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Abstract: Artificial intelligence (AI) has attracted increasing attention as a tool for the detection and
management of several medical conditions. Multiple myeloma (MM), a malignancy characterized
by uncontrolled proliferation of plasma cells, is one of the most common hematologic malignancies,
which relies on imaging for diagnosis and management. We aimed to review the current literature
and trends in AI research of MM imaging. This study was performed according to the PRISMA
guidelines. Three main concepts were used in the search algorithm, including “artificial intelligence”
in “radiologic examinations” of patients with “multiple myeloma”. The algorithm was used to search
the PubMed, Embase, and Web of Science databases. Articles were screened based on the inclusion
and exclusion criteria. In the end, we used the checklist for Artificial Intelligence in Medical Imaging
(CLAIM) criteria to evaluate the manuscripts. We provided the percentage of studies that were
compliant with each criterion as a measure of the quality of AI research on MM. The initial search
yielded 977 results. After reviewing them, 14 final studies were selected. The studies used a wide
array of imaging modalities. Radiomics analysis and segmentation tasks were the most popular
studies (10/14 studies). The common purposes of radiomics studies included the differentiation of
MM bone lesions from other lesions and the prediction of relapse. The goal of the segmentation
studies was to develop algorithms for the automatic segmentation of important structures in MM.
Dice score was the most common assessment tool in segmentation studies, which ranged from 0.80 to
0.97. These studies show that imaging is a valuable data source for medical AI models and plays an
even greater role in the management of MM.

Keywords: multiple myeloma; radiology; artificial intelligence; machine learning; radiomics;
segmentation

1. Introduction

Multiple myeloma (MM) is a malignancy characterized by the uncontrolled prolifer-
ation of clonal plasma cells and the abnormal production of monoclonal immunoglobu-
lin [1,2]. It is the second most common hematological malignancy following lymphoma
and accounts for 0.9% of all cancer diagnoses [3,4]. Five-year survival rates of MM are
estimated to be 74.8% and 52.9%, respectively [4]. MM symptoms can be summarized
using the acronym CRAB: hypercalcemia, renal failure, anemia, and bone disease [5]. Other
symptoms of the disease include weight loss, fatigue or general weakness, paresthesia,
hepatomegaly, splenomegaly, and fever. Lytic bone lesions are present in 70–80% of patients
at the time of diagnosis [6]. These lesions typically involve sites of the red bone marrow,
with a prevalence of 49% in vertebral bodies, 35% in the skull, 34% in the pelvis, and 33%
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in the ribs [6,7]. The high prevalence of bone lesions in MM highlights the importance of
imaging in the diagnosis and prognostication of MM [8]. The potential involvement of any
bone segment highlights the need for whole-body techniques.

While a radiographic skeletal survey was recommended in the past, changes in diag-
nostic imaging for MM were made based on the revised diagnostic criteria for MM set by
the International Myeloma Working Group (IMWG) in 2014 to account for newly discov-
ered biomarkers [3]. This helped retire the previously used radiographic skeletal survey
as an initial imaging test, mainly due to its high false-negative rate (30–70%), and helped
introduce the use of new and more advanced modalities, including low-dose whole-body
computed tomography (LDWBCT), whole-body magnetic resonance imaging (WB-MRI),
and [7] 18F-fluorodeoxyglucose (FDG) positron emission tomography/CT (PET-CT) [8–11].
LDWBCT can be used as an initial diagnostic test since it is readily available and inexpen-
sive. WB-MRI has a higher negative predictive value compared to LDWBCT and can be
used to provide complementary information [2]. For post-treatment evaluation, WB-MRI
and PET-CT are used since marrow signal intensity and FDG avidity changes occur before
structural changes [3,12].

The introduction of these advanced imaging techniques for MM diagnosis highlights
the need for a comprehensive understanding of the current and future roles of imaging in
MM. The role of artificial intelligence (AI) in oncological imaging has been growing over
the last decade and has been studied in other disease states [13–15]. For example, radiomics
is a rapidly emerging research field, with several studies suggesting its potential to assist
with the accuracy of disease diagnosis as well as the estimation of survival [14,16–18].
Previous systematic reviews of various oncological diseases have also provided insight
into the progression of AI by highlighting challenges with validity [13,19]. However, the
assessment of AI, including the validation of radiomics and segmentation in MM, has not
yet been reviewed.

The purpose of this systematic review is to assess the status of AI in MM imaging and
provide a future avenue for researchers and radiologists. It is noteworthy to mention that
while a review by Allegra et al. discusses the applications of artificial intelligence in MM in
general, that review is mostly focused on studies that use other types of data, including
clinical data, and only briefly touches upon imaging in MM [20]. In contrast, our work is
only focused on imaging in MM.

2. Materials and Methods

Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guide-
lines were used to conduct this systematic review [21], this research was not registered
under PRISMA.

2.1. Search Strategy

We conducted a systematic literature search using PubMed (Medline), Embase, and
ISI Web of Science to extract eligible studies from 2000 to April 2022. Search strategies
focused on three main concepts of the use of AI (using “machine learning”, “deep learning”,
“artificial intelligence”, “automated”) in radiologic examinations (using the following terms:
“imaging”, “image”, “MRI”, “CT”, “PET”, “radiograph”, “radiographic”, “diagnostic”)
in patients with MM. No limitations were applied. The results of our search findings are
summarized in Figure 1.
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Figure 1. PRISMA flow chart of our study selection.

2.2. Study Selection

Original studies that assessed the role of machine learning in the diagnosis, segmenta-
tion, or interpretation of all imaging types of MM were considered eligible for inclusion.
The exclusion criteria consisted of review or commentary articles and studies with animal
or cadaver subjects. The titles and abstracts of all obtained studies were independently
screened by two reviewers (E.A. and F.S., postdoctoral research fellows with 2 years of
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research experience in radiology). After the exclusion of the duplicate studies, the full
text of all eligible articles was assessed. All discrepancies were addressed, and a mutual
consensus was reached among the authors regarding the final inclusion.

2.3. Data Extraction

Authors’ names, years, and descriptive data of all studies including sample size, study
design, imaging modality, techniques, parameters, reference standard, and the subject
matter of each study were extracted. The following characteristic data were also obtained if
they were provided: feature reduction strategies, which are often used in radiomics studies
to prevent overfitting; the analysis tool that was used for the project, including methods like
ridge regression, LASSO, XGBoost, and deep learning; the performance measures, including
the area under the receiver operator curve (AUROC), accuracy, sensitivity, specificity,
number of readers, the portion of the sample size used for training a model, conclusion,
and pros and cons of each paper.

2.4. Study Evaluation

We used the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) criteria,
first introduced by Mongan et al., as a checklist for the quality of AI-related studies in
radiology to evaluate each manuscript [22]. The checklist has 42 components, 4 for the title,
abstract, and introduction; 28 for methods, 5 for results; and 5 for discussion and other
necessary information. We evaluated each component and gave a score of 1 if the study
was compliant with that criterion and a score of 0 otherwise. A physician with 4 years of
experience in medical AI research reviewed each paper to determine compliance with each
of the criteria. Compliance was defined based on the descriptions provided in the original
CLAIM paper. For example, for the “How missing data were handled” criteria, an article
was considered compliant if the authors stated that they did not have any missing data or
if they described the strategy they used to deal with missing data. We calculated the final
score by adding all the points together. In addition, we reported section-specific scores
as well. We could only analyze studies that were full-length manuscripts and worked on
developing an AI model and testing it.

3. Results
3.1. Study Selection

Our search yielded 977 results. After we removed the duplicates and screened the
remaining studies based on titles and abstracts, 14 relevant articles were selected. Articles
were commonly excluded because they were about other diseases, used pathology slide
images or flow cytometry data, used other clinical data without the use of imaging, or
used data acquired from imaging performed on cadavers or animals. Figure 1 shows the
PRISMA flow diagram. Out of these 14 studies, 4 were abstracts that were presented at
conferences, but for the sake of comprehensiveness, we included them in this paper.

3.2. Characteristics of Included Studies

Out of the nine articles and four abstracts included, 6/14 (43%) used CT images [23–28],
3/14 (21%) used PET-CT scans [29–31], and 5/14 (36%) used MRI as their imaging modal-
ity [17,32–34]. A total of 5/14 (36%) studies used WB imaging or imaging from affected
body parts, 1/14 (%) focused on the femur bone, 1/14 (7%) focused on the spine and pelvic
bones, and 3/14 (%) focused on the spine alone. Meanwhile, 5/14 (36%) studies used
radiomics [17,23,32,34,35], 6/14 (%) (including two that focused on radiomics and one that
involved histogram analysis) focused on segmentation of regions of interest (ROI), like bone
marrow or bone structures, 1/14 (7%) used bone subtraction maps to assist radiologists,
1/14 (7%) used cumulative CT scores to predict disease severity, and 2/14 (14%) used
histogram analysis of CT values in the bone marrow to predict bone marrow infiltration
levels. An overview of these articles and their findings are summarized in Tables 1 and 2.
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Table 1. An overview of the reviewed studies. For each article, the year of publication, the sample
population, the type of imaging used, the type of input to the model, the gold standard, and the final
objective of the project are presented.

Authors
(Year) N Imaging Input * Segmentation Feature

Reduction Model/Analysis Standard
Test Objective

Fervers et al.,
(2021) [28] 35 CT CT values Pretrained

CNN N/A Multivariate
regression N/A Estimate BM

infiltration

Fraenzel
et al., (2011)

Abstract [24]
14 CT Image Threshold

model N/A

Threshold
segmentation
and flood fill

algorithm

N/A Automatic bone
lesion detection

Horger et al.,
(2017) [27] 188 CT N/A N/A N/A N/A

Lab results
and
gold

standard CT

Monitoring new
bone lesions

Li et al.,
(2021) [17] 121 MRI Image Manual seg-

mentation

Univariate
regression +
Spearman’s
correlation +

LASSO

Nomogram N/A

To predict overall
survival in MM
patients using
radiomics and

clinical features

Liu et al.,
(2021) [32] 50 MRI Radiomics Manual seg-

mentation ICC + LASSO Logistic
regression FISH

Detection of
high-risk
cytogenic

abnormality

Martínez-
Martínez

et al., (2016)
[25]

127 CT Image Shape model
positioning N/A Probabilistic

density model
Imaging

diagnosis
Bone marrow

infiltration

Nishida
et al., (2017)

[26]
68 CT Cumulative

CT values
Threshold

model N/A Pearson’s
correlation Histology BM infiltration

Satoh et al.,
(2022) [29] 98 PET/CT Image

Deep
learning-

based
automatic
organ seg-
mentation

N/A Histogram
analysis N/A

Establish a
standard for BM

FDG uptake

Schenone
et al., (2021)

[23]
33 CT Clinical data

+ Image
Manual Seg-
mentation

PCA,
Pearson’s

correlation

FCM,
Extended

version of HTF

Clinical
diagnosis Prognosis

Shi et al.,
(2018)

Abstract [31]
12 PET/CT Image Manual seg-

mentation N/A V-Net and
W-Net

Manual seg-
mentation

Computer-aided
lesion detection

Takahashi
et al., (2020)

[30]
58 PET/CT

Standardized
uptake
values

Fully
automated
segmenta-

tion

N/A
Generalized
estimating
equation

Visual
analysis

Standardizing
VOI

determination in
PET/CT scans

Wennmann
et al., (2021)

Abstract [33]
66 MRI Image Manual seg-

mentation N/A nnU-Net Manual seg-
mentation

BM
segmentation

Wennmann
et al., (2021)

Abstract [35]
270 MRI Radiomics nn-Unet N/A Random Forest

Manual seg-
mentation,

biopsy

Estimate plasma
cell infiltration

Xiong et al.,
(2021) [34] 107 MRI Radiomics Manual seg-

mentation ICC + LASSO ANN Clinical
diagnosis

Differentiation of
metastatic

lesions from MM

N: sample size, BM: bone marrow, FDG: fludeoxyglucose, FCM: clustering fuzzy c-means, HTF: Hough transfor-
mation, MM: multiple myeloma, ICC: intraclass correlation, PCA: principal components analysis, ANN: artificial
neural network, ICC: intra-class correlation coefficient, and VOI: volume of interest; * Input: data types used to
make a model.
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Table 2. An overview of the results and conclusions of the reviewed studies. Model performances
are reported under the performance column to show the comparison of study findings.

Radiomics

Authors (Year) Methods Performance Conclusion

Schenone et al., (2021) [23] FCM, Extended version
of HTF

Critical success index:
0.52 ± 0.1

Radiomic has the potential for the stratification of relapsed
and non-relapsed MM patients.

Xiong et al., (2021) [34] LASSO + Artificial
Neural Networks

MCC for ANN on T2WI:
0.605

Machine learning on radiomics features extracted from
conventional MRI sequences can help differentiate newly

diagnosed MM lesions from other cancer metastatic lesions
in lumbar vertebrae.

Li et al., (2021) [17] LASSO + Nomogram

Radiomics nomogram
c-index on validation
cohort: 0.81 (95% CI:

0.70–0.92)

The development of a radiomics nomogram can help with
the prediction of overall survival in MM patients.

Liu et al., (2021) [32] LASSO + Logistic
Regression

Radiomics test AUC:
0.863

Combined test AUC:
0.870

Radiomics features in conventional MRI images of MM
patients can help distinguish HRCAs and non-HRCAs.

Wennmann et al., (2021)
[35] Random Forest MAE: 14.3 compared to

biopsy
The tool has an accuracy comparable to a radiologist in

predicting plasma cell infiltration percentage.

Segmentation

Authors (year) ROI Classifier Performance Conclusion

Fraenzel et al., (2011) [24] Medullary Cavity of
Bones Random Forest

Classification accuracy:
Femur: 90%, Tibia: 79%,
Fibula: 79%, Humerus:

93%, Radius: 69%, Ulna:
46%, Other: 99%

Classification of medullary
cavities enables the

identification of long bone
structures in whole-body CT

scans.

Shi et al., (2018) [31] Bone Lesions V-Net, W-Net

V-Net: Sensitivity: 71.1%,
Specificity: 99.5%, W-Net:

Sensitivity 73.5%,
Specificity: 99.6%

W-Nets have superior
performance compared to

traditional ML models in the
detection of bone lesions.

Takahashi et al., (2020) [30] Bone Threshold

SUVmean was correlated
with visual assessment,

OR: 10.52 (95% CI,
5.68–19.48), p < 0.0001

CT–based skeletal
segmentation allows for the

automated and therefore
reproducible calculation of

PET
quantitative parameters of
bone involvement in MM

patients.

Wennmann et al., (2021)
Abstract [33] Bone Marrow nn-Unet Mean Dice scores ranging

from 0.80 to 0.97

A Unet model can be used to
segment out bone marrow
structures of the body with

high accuracy.

Other

Authors (year) Measure Performance Conclusion

Martínez-Martínez et al.
(2016) [25] Diagnosis accuracy

Infiltration vs. Healthy
group: SVM, AUC: 0.996
± 0.009; Infiltration vs. All
other: k-NN, AUC: 0.894

± 0.070

Classification based on
features extracted from the
probabilistic density model

using k-NN, allowing
differentiation of patients with

infiltration from others.

Nishida et al., (2017) [26] Correlation with clinical features

cCTv is correlated with
higher R-ISS stage and

serum or urine M-protein
cCTv is inversely

correlated with therapy
and serum albumin

cCTv demonstrated a
relationship with disease
aggressiveness and had

prognostic value.

Horger et al.
(2017) [27] Diagnosis accuracy

Performance of radiologist
while using the tool:

Sensitivity: 97.8%,
Specificity: 96.7%,
Accuracy: 97.7%

Accuracy was slightly
increased and reading time
was significantly reduced

when using subtraction maps.
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Table 2. Cont.

Other

Authors (year) Measure Performance Conclusion

Satoh et al., (2022) [29] N/A

SLUmean in men: 0.79
(95% CI 0.78–0.90),

SLUmean in women: 0.75
(95% CI 0.74–0.76),
SLUmean inversely
correlated with age

A normal FDG uptake pattern
was demonstrated by

simplified FDG PET/CT bone
marrow quantification.

Fervers et al., (2021) [28] Diagnostic accuracy

AUROC for osteolytic
lesions: 0.70 (95% CI,

0.49–0.90), AUROC for
MM diagnosis: 0.71 (95%

CI 0.54–0.89)

Automated, AI-supported
attenuation assessment of the
spine in DECT after VNCa is

feasible to predict BM
infiltration

in MM.

FCM: clustering fuzzy c-means, HTM: Hough transformation, MM: multiple myeloma, SUV: standardized uptake
volume, AUC: area under the curve, MCC: Mathews correlation coefficient, PCA: principal components analysis,
ANN: artificial neural network, ML: machine learning, k-NN: K-nearest neighbors, cCTv: cumulative CT values,
DECT: dual-energy computed tomography, VNCa: virtual non-calcium, SLU: standardized uptake volume
corrected by lean body mass, and AUROC: area under the receiver operator curve.

3.3. Radiomics Studies

Radiomics was one of the main focuses of studies looking into AI applications in MM
imaging. Radiomics is a set of quantitative features extracted from medical images that
have proven useful in predicting disease features and outcomes [36]. A typical pipeline for
a radiomics study includes acquiring a set of images (with the same scanner and protocol),
normalization of those images using bias correction and normalization methods like z-
score normalization, in addition to resampling the images so that each pixel for all the
images has the same size and images are uniform. ROI segmentation can be manually
performed by a radiologist or automatically using AI models to delineate the actual ROI
(usually bone marrow or bone lesions in MM), calculating radiomics features, which is
often conducted using packages like Pyradiomics, selecting the most relevant ones using
feature selection strategies like LASSO, and finally performing the analysis using machine
learning techniques like ridge regression, decision trees, or deep learning [36]. External
validation was used to assess the models’ performance (Figure 2). In MM, radiomics was
used to predict a variety of factors, including relapse, differentiation of bone lesions from
metastasis, high-risk cytogenic abnormalities, and plasma cell infiltration levels. One study
focused on CT scans, whereas the other four focused on MRI [23].
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Figure 2. Typical radiomics workflow. The workflow includes selecting a cohort of patients eligible for
the radiomics study, extracting the relevant imaging data, preprocessing the images, annotating the
region of interest (e.g., bone lesions in MM), extracting the radiomics features using tools such as the
Pyradiomics package, selecting the most relevant features, analysis, and finally external validation.

Schenone et al. used radiomics to detect relapse in a retrospective cohort of 33 patients
with MM who underwent routine CT follow-ups [23]. Of these, 17 patients relapsed, as
indicated by their clinical records. They extracted 109 radiomics features from lesions
on baseline WB-CT. Principal component analysis was used and three different strategies
were applied to choose the most relevant features. Fuzzy c-clustering was used to predict
relapse, and Hough transformation (HTF) was used to divide the data into two clusters.
Data bootstrapping was applied to generate confidence intervals. Out of the two clusters,
the one that contained more relapse cases was considered the relapse cluster, and the other
one was the not-relapse cluster. The Critical Success Index (CSI) was calculated by dividing
the number of true positive (TP) predictions by the number of TP, false positives (FP), and
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false negatives (FN). These findings were compared with those of the cytogenetics test. The
best-performing model was the HTF model on the dataset of features, which correlated
with Bone-GUI and achieved a CSI of 0.52 (±0.1), whereas the CSI for the cytogenetics test
was 0.44 (±0.16).

Another study by Xiong et al. tested radiomics features to differentiate MM bone
lesions of the spine from other metastatic lesions of cancers [34]. Conventional MRI
sequences were used, including T1 and T2 weighted sequences for this predictive model
analysis. The gold standard was clinical diagnosis, with or without biopsy. A sample of
107 patients (60 patients with MM and 47 with metastatic lesions) was included, and the
lesions were manually segmented on MRI sequences. To choose the most relevant features,
LASSO regression was used and a threshold for minimum intraclass correlation was set.
Finally, five different models including Random Forests, Support Vector Machines, Naïve
Bayes (NB), K-Nearest Neighbor (KNN), and Artificial Neural Networks (ANN) were built
to make predictions. To choose the best-performing model, cross-validation was used in
the training set and Matthew’s correlation coefficient (MCC) was used as the measure of
prediction accuracy. The best-performing model was ANN. The ANN on T2WI had an
MCC of 0.605 in predicting metastasis vs. MM lesions in their validation cohort. In addition,
the model was trained to predict the metastasis subtypes but had lower accuracies.

Liu et al. conducted a similar study to predict high-risk cytogenic abnormalities using
conventional MRI sequences [32]. High-risk cytogenic abnormalities are diagnosed using
Fluorescence in situ hybridization (FISH) as the gold standard. A retrospective cohort of
50 patients with MM for whom MRI and FISH tests were available was included. Lesion
segmentation was performed manually. Intraclass correlation and the SelectKBest method
were used as the primary steps of feature selection. Then, LASSO was used to choose the
final set of features (nine features). Logistic regression was used as a predictive model, and
the area under the curve (AUC) was used as a measure of performance. The model was
run using both a radiomics-only dataset and a combined dataset that included age and
sex. The best-performing model, which was logistic regression on the combined dataset,
achieved an AUC of 0.87 on the test set.

Li et al. conducted a study on estimating the overall survival in patients with MM
using a combined set of radiomics and clinical features [17]. They also compared their
findings with other risk models for MM, including the international staging system model
and the Durie–Salmon Staging System. Their sample consisted of 121 patients with MM
who underwent lumbar MRI. A radiologist segmented out the L1-L5 lumbar vertebra. After
preprocessing, 1136 radiomics features were extracted from each vertebra. For each patient,
the mean value of each feature was calculated for the five lumbar vertebrae. Various
feature selection techniques were used, including univariate Cox models, Spearman’s
correlation, and LASSO Cox regression. Using a linear model, they generated ‘rad-scores’
for each patient based on the radiomics features. A tool called the X-Tile plot was used to
set a threshold of rad-score for high-risk and low-risk patients. The clinical features that
correlated with the overall survival were also included to create a nomogram. The clinical
features included a beta-2 macroglobulin of more than 5.5 mg/L, 1q21 gain, and del(17p)
mutations. Their best model, the radiomics nomogram, achieved a C-Index of 0.81 in the
validation cohort.

Finally, an abstract by Wennman et al. investigated the creation of a pipeline for the
automatic calculation of the percentage of plasma cell infiltration in the bone marrow [35].
Their research consisted of two stages. In stage one, data from 541 MRIs of 270 patients
with MM were used to develop an automatic segmentation tool for the pelvic bone marrow.
Two radiologists manually segmented the MRIs. An nnU-Net architecture was used for
the neural network development. The tool achieved a mean Dice score of 94% on the test
set. In stage two, radiomics features extracted from the automatically segmented bone
marrow were used to predict the percentage of plasma cell infiltration. A random forest
classifier was used for the prediction task. Their tool achieved a mean absolute error of
14.3 compared to biopsy results. For comparison, they asked two radiologists to rank
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plasma cell infiltration levels on the training and test sets into three levels: none to mild,
moderate, and severe. Then, the mean plasma cell infiltration percentage was used for each
category in the training set to predict the percentage of plasma cell infiltration in the test
set based on the radiologists’ categorizations. The mean absolute error for this prediction
task was 16.1. The authors concluded that their tool has comparable accuracy to that of
radiologists in predicting the percentage of marrow plasma cell infiltration.

3.4. Segmentation Studies

Another body of research was dedicated to the development of algorithms for the
automatic segmentation of body structures that are important in MM like bone marrow
or individual bones. Some of these studies did not specifically target patients with MM
but mentioned that their findings could be used in MM patients. Segmentation includes
the use of an algorithm, like a deep learning model, or setting threshold levels to define
the boundaries of a region of interest on a medical image. Automatic segmentation was
part of many of the studies we reviewed. Two studies examined segmentation algorithms
based on MRI images, one on PET images, and four on CT images. One of the studies on
CT images transferred the generated mask to concurrent PET images.

Fraenzle and Bendl [24] used a threshold model to define all the bone regions in the
skeleton on CT images. Then, they used a flood-fill algorithm to fill the bone regions and
create another mask. The difference between the two masks was calculated and considered
to be the bone marrow regions. To assign each bone marrow region to a bone structure,
PCA and a random forest classifier were used. They showed that this model can effectively
categorize each bone marrow region into their respective bone structures on axial leg CT
images.

A study by Shi et al. [31] examined the segmentation of bone lesions in 12 patients
with MM using PET-CT imaging. They used and compared a V-net-based neural network
and a W-net-based neural network developed using 70 phantom images generated by the
researchers. A Dice score of 89.3% was obtained for the segmentation task on the test set.
These results were higher than those of other machine learning algorithms like random
forests, k-nearest neighbors (kNN) classifier, and support vector machines (SVM).

Another study by Takahashi et al. [30] used automatic segmentation of bones on PET-
CT images to calculate PET quantitative parameters of bone involvement in MM patients.
Segmentation was performed on the CT images using a global threshold of Hounsfield unit
values to generate a mask. Morphological closing, which is a procedure that fills gaps, was
performed to account for the soft portions of the skeleton. The mask was transferred to the
PET images, and the maximum standardized uptake value (SUV), mean SUV, and standard
deviation of SUV were calculated for all bone structures, except for the skull. The article did
not discuss the accuracy of their segmentation model. However, their predictions based on
SUVmean at the level of bone involvement correlated with the results of a visual assessment
performed by a nuclear medicine specialist. The study concluded by mentioning that their
pipeline provides a standardized method to assess bone involvement in MM patients.

Wennman et al. [33] conducted a research project on developing a segmentation
algorithm to segment bone marrows at different anatomic locations. They used MRIs of 66
patients with smoldering MM. A radiologist manually segmented the bone marrow regions
labeling 30 different compartments, including the left and right femur, hip, sacrum, and
humerus, in addition to C2-C7, T1-T12, and L1-L5. The nnU-Net Convolutional neural
network was trained on the training dataset. On test data (14 patients) the model achieved
mean Dice scores of 0.80–0.97 on all compartments.

3.5. Other Types of Research

There were instances of other uses of AI in MM imaging. These included the use
of bone subtraction maps [27], cumulative CT scores [26], histogram analysis of bone
marrow [28,29], and calculation of bone marrow infiltration using deep learning.
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Horger et al. [27] performed an experiment to assess how bone subtraction maps can
help radiologists monitor the course of bone disease in MM patients more accurately and
efficiently using low-dose multidetector CT images. A retrospective sample of 82 patients
with 188 low-dose WB-CT images was included. While the gold-standard tests for the
detection of progressive disease were radiologic assessment and hematologic follow-up,
they compared readings using bone subtraction maps with standard images. The authors
showed that bone subtraction maps increased the accuracy of diagnosis by changing the
diagnosis in 9.7% of the cases. In addition, bone subtraction maps helped reduce the scan
reading time by about 25% compared to the standard method.

Fervers et al. [28] assessed the performance of an automated pipeline to measure bone
marrow infiltration in a cohort of 35 patients with MM, monoclonal gammopathy of unde-
termined significance (MGUS), smoldering MM with WB-CT scans, and a concurrent bone
marrow biopsy. A pre-trained neural network was used to segment the spine. Although
the model was developed on healthy individuals, it properly left out bone lesions in MM
patients. They used Hounsfield thresholds to separate the bone marrow from the cortical
bone. Then, using histogram analysis of CT values, they calculated the amount of non-fatty
bone marrow tissue. Using multivariate regression analysis, they showed that these values
correlate with bone marrow infiltration (p < 0.007, r: 0.46) and can detect cases with lytic
bone lesions to some extent. They concluded by stating that the automated pipeline can
help reduce the number of patients undergoing invasive bone marrow biopsies to assess
bone marrow infiltration.

Martínez-Martínez et al. used a similar strategy to detect bone marrow infiltration
in MM patients [25]. Their sample consisted of 74 MM or MGUS patients and 53 healthy
individuals. They used thresholding to select the femur bones. Two radiologists divided the
patients into two groups: those with infiltration and those without infiltration. They used
healthy individuals to generate a density model. They assumed that those with infiltration
would be outliers in this model. They used a classifier (k-NN or soft-margin SVM) on a
set of two features extracted from a previous model. ROC curves were used to determine
the classifier parameters. Their best model was the one that aimed to distinguish healthy
individuals from those that had infiltration using SVM, achieving an AUC of 0.995 (±0.017)
on the test data. Their third experiment, which was aimed at distinguishing those with
bone marrow infiltration from other MM or MGUS patients, achieved an AUC of 0.894
(±0.070).

Another related area of research in this field is the determination of normal bone mar-
row characteristics using imaging. Satoh et al. [29] analyzed PET-CT images of 98 healthy
individuals who underwent imaging for screening purposes. They used a commercial tool
that used a three-dimensional fully automated convolutional neural network to segment
bone regions in the spine and pelvis based on CT images. After manual corrections and
preprocessing to remove cortical bone, they used a mask to select bone marrow regions on
PET images. Afterwards, histogram analysis was performed to extract the features of the
normal bone marrow on PET images. The mean and maximum values of the SUV were
calculated and corrected using lean body mass (abbreviated as SLU) in addition to entropy.
The mean SLU was 0.79 (95% CI 0.78–0.90) in men and 0.75 (95% CI 0.74–0.76) in women in
this study. In addition to calculating these values in their sample of healthy individuals,
they showed that the mean SLU and entropy correlate inversely with age in both sexes.

Finally, a study by Nishida et al. [26] showed that cumulative CT values (cCTv) of the
bone marrow in patients with MM are correlated with disease severity and prognosis. A CT
post-processing computer software (MABLE) was used to extract information. Hounsfield
thresholds were used to detect the bone and bone marrow regions. A cohort of 91 patients
with MM were included in addition to 36 patients with smoldering MM and MGUS for
comparison. The diagnosis was based on the International Myeloma Working Group
criteria. The Durie–Salmon stage, ISS, and R-ISS Staging criteria were used to stage MM
patients. Their pipeline using the MABLE software automatically calculated cCTvs and
they showed that these values are correlated with the diagnosis of MM and a higher stage
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of the disease. In addition, the authors showed that the administration of therapy reduces
cCTvs.

3.6. CLAIM Checklist Evaluation

We analyzed eight of the studies discussed above using the CLAIM checklist. The
scores ranged from 24 to 33 with an average of 26 and a standard deviation of 2.9. Compli-
ance levels were lowest in the Sections 2 and 3 with 59% and 52.5% compliance percentages,
respectively. In the Section 2, the most overlooked components included “De-identification
methods”, “Intended sample size and how it was determined” and “Initialization of model
parameters”. In the Section 3, the most notable overlooked component was “Failure anal-
ysis of incorrectly classified cases”. Finally, a few studies shared links to their full study
protocol and provided publicly accessible data or codes. Table 3 includes the CLAIM
checklist, in addition to the percentage of studies that fulfilled this requirement.

Table 3. CLAIM criteria and the percentage of studies that were compliant with each component.
For each criterion in CLAIM, an experienced AI researcher reviewed the full text of all articles and
determined whether the criterion was fulfilled in the study. The numbers in the last column of this
table show the percentage of articles that fulfilled this criterion.

Category Subcategory Item Percentage of Articles
That Were Compliant

Title/Abstract Identification as a study of AI methodology, specifying the
category of technology used (e.g., deep learning) 87

Title/Abstract Structured summary of study design, methods, results, and
conclusions 62

Introduction Scientific and clinical background, including the intended
use and clinical role of the AI approach 100

Introduction Study objectives and hypotheses 100

Methods Study design Prospective or retrospective study 75

Methods Study design Study goals, such as model creation, exploratory study,
feasibility study, and non-inferiority trial 87

Methods Data Data sources 100

Methods Data

Eligibility criteria: how, where, and when potentially eligible
participants or studies were identified.

(e.g., symptoms, results from previous tests, inclusion in the
registry, patient-care setting, location, and dates)

100

Methods Data Data pre-processing steps 75

Methods Data Selection of data subsets, if applicable 62

Methods Data Definitions of data elements, with references to common data
elements 12

Methods Data De-identification methods 0

Methods Data How missing data were handled 50

Methods Ground Truth Definition of ground truth reference standard, in sufficient
detail to allow replication 100

Methods Ground Truth Rationale for choosing the reference standard (if alternatives
exist) 75

Methods Ground Truth Source of ground-truth annotations; qualifications and
preparation of annotators 100

Methods Ground Truth Annotation tools 100

Methods Ground Truth Measurement of inter- and intrarater variability; methods to
mitigate variability and/or resolve discrepancies 75

Methods Data Partitions Intended sample size and how it was determined 0

Methods Data Partitions How data were assigned to partitions; specify proportions 50

Methods Data Partitions Level at which partitions are disjoint (e.g., image, study,
patient, and institution) 50
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Table 3. Cont.

Category Subcategory Item Percentage of Articles
That Were Compliant

Methods Model Detailed description of the model, including inputs, outputs,
all intermediate layers, and connections 87

Methods Model Software libraries, frameworks, and packages 62

Methods Model Initialization of model parameters (e.g., randomization,
transfer learning) 0

Methods Training
Details of the training approach, including data

augmentation, hyperparameters, and number of models
trained

50

Methods Training Method of selecting the final model 62

Methods Training Ensembling techniques, if applicable 0

Methods Evaluation Metrics of model performance 87

Methods Evaluation Statistical measures of significance and uncertainty (e.g.,
confidence intervals) 75

Methods Evaluation Robustness or sensitivity analysis 62

Methods Evaluation Methods for explainability or interpretability (e.g., saliency
maps), and how they were validated 62

Methods Evaluation Validation or testing on external data 0

Results Data Flow of participants or cases, using a diagram to indicate
inclusion and exclusion 37

Results Data Demographic and clinical characteristics of cases in each
partition 62

Results Model Performance Performance metrics for optimal model(s) on all data
partitions 87

Results Model Performance Estimates of diagnostic accuracy and their precision (such as
95% confidence intervals) 75

Results Model Performance Failure analysis of incorrectly classified cases 0

Discussion Study limitations, including potential bias, statistical
uncertainty, and generalizability 87

Discussion Implications for practice, including the intended use and/or
clinical role 100

Other Information Registration number and name of registry 25

Other Information Where the full study protocol can be accessed 12

Other Information Sources of funding and other support; role of funders 100

4. Discussion

In this review, we investigated the trends in AI research of MM. While the studies were
diverse in terms of methods and outcomes, most fell into two major categories: radiomics
and segmentation. A lot of effort is being put into using radiomics to develop predictive
algorithms for MM. These studies usually focused on predictive tasks that a human ra-
diologist cannot perform, like detecting high-risk cytogenic abnormalities [32]. Most of
the radiomics studies used intraclass correlations in addition to LASSO to select the most
appropriate features [32,34]. The analysis methods were also diverse and included logistic
regression [32], neural networks [34], random forests [35], and clustering methods [23].
While some studies used bootstrapping methods to generate confidence intervals for their
results, others simply reported their performance measures as a single number.

4.1. Radiomics in MM

Radiomics has shown some promising results when using data hidden in imaging
modalities to perform high-level prediction tasks. However, it has not yet reached a
performance level that can justify its use in routine clinical settings [37]. In addition,
there seems to be a lot of variation in how radiomics research is performed and how their
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performance is assessed [36,37]. Some of the results should be looked at with a grain of
salt, as studies suffer from methodological errors. For example, in a study by Liu et al. [32],
researchers used each lesion as a data point due to the low number of cases (each patient
might have many lesions). In machine learning, data points, especially across the training
and testing datasets, must be independent of each other; Which is not the case in this
study and partly explains the high accuracy they achieved on their test set. In addition, the
measures of performance in these studies were as diverse as their topics, making it hard
to compare. Measures like CSI [23], MCC [34], and AUC [32] were used for studies with
binary outcomes, whereas one study used the mean standard error (MSE) as a measure of
performance. This diversity can be a result of researchers potentially choosing the measure
that gives the highest score to their specific study. Nevertheless, the reviewed studies show
that radiomics features can be used to predict disease features that previously required
specific molecular or laboratory tests. The development of larger MM datasets of patients
and advances in radiomics best practice guidelines may improve the performance of these
models in the future.

4.2. ROI Segmentation in MM

The second largest category contained studies that focused on automatically segment-
ing regions of interest on medical images. Segmentation in radiology is the process of
categorizing each pixel or voxel into a medical image to a specific anatomical or patho-
logical class, such as identifying and labeling different structures or regions within the
image, for diagnostic or analytical purposes. These studies used two major approaches for
their tasks. The first approach used rule-based algorithms to segment regions of interest
based on a threshold for their signal intensity or density [30]. An example could be the
segmentation of bone by selecting regions of the image with Hounsfield values equal to or
higher than that of the bone. Studies that used this technique did not provide any measure
of accuracy, and segmentation was only a part of the study and was followed up by some
other analyses. The second approach was to use state-of-the-art machine learning models
like U-Nets or V-nets [28,31]. These are neural network structures that have shown to be
effective in segmentation tasks.

While radiomics studies are in the preliminary stages of development, segmentation
algorithms seem to perform efficiently, often competing with the performance of a human
radiologist. State-of-the-art neural network structures like U-Nets achieved Dice scores
compared to human segmentations that were comparable to Dice scores between two
human radiologists. Interestingly, in a study by Fervers et al. [28] the neural network
previously developed for spine segmentation in healthy individuals performed well in
segmenting the spine in patients with MM who had lytic bone lesions. As shown in
some of the studies reviewed here, these segmentation tools can play an important role
in developing automatic diagnostic or predictive algorithms in the future. The study by
Horger et al. was probably the only study that assessed the clinical applicability of an
AI tool and gave us a glimpse of how AI can be incorporated into clinical practice in
radiology [27]. They showed that bone subtraction maps can help radiologists improve
their efficiency and accuracy in detecting progressive MM on follow-up imaging.

4.3. Other Types of Studies

The other studies discussed in this paper used CT values in different ways to predict
bone marrow infiltration [26,28]. While one study used cumulative CT values [26], the
other tried to measure the amount of non-fatty bone marrow [28]. They both showed that
these measures can be used to detect bone marrow infiltration levels in MM patients and, if
used, can potentially reduce the number of bone marrow biopsies. Given the importance of
explainability in clinical algorithms [38], these studies have the advantage of using simpler
and more understandable methods for predictive tasks. This is compared to radiomics
studies that use quantitative features that are hard to explain and difficult to correlate with
the outcome in question by clinicians.
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4.4. CLAIM Evaluation

The evaluation of the studies using the CLAIM checklist provides a clear picture
of the areas that need improvement when conducting AI research in multiple myeloma.
Researchers need to be more transparent regarding the methods they use. Some commonly
overlooked components include particularly how they de-identified their data, how they
initialized their model parameters, and a more detailed description of their sample, includ-
ing how they would justify their sample size and how patients were included. Finally, while
many studies provided performance metrics, they did not explore cases where their model
had failed or tried to provide any explanations as to why these failures might happen.

4.5. Recommendations for Future Directions

Given the fast pace at which AI research is changing, we expect to see a shift towards
more advanced methods like deep learning models, generative AI, and large language
models. In doing so, we believe that researchers need to consider a variety of factors,
many of which are mentioned in the CLAIM criteria as well. First, we recommend that
researchers use commonly used, widely accepted performance metrics (like AUROC,
AUPRC, precision, recall, etc.) in a transparent way to enable comparison between different
studies. We also recommend the use of explainable models or strategies to explain, for each
case, how the model made its decision. This would not only increase the trustworthiness
of their models but also make it easier for experts to evaluate them. Providing the code
that was used to generate results and the data (if possible) is another step that is necessary
for the evaluation of a research project. Other strategies include following the available
guidelines when conducting AI research and using an external validation set.

Another aspect of AI research on MM that is often overlooked is the transition of these
models to actual healthcare settings. Studies that investigate how these tools can help the
medical team improve care are scarce. Once a model is developed and validated using
external datasets, researchers should think about how these models can transition to actual
medical practice and design pilot studies that objectively evaluate this.

While the transition to care lags behind current research in the application of AI in
multiple myeloma imaging, there is great potential for the implementation of these tools in
practice. Risk prediction models based on radiomics or deep learning can help clinicians
identify high-risk patients and personalize treatments accordingly. In addition, explainable
AI models may be able to help researchers identify new potentially causal relationships and
biomarkers that could be relevant in the management of patients. Finally, studies focusing
on the segmentation or identification of lesions may be used both for screening patients for
new lesions and as a first step for other AI pipelines (e.g., segmentation of bone marrow as
a first step to generate radiomics features).

With the advent of new methods, AI is making its way into medical workflows. Given
the huge amount of medical imaging data generated, radiology is one of the areas that is at
the forefront of this change. In MM, we showed that research is underway to either make
care easier by automating some tasks (ROI segmentation) or, even further, perform tasks
that a human radiologist is not capable of by using complex algorithms (e.g., predicting
the chance of relapse). In the future, we expect to see more studies that combine multiple
AI tools to create a workflow that can provide valuable information to physicians. For
example, an AI workflow might automatically detect all MM lesions in the body and guide
radiologists in interpreting the image, thus reducing the time needed for the radiologist
to perform this task (which is currently significant) and decreasing the chance of error. In
addition, it will feed this data into another model that will provide estimated risk scores
and personalized treatment suggestions that would add additional valuable information
to the radiology report. Even further, we expect to see more multi-modal models that are
going to use not only imaging data but also data from other sources to make more accurate
predictions. These changes will make AI models valuable tools in a radiologist’s toolbox.
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4.6. Limitations

The application of AI in MM imaging is still in its early stages. Hence the number of
studies on this topic is few. However, we expect a surge in new studies in the following
years. Another limitation of our work is that due to the diversity of research questions in
the studies we reviewed and the variability of performance measures used, we could not
compare the study findings. However, we tried to evaluate all studies using the CLAIM
criteria to provide some means of comparison between the studies.

5. Conclusions

Based on current trends, we anticipate that radiology is going to play an even bigger
role in the management of MM patients. In addition, the development of accurate segmen-
tation algorithms can potentially lead to tools that can assist radiologists in their tasks by
removing unnecessary details and highlighting more important imaging features. Supple-
mentary algorithms can enrich radiologic reports with estimates of important features like
the percentage of plasma cell infiltration and disease severity. Future research in this area
could focus on using more advanced modeling strategies like deep learning, developing
explainable predictive models, and implementing these models in clinical care.
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