difference in the ROC curves was observed between SUVR and MR_BAI (p = 0.002);
SUVR was a better parameter than MR_BAI. Abbreviations: ROC, receiver operating characteristic;
AUC, area under the ROC curve; SUV, standardized uptake value; SUVR, standardized uptake value
ratio; BASS, brain amyloid smoothing score; BAI, brain atrophic index.

Figure 3 shows the correlation between SUVR and shape feature. SUVR and shape
feature showed a significant positive correlation, with a correlation coefficient of 0.77
(r = 0.77; p < 0.0001).
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3.4. Univariate and Multivariate Analyses for the Predictors of the Conversion from MCI to AD

The prognostic values of the patient characteristics and imaging parameters for pre-
dicting conversion from MCI to AD during follow-up are summarized in Table 3. The
optimal cutoff values were determined using ROC curve analysis (Figure A2). A shape
feature value of >1.54 (p < 0.001; hazard ratio [HR], 7.20; 95% confidence interval [CI],
4.77–10.88), an SUVR of >1.22 (p < 0.001; HR, 7.64; 95% CI, 5.05–11.56), an AV45_BASS of
>0.41 (p < 0.001; HR, 5.22; 95% CI, 3.42–7.97), and an MR_BAI of >3.93 (p < 0.001; HR, 2.94;
95% CI, 1.96–4.42) were significant predictors of a shorter MCI duration, as were all other
evaluated parameters.

Table 3. Kaplan–Meier analysis of the conversion from MCI to AD and factors influencing the
duration of MCI.

Variables Hazard Ratio 95% CI p-Value

Age (>69.3 vs. ≤69.3) 2.30 1.53–3.47 <0.001
MMSE (≤27 vs. >27) 2.41 1.24–4.68 0.009

ADAS-cog (>15 vs. ≤15) 6.89 4.54–10.46 <0.001
APOE4 (0 vs. 1 and 2) 3.12 2.08–4.69 <0.001

SUVR (>1.22 vs. ≤1.22) 7.64 5.05–11.56 <0.001
AV45_BASS (>0.41 vs. ≤0.41) 5.22 3.42–7.97 <0.001

MRI_BAI (>3.93 vs. ≤3.93) 2.94 1.96–4.42 <0.001
Shape feature (>1.54 vs. ≤1.54) 7.20 4.77–10.88 <0.001

Abbreviations: MCI, mild cognitive impairment; AD, Alzheimer’s disease; CI, confidence interval;
MMSE, Mini-Mental State Examination; ADAS-cog, Alzheimer’s Disease Assessment Scale–Cognitive Sub-
scale; SUVR, standardized uptake value ratio; AV-45, F-18 florbetapir; BASS, brain amyloid smoothing score;
BASS, brain amyloid smoothing score; BAI, brain amyloid index.

The results of the multivariate Cox regression analysis adjusted for age, MMSE, APOE4,
AV45_BASS, and MRI_BAI showed that the shape feature, SUVR, and ADAS-cog remained
statistically significant predictors of a shorter MCI duration before conversion to AD. The
HRs calculated for these three variables are shown in Table 4.

Table 4. Multivariate Cox regression analysis of the conversion from MCI to AD and factors influenc-
ing the duration of MCI.

Variables Hazard Ratio 95% CI p-Value

Shape feature 5.70 3.40–9.56 <0.001
SUVR 6.06 3.66–10.04 <0.001

ADAS-cog 4.01 2.51–6.40 <0.001
Abbreviations: MCI, mild cognitive impairment; AD, Alzheimer’s disease; CI, confidence interval;
SUVR, standardized uptake value ratio; ADAS-cog, Alzheimer’s Disease Assessment Scale–Cognitive Subscale.

3.5. Correlation of the Shape Feature with Cognitive Outcomes

The shape feature calculated from the baseline PET and MR images of patients with
MCI showed significant correlations with the longitudinal changes in cognitive measure-
ments at 2 years (Figure 4). In particular, the shape feature was positively correlated with
longitudinal changes in CDR-SB (r = 0.45; p < 0.001), ADAS-cog (r = 0.43; p < 0.001), and
FAQ (r = 0.38; p < 0.001) and negatively correlated with longitudinal changes in MMSE
scores (r = −0.36; p < 0.001).
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Figure 4. Shape feature and SUVR distributions according to longitudinal changes in cognitive
measurements. Changes in the cognitive measurements between baseline and 2 years are shown.
(A) Between the shape feature and Clinical Dementia Rating sum of boxes (CDR-SB); (B) between
the shape feature and Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS-cog);
(C) between the shape feature and Functional Activities Questionnaire (FAQ); (D) between the
shape feature and Mini-Mental State Examination (MMSE); (E) between the SUVR and CDR-SB;
(F) between the SUVR and ADAS-cog; (G) between the SUVR and FAQ; and (H) between the SUVR
and MMSE. The shape feature was positively correlated with longitudinal changes in CDR-SB
(r = 0.45; p < 0.001), ADAS-cog (r = 0.43; p < 0.001), and FAQ (r = 0.38; p < 0.001) and negatively
correlated with longitudinal changes in MMSE scores (r = −0.36; p < 0.001). The SUVR was positively
correlated with longitudinal changes in CDR-SB (r = 0.44; p < 0.001), ADAS-cog (r = 0.41; p < 0.001),
and FAQ (r = 0.40; p < 0.001) and negatively correlated with longitudinal changes in MMSE scores
(r = −0.32; p < 0.001). Abbreviations: SUVR, standardized uptake value ratio.

4. Discussion

Using the data prospectively collected from the ADNI-2 cohort, we developed a novel
shape feature quantification method that combines the baseline data of AV-45 PET and
brain MRI and showed that this method could predict the conversion from MCI to AD. The
shape feature was an important predictor of the conversion to AD because it had the highest
HR in both the univariate and multivariate analyses. The shape feature could be used as a
quantitative biomarker for predicting a longitudinal decline in cognitive measurements in
patients with MCI and the conversion to AD. Our results demonstrate that the shape feature
may be a feasible metric for identifying a clinically relevant semiquantitative biomarker.

Jack et al. proposed a framework for the in vivo staging of AD using two types of
biomarkers—the measurement of beta-amyloid deposition and measurements of neurode-
generation [18]. According to the National Institute on Aging and Alzheimer’s Association
Research Framework, AD is defined by its underlying pathological processes, which can
be documented by postmortem examination or in vivo biomarkers [6]. This may help
achieve a greater understanding of the mechanisms underlying heterogeneity and disease
progression in AD [19]. However, beta-amyloid accumulation begins several decades
before the appearance of the first cognitive symptoms, suggesting that the associations
between these two types of biomarker abnormalities and the “time-dependent risk” of
progression from MCI to AD vary considerably [20]. Therefore, determining a factor that
can provide information on both amyloidosis and neurodegeneration is critical.

The prognostic value of amyloid PET using fluorinated tracers (visually [21], semi-
quantitatively [22], or both [23]) to determine cognitive decline and conversion to AD has
been emphasized in patients with MCI, and its clinical impact on diagnostic confidence
and drug treatment has recently been demonstrated [24]. Semiquantitative amyloid PET
measurements commonly use the SUVR of cortical retention as a reference subcortical re-
gion [25]. However, the measurement of cortical retention in specific small cortical regions
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is limited by the partial volume effect that stems from the spatial resolution of PET scanners
and post-smoothing images [15,16]. The disadvantages of using the SUVR are related to
the variability of SUVR estimates, which can vary depending on the segmentation method
used to define the target cortical and reference subcortical regions [26]. Because the BASS is
not affected by a specific reference region, physicians can use this quantification method to
generate consistent BASS values from a single AV-45 PET image. A limitation of the BASS
is that even in cases with high degrees of amyloid deposition, the BASS may decrease if
high-resolution PET images are used and brain atrophy has increased. However, in the
shape feature method, such disadvantages of the BASS are compensated by measuring the
structural changes using MRI.

Semiquantitative measures of atrophy on brain MRI commonly evaluate whole brain
atrophy, hippocampal atrophy, or entorhinal cortex atrophy [27]. Guo et al. showed that
the premorbid brain size was associated with protection against clinical deterioration in
the face of AD-related brain atrophy in patients with MCI [28], thus supporting the theory
that the brain reserve plays a compensatory role rather than a neuroprotective role [28].
Tabatabaei-Jafari et al. performed meta-regression analyses to investigate the impact of
segmentation methodologies (manual vs. automated) on image-based atrophy measures
and found that the manual segmentation of the hippocampus resulted in larger atrophy
rate estimates than automatic segmentation using FreeSurfer [27]. Furthermore, Mulder
et al. showed that lower atrophy rates can be achieved in investigations using automatic
segmentation [29]. The BAI is a value obtained by measuring a large area and is thus
expected to be less affected by segmentation variations than other methods; therefore, the
BAI has excellent reproducibility with negligible interobserver and intraobserver variability.

The rationale for using the novel parameter AV45_BASS is that in positive scans,
the full anatomical lobes are generally easier to visualize and the cortical margins are
smoother [14]. Geometrically, the smooth shape of the beta-amyloid deposition leads to
a low surface-area-to-volume ratio, which increases the sphericity of the surface. The
rationale for using the novel parameter MR_BAI is that cortical margins show shrinkage in
positive scans. Geometrically, this shrinkage of the brain cortex leads to a high surface area
to volume ratio, which decreases the sphericity of the surface. Moreover, the MR resolution
and limitations of the segmentation method may affect the use of the MR_BAI. Our novel
shape feature is calculated by multiplying the AV45_BASS by the MR_BAI. One advantage
of this feature over the SUVR is that it reveals an operator-independent characteristic of
beta-amyloid deposition.

The correlation of the shape feature with neuropsychological tests may provide useful
information on the timing and extent of beta-amyloid deposition, which are closely related
to the clinical phenomenology of AD. Barthel et al. showed that the regional SUVR is well
correlated with cognitive impairment measures, such as the MMSE, word-list memory, and
word-list recall scores [30]. We noted significant correlations between the shape feature and
longitudinal changes in neurological test results, including the CDR-SB (r = 0.45; p < 0.001),
ADAS-cog (r = 0.43; p < 0.001), FAQ (r = 0.38; p < 0.001), and MMSE (r = −0.36; p < 0.001).
These correlations raise the possibility of using AV-45 PET and brain MRI as markers of
neuropsychological information.

Our study shows that the newly devised quantitative shape feature measurement
may be used as a fusion biomarker for multimodal imaging. The demonstration of high
amyloid deposition and high atrophy in the cortex at baseline on imaging biomarkers can
predict longitudinal declines in cognitive scores [27,30]. However, determining a combined
parameter that considers both amyloid deposition and atrophic changes is critical. The
shape feature is a fusion biomarker directly obtained from both PET and MR images, which
are also correlated with longitudinal cognitive measurements. This suggests that cognitive
functions could rapidly deteriorate in patients with a high shape feature value at baseline.
Therefore, the shape feature could act as a single parameter that reflects both PET and
MRI patterns of future cognitive decline, particularly in terms of long-term outcomes.
This correlation is an important observation with a potential impact on clinical trials for
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early treatment intervention in prodromal AD because the shape feature could help select
patients likely to benefit from treatments.

5. Conclusions

We developed a new shape feature quantification method by combining the features
of amyloid PET and brain MRI and showed that this shape feature was a strong imaging
biomarker for predicting the conversion of patients with MCI to AD. Importantly, the
shape feature values were significantly correlated with longitudinal changes in cognitive
measurements in a sample of patients with MCI from the ADNI cohort. The shape feature
measurement is expected to help identify patients with prodromal AD who may benefit
from early intervention.
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Appendix A

Figure A1. Comparison of ROC curves of (A) BASS and (B) shape feature according to the thresholds
of the SUV max. The ROC graph exhibited the highest AUC value when delineated based on the
SUV max threshold of 50% in BASS and shape feature. Abbreviations: ROC, receiver operating
characteristics; BASS, brain amyloid smoothing score; SUV, standard uptake value; AUC, area under
the ROC curve.

Appendix B

Figure A2. Receiver operating characteristics analyses of (A) age, (B) MMSE (C) ADAS-cog,
(D) SUVR, (E) AV-45_BASS, (F) MR_BAI, and (G) shape feature. Abbreviations: MMSE, Mini-
Mental State Examination; ADAS-cog, Alzheimer’s Disease Assessment Scale–Cognitive Subscale;
SUVR, standardized uptake value ratio; AV-45, F-18 florbetapir; BASS, brain amyloid smoothing
score; BAI, brain amyloid index.

References
1. Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical

model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010, 9, 119–128. [CrossRef] [PubMed]
2. Ellendt, S.; Voβ, B.; Kohn, N.; Wagels, L.; Goerlich, K.S.; Drexler, E.; Schneider, F.; Habel, U. Predicting Stability of Mild Cognitive

Impairment (MCI): Findings of a Community Based Sample. Curr. Alzheimer Res. 2017, 14, 608–619. [CrossRef] [PubMed]

https://doi.org/10.1016/S1474-4422(09)70299-6
https://www.ncbi.nlm.nih.gov/pubmed/20083042
https://doi.org/10.2174/1567205014666161213120807
https://www.ncbi.nlm.nih.gov/pubmed/27978792


Diagnostics 2023, 13, 3375 12 of 13

3. Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R., Jr.; Kaye, J.; Montine,
T.J.; et al. Toward Defining the Preclinical Stages of Alzheimer’s Disease: Recommendations from the National Institute on
Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s Dement. 2011, 7,
280–292. [CrossRef] [PubMed]

4. Grand, J.H.; Caspar, S.; MacDonald, S.W. Clinical features and multidisciplinary approaches to dementia care. J. Multidiscip.
Health 2011, 4, 125–147. [CrossRef]

5. Choi, H.; Jin, K.H.; Alzheimer’s Disease Neuroimaging Initiative. Predicting cognitive decline with deep learning of brain
metabolism and amyloid imaging. Behav. Brain Res. 2018, 344, 103–109. [CrossRef]

6. Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.;
Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement.
2018, 14, 535–562. [CrossRef]

7. Thurfjell, L.; Lilja, J.; Lundqvist, R.; Buckley, C.; Smith, A.; Vandenberghe, R.; Sherwin, P. Automated Quantification of 18F-
Flutemetamol PET Activity for Categorizing Scans as Negative or Positive for Brain Amyloid: Concordance with Visual Image
Reads. J. Nucl. Med. 2014, 55, 1623–1628. [CrossRef]

8. Clark, C.M.; Schneider, J.A.; Bedell, B.J.; Beach, T.G.; Bilker, W.B.; Mintun, M.A.; Pontecorvo, M.J.; Hefti, F.; Carpenter, A.P.; Flitter,
M.L.; et al. Use of Florbetapir-PET for Imaging β-Amyloid Pathology. JAMA 2011, 305, 275–283. [CrossRef]

9. Clark, C.M.; Pontecorvo, M.J.; Beach, T.G.; Bedell, B.J.; Coleman, R.E.; Doraiswamy, P.M.; Fleisher, A.S.; Reiman, E.M.; Sabbagh,
M.N.; Sadowsky, C.H.; et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic
amyloid-β plaques: A prospective cohort study. Lancet Neurol. 2012, 11, 669–678. [CrossRef]

10. Whitwell, J.L.; Josephs, K.A.; Murray, M.E.; Kantarci, K.; Przybelski, S.A.; Weigand, S.D.; Vemuri, P.; Senjem, M.L.; Parisi, J.E.;
Knopman, D.S.; et al. MRI correlates of neurofibrillary tangle pathology at autopsy: A voxel-based morphometry study. Neurology
2008, 71, 743–749. [CrossRef]

11. Vemuri, P.; Whitwell, J.L.; Kantarci, K.; Josephs, K.A.; Parisi, J.E.; Shiung, M.S.; Knopman, D.S.; Boeve, B.F.; Petersen, R.C.;
Dickson, D.W.; et al. Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak
neurofibrillary tangle stage. NeuroImage 2008, 42, 559–567. [CrossRef] [PubMed]

12. Wirth, M.; Madison, C.M.; Rabinovici, G.D.; Oh, H.; Landau, S.M.; Jagust, W.J. Alzheimer’s Disease Neurodegenerative
Biomarkers Are Associated with Decreased Cognitive Function but Not β-Amyloid in Cognitively Normal Older Individuals. J.
Neurosci. 2013, 33, 5553–5563. [CrossRef] [PubMed]

13. Ben Bouallègue, F.; Mariano-Goulart, D.; Payoux, P.; Alzheimer’s Disease Neuroimaging Initiative. Comparison of CSF markers
and semi-quantitative amyloid PET in Alzheimer’s disease diagnosis and in cognitive impairment prognosis using the ADNI-2
database. Alzheimer’s Res. Ther. 2017, 9, 32. [CrossRef]

14. Rowe, C.C.; Villemagne, V.L. Brain Amyloid Imaging. J. Nucl. Med. 2011, 52, 1733–1740. [CrossRef] [PubMed]
15. Rullmann, M.; Dukart, J.; Hoffmann, K.-T.; Luthardt, J.; Tiepolt, S.; Patt, M.; Gertz, H.-J.; Schroeter, M.L.; Seibyl, J.; Schulz-Schaeffer,

W.J.; et al. Partial-Volume Effect Correction Improves Quantitative Analysis of 18F-Florbetaben β-Amyloid PET Scans. J. Nucl.
Med. 2015, 57, 198–203. [CrossRef]

16. Ashburner, J.; Friston, K.J.; Ashburner, J.; Friston, K.J.; Ashburner, J.; Friston, K.J. Unified segmentation. NeuroImage 2005, 26,
839–851. [CrossRef] [PubMed]

17. Landau, S.M.; Fero, A.; Baker, S.L.; Koeppe, R.; Mintun, M.; Chen, K.; Reiman, E.M.; Jagust, W.J. Measurement of Longitudinal
β-Amyloid Change with 18F-Florbetapir PET and Standardized Uptake Value Ratios. J. Nucl. Med. 2015, 56, 567–574. [CrossRef]

18. Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Petersen, R.C.; Weiner, M.W.; Aisen, P.S.; Shaw, L.M.; Vemuri, P.; Wiste, H.J.; Weigand,
S.D.; et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers.
Lancet Neurol. 2013, 12, 207–216. [CrossRef]

19. Ekman, U.; Ferreira, D.; Westman, E. The A/T/N biomarker scheme and patterns of brain atrophy assessed in mild cognitive
impairment. Sci. Rep. 2018, 8, 8431. [CrossRef]

20. Jack, C.R.; Wiste, H.J.; Vemuri, P.; Weigand, S.D.; Senjem, M.L.; Zeng, G.; Bernstein, M.A.; Gunter, J.L.; Pankratz, V.S.; Aisen,
P.S.; et al. Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild
cognitive impairment to Alzheimer’s disease. Brain 2010, 133, 3336–3348. [CrossRef]

21. Doraiswamy, P.M.; Sperling, R.A.; Johnson, K.; Reiman, E.M.; Wong, T.Z.; Sabbagh, M.N.; Sadowsky, C.H.; Fleisher, A.S.;
Carpenter, A.; AV45-A11 Study Group; et al. Florbetapir F 18 amyloid PET and 36-month cognitive decline:a prospective
multicenter study. Mol. Psychiatry 2014, 19, 1044–1051. [CrossRef] [PubMed]

22. Landau, S.M.; Mintun, M.A.; Joshi, A.D.; Koeppe, R.A.; Petersen, R.C.; Aisen, P.S.; Weiner, M.W.; Jagust, W.J.; Alzheimer’s Disease
Neuroimaging Initiative. Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Ann. Neurol. 2012, 72,
578–586. [CrossRef] [PubMed]

23. Schreiber, S.; Landau, S.M.; Fero, A.; Schreiber, F.; Jagust, W.J. Comparison of Visual and Quantitative Florbetapir F 18 Positron
Emission Tomography Analysis in Predicting Mild Cognitive Impairment Outcomes. JAMA Neurol. 2015, 72, 1183–1190.
[CrossRef] [PubMed]

24. Boccardi, M.; Altomare, D.; Ferrari, C.; Festari, C.; Guerra, U.P.; Paghera, B.; Pizzocaro, C.; Lussignoli, G.; Geroldi, C.; Zanetti,
O.; et al. Assessment of the Incremental Diagnostic Value of Florbetapir F 18 Imaging in Patients With Cognitive Impairment:

https://doi.org/10.1016/j.jalz.2011.03.003
https://www.ncbi.nlm.nih.gov/pubmed/21514248
https://doi.org/10.2147/jmdh.s17773
https://doi.org/10.1016/j.bbr.2018.02.017
https://doi.org/10.1016/j.jalz.2018.02.018
https://doi.org/10.2967/jnumed.114.142109
https://doi.org/10.1001/jama.2010.2008
https://doi.org/10.1016/S1474-4422(12)70142-4
https://doi.org/10.1212/01.wnl.0000324924.91351.7d
https://doi.org/10.1016/j.neuroimage.2008.05.012
https://www.ncbi.nlm.nih.gov/pubmed/18572417
https://doi.org/10.1523/JNEUROSCI.4409-12.2013
https://www.ncbi.nlm.nih.gov/pubmed/23536070
https://doi.org/10.1186/s13195-017-0260-z
https://doi.org/10.2967/jnumed.110.076315
https://www.ncbi.nlm.nih.gov/pubmed/23396994
https://doi.org/10.2967/jnumed.115.161893
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://www.ncbi.nlm.nih.gov/pubmed/15955494
https://doi.org/10.2967/jnumed.114.148981
https://doi.org/10.1016/S1474-4422(12)70291-0
https://doi.org/10.1038/s41598-018-26151-8
https://doi.org/10.1093/brain/awq277
https://doi.org/10.1038/mp.2014.9
https://www.ncbi.nlm.nih.gov/pubmed/24614494
https://doi.org/10.1002/ana.23650
https://www.ncbi.nlm.nih.gov/pubmed/23109153
https://doi.org/10.1001/jamaneurol.2015.1633
https://www.ncbi.nlm.nih.gov/pubmed/26280102


Diagnostics 2023, 13, 3375 13 of 13

The incremental diagnostic value of amyloid PET with [18F]-florbetapir (INDIA-FBP) study. JAMA Neurol. 2016, 73, 1417–1424.
[CrossRef]

25. Lopresti, B.J.; Klunk, W.E.; Mathis, C.A.; Hoge, J.A.; Ziolko, S.K.; Lu, X.; Meltzer, C.C.; Schimmel, K.; Tsopelas, N.D.; DeKosky,
S.T.; et al. Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: A comparative analysis. J. Nucl.
Med. 2005, 46, 1959–1972.

26. Ben Bouallègue, F.; Vauchot, F.; Mariano-Goulart, D.; Payoux, P. Diagnostic and prognostic value of amyloid PET textural and
shape features: Comparison with classical semi-quantitative rating in 760 patients from the ADNI-2 database. Brain Imaging
Behav. 2018, 13, 111–125. [CrossRef]

27. Tabatabaei-Jafari, H.; Shaw, M.E.; Cherbuin, N. Cerebral atrophy in mild cognitive impairment: A systematic review with
meta-analysis. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2015, 1, 487–504. [CrossRef]

28. Guo, L.; Alexopoulos, P.; Wagenpfeil, S.; Kurz, A.; Perneczky, R.; Initiative, A.D.N. Brain size and the compensation of Alzheimer’s
disease symptoms: A longitudinal cohort study. Alzheimer’s Dement. 2012, 9, 580–586. [CrossRef]

29. Mulder, E.R.; de Jong, R.A.; Knol, D.L.; van Schijndel, R.A.; Cover, K.S.; Visser, P.J.; Barkhof, F.; Vrenken, H. Hippocampal volume
change measurement: Quantitative assessment of the reproducibility of expert manual outlining and the automated methods
FreeSurfer and FIRST. NeuroImage 2014, 92, 169–181. [CrossRef]

30. Barthel, H.; Gertz, H.-J.; Dresel, S.; Peters, O.; Bartenstein, P.; Buerger, K.; Hiemeyer, F.; Wittemer-Rump, S.M.; Seibyl, J.; Reininger,
C. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: A multicentre phase
2 diagnostic study. Lancet Neurol. 2011, 10, 424–435. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1001/jamaneurol.2016.3751
https://doi.org/10.1007/s11682-018-9833-0
https://doi.org/10.1016/j.dadm.2015.11.002
https://doi.org/10.1016/j.jalz.2012.10.002
https://doi.org/10.1016/j.neuroimage.2014.01.058
https://doi.org/10.1016/S1474-4422(11)70077-1

	Introduction 
	Materials and Methods 
	Patients 
	AV-45 PET/CT and MRI 
	Quantitative PET Image Analysis 
	Quantitative MRI Analysis 
	Prediction of Cognitive Decline in Patients with MCI 
	Statistical Analyses 

	Results 
	Patient Characteristics 
	Imaging Parameters 
	ROC Curve Analysis 
	Univariate and Multivariate Analyses for the Predictors of the Conversion from MCI to AD 
	Correlation of the Shape Feature with Cognitive Outcomes 

	Discussion 
	Conclusions 
	Appendix A
	Appendix B
	References

