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Abstract: Influenza has been a stationary disease in Mexico since 2009, and this causes a high cost
for the national public health system, including its detection using RT-qPCR tests, treatments, and
absenteeism in the workplace. Despite influenza’s relevance, the main clinical features to detect the
disease defined by international institutions like the World Health Organization (WHO) and the
United States Centers for Disease Control and Prevention (CDC) do not follow the same pattern
in all populations. The aim of this work is to find a machine learning method to facilitate decision
making in the clinical differentiation between positive and negative influenza patients, based on their
symptoms and demographic features. The research sample consisted of 15480 records, including
clinical and demographic data of patients with a positive/negative RT-qPCR influenza tests, from
2010 to 2020 in the public healthcare institutions of Mexico City. The performance of the methods for
classifying influenza cases were evaluated with indices like accuracy, specificity, sensitivity, precision,
the f1-measure and the area under the curve (AUC). Results indicate that random forest and bagging
classifiers were the best supervised methods; they showed promise in supporting clinical diagnosis,
especially in places where performing molecular tests might be challenging or not feasible.

Keywords: machine learning; decision support system; medical diagnosis; influenza; artificial intelligence

1. Introduction

Influenza is a respiratory disease that can increase the incidence of pneumonia and
cause a high number of hospitalizations [1]. In March 2009, Mexico, the United States
and Canada were the focus of international attention when the influenza A H1N1 virus
burst onto the epidemiological scene [2]. In June of that same year, the World Health
Organization (WHO) declared an influenza pandemic of moderate severity. Since 2009,
respiratory diseases due to influenza have recurred in numerous nations during the colder
months annually, thus acquiring the category of seasonal influenza. There are four types
of influenza viruses: A, B, C and D. Influenza A and B viruses cause seasonal epidemics
of disease, and have been responsible for thousands of deaths worldwide, despite the
annual vaccination campaigns [3]. In Mexico, between 2020 and 2021, the incidence of
influenza decreased substantially due to the Coronavirus disease (COVID-19) caused by
the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2); however, influenza
cases increased again in 2022 [4]. Before the COVID-19 pandemic, an estimated 291,000 to
646,000 respiratory deaths occurred worldwide each year due to seasonal influenza [5,6].
In Mexico, information regarding influenza infections has been registered since 2010 in
the Influenza Epidemiological Surveillance System to identify its behavior and be able
to predict how the next influenza season will develop [7]. The data in this system are
obtained from symptomatic patients treated at healthcare centers and who had undergone
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a quantitative reverse transcription polymerase chain reaction (RT-qPCR) test to detect the
presence of influenza viral RNA.

The Centers for Disease Control and Prevention (CDC) specify the common symptoms
experienced by influenza patients, such as fever or feeling feverish/chills, cough, sore
throat, runny or stuffy nose, muscle or body aches, headaches, and fatigue (tiredness) [8].
The presence of these symptoms is not a guarantee of having been infected by the influenza
virus; moreover, they vary among the population. Distinguishing the causal agent of
the illness between the influenza virus and other viral or bacterial agents proves to be
challenging through clinical evaluation alone. Therefore, other tests should be applied to
confirm the diagnosis of influenza, RT-qPCR being the most successful test for the molecular
diagnosis [9]. However, in developing countries, this test is not routinely performed due to
high costs and the limited availability of testing facilities. Not all hospitals and clinics have
the necessary equipment and supplies to perform these tests, leading to potentially lengthy
turnaround times [10].

We propose to use alternative methods to facilitate the diagnosis of influenza, like
methods based on Artificial Intelligence (AI), as they could serve as tools to assist in medical
attention for diagnosis prior to RT-qPCR tests or can be applied in locations with difficult
access to molecular analysis. In Figure 1, the workflow applied in this work to find the best
Machine Learning method to diagnose influenza is shown.
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Figure 1. Workflow to find the best ML method to diagnose influenza.

Machine Learning (ML) is a component of AI that encompasses a set of techniques
which enable the implementation of adaptive algorithms to make predictions and self-
organize input data based on common characteristics. When ML is trained with a correct
data set and the algorithm is standardized to accurately respond to all inputs, it is called a
supervised ML [11].

Since the 1970s, interest in applying AI-ML in the health sector has grown [12]. In the
medical field, a significant amount of patient data is managed, including sociodemographic
and epidemiological information, results from physical examinations, diagnostic support
test outcomes, and procedures performed, among others [10,13–47]. Because ML can
effectively handle a large number of attributes (features), and due to its ability to identify
and leverage the interactions among these numerous attributes, it becomes a particularly
compelling tool in this domain [20]. ML algorithms have found extensive application across
numerous medical specialties, serving purposes in prevention, diagnosis, treatment, and
survival analysis alike.

In the case of influenza, ML has been applied to achieve several objectives, one of
which is predicting the incidence of cases in the upcoming influenza seasons [38–40],
including predicting the most prevalent types of influenza viruses for the season [41–43].
In the diagnostic stage, studies have demonstrated how metabolomic data from patients
can be used to infer whether they are positive or negative for influenza [44]. There is even
a report in which open access data were employed to develop a classifier for influenza
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diagnosis; however, not all included patients had a RT-qPCR result to confirm the diagnosis
and validate the classifier’s functionality [10]. ML has also been applied to forecast the
efficacy of influenza vaccines [45–47].

2. Materials and Methods
2.1. Data Set

In this study, a clinical data set comprising 19,160 patient records from Mexico City
was used. The database was made to track influenza’s seasonal behavior and make prog-
nosis for the next season. Data excluded patients’ names, home addresses and hospital
registration numbers. The data set was exported to the authorized researcher for this retro-
spective study, which was reviewed and approved by the institutional ethical committee
(D1/19/501-T/03/096).

We applied three exclusion criteria: (1) age < 7 years, (2) patients with a negative
influenza test but positive for another respiratory virus, and (3) no RT-qPCR result record.
After these criteria, the study included 15,480 records of patients aged between 7 and
119 years old. Figure 2 shows the data distribution. The age ranges were 7–19 (41.5%),
20–39 (20.1%), 40–59 (21.2%), and age ≥ 60 (17.2%); according to the RT-qPCR test, 11,268
(72.8%) were negative and 4212 (27.2%) were positive for influenza virus, and the distri-
bution by sex was 7710 (49.8%) men, and 7770 (50.2%) women. The data set consisted of
24 attributes encompassing clinical and demographic information collected from patients
upon arrival at healthcare institutions for clinical examination and before the sample taking
(nasopharyngeal and/or oropharyngeal exudate) for a RT-qPCR test.
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The set of symptoms and demographic features selected was the vector. The data were
subjected to manual labeling by a clinician who assessed each patient and assigned values
of ‘yes’ or ‘no’ to denote the presence or absence of symptoms, and ‘unknown’ otherwise.

2.2. Data Preprocessing

The symptoms and demographic data were labeled by binary numbers to indicate the
presence or absence of a feature (1, 0, respectively); an unknown case was labeled as 0. Age
range was mapped into the range {0. . .1}, to normalize the data.

In this study, two-step approaches were used to select the main features for training
and testing the supervised ML methods. In the first step, Spearman’s correlation was used
to determine the correlation coefficient between features, as these are categorical variables.
We selected them with a weak correlation (r < 0.75). In the second approach, chi-squared
was computed to analyze the association between independent variables and influenza.
The features selected had a strong association (p < 0.001).

To examine ML models and evaluate their performance, the data set was randomly
split into 80% for the training set and 20% for the testing set. The models were evaluated
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with 10-fold cross-validation to select the best one. Python 3 functions were applied to
create the k-Fold distribution and stratification.

The original data set was unbalanced, with the majority of the cases being negative
for influenza (72.8%) and a minority of cases with a positive influenza test (27.2%). In
this study, the target classes of the training set were balanced 50:50, and the skew was
eliminated to obtain a most appropriate performance of the ML methods [48]. The minority
oversampling technique used was Random Oversampling (ROS), which increases the
size of the data set by randomly resampling the original minority class without creating
new samples or changing the sample variability [49]. All samples from the majority class
(negative for influenza) were used, and through ROS, data were added to the minority
class (positive for influenza), obtaining an equal number of samples in both classes.

2.3. Machine Learning Algorithms

ML methods are an automatic and objective way to classify the samples into two
classes, positive or negative for influenza, using records with inputs and outputs for the
process, features and their classification [50–52]. In this way, we tried to find patterns in the
known data in order to apply them to the new unclassified data.

We had the pair (X,Y) in all cases, X = {x1, x2, . . ., xn} and Y = [positive|negative] for
influenza, according to the RT-qPCR test.

The set of signs, symptoms and demographic features selected are represented by
the vector X, and the data are binary numbers that indicate the absence or presence of the
feature. The age was normalized to a range {0. . .1}.

The aim was to find a model F of ML to represent the approximation between inputs
and outputs.

F: X→ Y (1)

For this study, 10 popular supervised ML methods through python.sklearn libraries for
binary classification were used [53,54]: Adda Boost, Decision Tree, Bagging classification,
Gradient Boosting Classifier (GBC), Random Forest (RF), K-nearest neighbors (Neighbors
KNN), Naive Bayes (NB), Support Vector Machine (SVM), Logistic Regression (LR) and
Discriminant Analysis. Taking advantage of the implementation of supervised ML models
available in the python 3.7 programming language, the tests were carried out with several
algorithms to evaluate their performance and be able to select the most accurate for this
case study, and not only with the classical ML algorithms such as SVM, decision tree, KNN
and NB.

Adaptive Boosting, named the AdaBoost algorithm, is a ML Meta-algorithm that can
be used with many other ML algorithms to enhance its performance [55]. AdaBoost is
sometimes denominated as the strongest out-of-the-box classifier for the so-called weak
learners [56].

Decision trees used to predict categorical variables are called classification trees and
decision trees [49]. The decision tree classifier is a flowchart-like tree structure; each internal
node represents a test on an attribute, each branch represents an outcome of the test, and
the class label is represented by each leaf nodes (or terminal nodes). Decision trees can be
transformed into classification rules [57]. This ML algorithm is used to create the ensemble
ML methods.

Random forest is a set of decision tree classifiers; in this ML model, each decision
tree depends on a random vector of the training data set. They vote independently for the
most popular class, and their classification is ensembled to give the final output using the
classes given by each model [58]. The random forest algorithm is a special type of ensemble
method. A random forest consists of many small classification decision or regression trees.
Each tree, individually, is a weak learner; however, all the decision trees together can build
a strong learner. It is random because (a) when building trees, a random sampling of
training data sets is followed; and (b) when splitting nodes, a random subset of features is
considered [59].



Diagnostics 2023, 13, 3352 5 of 14

Bagging is a classifier which generates different subsets of the training data set by
selecting data points randomly and with replacement. It can select the same instance
multiple times. It is also called bootstrap aggregation and was created before the random
forest. Given that a small change in the data can bring diverse effects in the model, the
structure of the tree can completely change each tree to randomly sample the data set with
a replacement, results on different trees [60].

The random forest algorithm is considered an extension of the bagging method. The
difference is the number of features used in the decision tree construction: in bagging, all
attributes are used for every decision tree, whereas in random forest, the decision trees have
a random sample of attributes. Both ML methods are based on the decision tree method.
The decision tree method works only with one tree to represent all samples and can be
overfitting. Bagging and random forest work with several trees to represent different types
of samples for each one.

Gradient boosting is a class of ensemble algorithms for machine learning that is
used for regression or classification prediction modeling problems. It combines several
sequential classifiers [61]. At an iteration, trees are added to the ensemble to fit correctly
to the prediction errors made by prior models (boosting) and model fittings, using any
arbitrary differentiable loss function and gradient descent optimization algorithm. The
techniques is known as gradient boosting (Gboost) [62].

In the case of the KNN classifier, the main goal is to predict the closest value using
distance as a basis. The Euclidean distance is a widely used technique [48]. The classification
of the input data is based mainly on the selection of the majority class among its nearest
neighbors [63].

The Naive Bayes classifier is considered a powerful probabilistic algorithm, based on
Bayes theorem: the word “naïve” indicates interdependencies between characteristics. The
version Bernoulli Naive Bayes (BNB) is used for Boolean variables as predictors [64,65].

Support Vector Machine (SVM) is a popular machine learning tool, which offers
solutions to problems in classification and regression [66]. SVM separates classes and finds
the hyperplane that best separates the data into different classes with a maximal margin
between the classes. Initially using a linear decision boundary called a hyperplane to
classify the data, Vapnik introduced a way of building a nonlinear classifier by using kernel
functions [67]; it is placed at a location that maximizes the distance between the hyperplane
and instances [68].

On the other hand, Discriminant Analysis aims to classify objects, by a set of inde-
pendent variables, into one of two or more mutually exclusive and exhaustive categories.
Discriminant analysis can be used only for classification (i.e., with a categorical target
variable), not for regression. The target variable may have two or more categorical data by
the use of multivariate information from the samples studied [69]. There are two methods:
linear and quadratic discrimination. The first is the most widely used where classes are
linearly separated. When a multi-classes analysis is needed, the two-groups method is
used repeatedly in the analysis of pairs of data and the separation is linearity. Quadratic
discrimination is used with nonlinearly separable classes.

2.4. Validation

The model performances were evaluated with a k-fold cross-validation method, which
is an objective way to find the most robust ML algorithm, and we used the contingency
table with the classification results [70].

In k-fold cross validation, the entire data set was divided into k equal parts, with
k-1 subsets used for training while the remaining set was for testing. Each algorithm was
trained and tested k times and the model output for each sample configuration obtained
using cross validation was averaged to provide the global performance output of the model.
The partition of the set with the folds in the subsets was arbitrary and with equal numbers
of positive and negative cases in the training.
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The confusion matrix helps to compare the classification result, and it has 4 values:
true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN).
The columns in the matrix are the results obtained, while in the rows are the expected
and results. (

TP FP
FN TF

)
We compared the performance of the methods in cross validation with the results

using the following metrics:

Accuracy, Acc =
TP + TF

TN + FP + FN + TP
(2)

This measure is for the samples correctly classified.

Precision, Prec =
TP

TP + FP
(3)

measures the positive samples correctly classified vs. only positive samples.

Recall, Rec =
TP

TP + FN
(4)

calculates the positive samples correctly classified vs. the samples expected to be positive.
This is also called sensitivity.

Specificity, Spec =
TN

TN + FP
(5)

measures the fraction of negative samples classified as negative.

F1-score, F1 =
2TP

2TP + FP + FN
(6)

It is an average between recall and precision.
Additionally, all the models were evaluated with the area under the curve (AUC) score

in ROC analysis. This measure uses the ROC curve that shows the ability to make the
difference between 2 classes with a graphical method using recall and specificity, and the
AUC summarizes the performance of the classifiers in the training.

3. Results

At the beginning, the database had 24 attributes. According to Spearman’s correlation,
the feature arthralgia was highly correlated with myalgia (r = 0.87); hence, only myal-
gia was selected in the analysis, as it had fewer missing values. In the chi-squared test
(p-value in Table 1), factors like sex, diarrhea and vaccination presented a low association
with influenza (p > 0.01); therefore, these factors were also dismissed. Finally, 20 features
were selected, many more than the 8 main symptoms of influenza indicated by the CDC:
fever or feeling feverish/chills, cough, sore throat, runny or stuffy nose, muscle or body
aches, headaches, fatigue (tiredness). Age data were used like one factor normalized in the
range {0. . .1}.



Diagnostics 2023, 13, 3352 7 of 14

Table 1. Attributes from influenza database of Mexico City.

Attributes
All Patients
n = 15,480

n (%)

Positive
n = 4212

n (%)

Negative
n = 11,268

n (%)
p-Value

Demographic information

Sex—Feminine 7770 (50.2) 2162 (51.3) 5608 (49.8)
0.087

Sex—Masculine 7710 (49.8) 2050 (48.7) 5660 (50.2)

Hospitalized 10516 (67.9) 2449 (58.1) 8067 (71.6) <0.001

Contact
influenza-patients 2012 (13.0) 715 (17.0) 1297 (11.5) <0.001

Vaccinated for influenza 2096 (13.5) 534 (12.7) 1562 (13.9) 0.059

Age 7–19 years 6417 (41.5) 1511 (35.9) 4906 (43.5)

<0.001
Age 20–39 years 3111 (20.1) 967 (23.0) 2144 (19.0)

Age 40–59 years 3283 (21.2) 1056 (25.0) 2227 (19.8)

Age ≥ 60 years 2669 (17.2) 678 (16.1) 1991 (17.7)

Symptoms

Fever 13,112 (84.7) 3853 (84.2) 9259 (82.2) <0.001

Cough 13,953 (90.1) 3918 (85.7) 10,035 (89.1) <0.001

Chest pain 3750 (24.2) 1160 (25.4) 2590 (23.0) <0.001

Dyspnea 8642 (55.8) 2079 (45.5) 6563 (58.2) <0.001

Irritability 4688 (30.3) 1159 (25.3) 3529 (31.3) <0.001

Diarrhea 1833 (11.8) 492 (10.8) 1341 (11.9) 0.727

Shaking chills 5738 (37.1) 2003 (43.8) 3735 (33.1) <0.001

Headache 8692 (56.1) 2896 (63.3) 5796 (51.4) <0.001

Myalgia 6255 (40.4) 2279 (49.8) 3976 (35.3) <0.001

Arthralgia 5539 (35.8) 2014 (44.0) 3525 (31.3) <0.001

Malaise 9826 (63.5) 2947 (64.4) 6879 (61.0) <0.001

Rhinorrhea 9277 (59.9) 2817 (61.6) 6460 (57.3) <0.001

Polypnea 4602 (29.7) 1073 (23.5) 3529 (31.3) <0.001

Vomiting 1958 (12.6) 606 (13.2) 1352 (12.0) <0.001

Abdominal pain 2114 (13.7) 683 (14.9) 1431 (12.7) <0.001

Sore throat 5321 (34.4) 1850 (40.4) 3471 (30.8) <0.001

Conjunctivitis 3074 (19.9) 1104 (24.1) 1970 (17.5) <0.001

Cyanosis 1703 (11.0) 395 (8.6) 1308 (11.6) <0.001
The p-value corresponds to chi-squared. For the study, the attributes sex, vaccinated for influenza, and diarrhea
were excluded with p-value > 0.001, and the others were selected.

The number of samples to test with ML was 15,840. This database was unbalanced
with 11,268 (72.8%) negative and 4212 (27.2%) positive for influenza, according to the
RT-qPCR tests. In this work, Random Over Sampling (ROS) was used to increase the
number of positive records in the training set to improve the method performance with an
equal number of samples in positive and negative classes.

The features sex, vaccination and diarrhea were not significant in the chi-squared test,
with the dependent variable influenza: these features showed small variation between the
positive and the negative classes.

Finally, our balanced training set had 7918 of positive and the same number of negative
rows and 20 columns of features for training and testing 10 supervised ML algorithms,
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validated with k-fold cross validation (k = 10). In Table 2 are the results of ML methods
with cross-validation. RF had the best evaluation (AUC = 0.94, Acc = 0.86, Rec = 0.91 and
Spec = 0.88 were the best); in second place was the bagging classifier, which works similarly
to RF. With the resampling technique, the number of the minor class (positive for influenza)
increased, and the scores reflected the equilibrium. Figure 3 shows the ROC curves of the
four best ML methods in the 10-fold cross-validation.

Table 2. Results of supervised machine learning algorithms.

Algorithm AUC Acc Rec Prec Spec F1

Random Forest 0.94 0.86 0.91 0.82 0.88 0.86

Bagging 0.93 0.85 0.90 0.82 0.87 0.85

Decision Tree 0.85 0.70 0.71 0.73 0.73 0.72

Kneighbors (7) 0.73 0.63 0.67 0.63 0.60 0.63

Gradient Boosting 0.69 0.62 0.69 0.61 0.56 0.62

SVM rbf 0.67 0.62 0.65 0.61 0.59 0.62

Quadratic Discriminant 0.66 0.62 0.70 0.60 0.54 0.62

Ada Boost 0.66 0.62 0.62 0.61 0.61 0.62

Linear Discriminant * 0.65 0.61 0.62 0.61 0.61 0.61

Linear SVM * 0.65 0.61 0.62 0.61 0.61 0.61

Logistic Regression 0.65 0.61 0.62 0.61 0.61 0.61

BernoulliNB 0.65 0.61 0.59 0.61 0.62 0.61
* Discriminant Analysis and SVM were used twice with different parameters. AUC, area under the curve; Acc,
accuracy; Rec, recall; Prec, precision; Spec, specificity; D1, F1-score.
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Figure 3. ROC graphics of the best ML algorithms with training set. (A) Random Forest,
AUC = 0.94 ± 0.004; (B) Bagging, AUC = 0.93 ± 0.004; (C) Decision Tree, AUC = 0.85 ± 0.006;
and (D) Kneighbors (7), AUC = 0.73 ± 0.014.

Random Forest, Bagging, and Decision Tree are supervised learning algorithms that
can effectively handle categorical or binary features like the ones we have. The applied
resampling seemed to have benefited the sensitivity results as it increased the number of
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positive samples in the training set. Bagging and Random Forest are ensemble techniques,
based on Decision Tree, which ranked third, and along with Kneighbors, are algorithms
capable of capturing non-linear relationships in the data.

The performance of the top four ML methods is shown in Figure 4, and their respective
ROC plots are shown in Figure 5, both showing the results obtained with the test set. The
RF and bagging methods demonstrated the highest scores when applied to the independent
samples in the test set. However, it is important to note a substantial disparity between the
sensitivity and specificity results in the test set. random forest achieved a sensitivity (rec) of
0.30 and a specificity (spec) of 0.90, while bagging had a sensitivity of 0.29 and a specificity
of 0.88. Additionally, the significant differences observed between the results during the
training and testing phases highlight certain limitations in this study. One potential factor
contributing to these limitations is the sensitivity of machine learning models to class
imbalance. Even after implementing random oversampling (ROS) on the training set to
address the issue of imbalance, especially considering the considerably higher proportion of
negative samples compared to positive samples, the desired variability was not effectively
introduced into the training data. Another contributing factor might be attributed to the
nature of the data set itself. In this study, we utilized binary data to represent the presence
or absence of specific characteristics, with the exception of age, which was represented as
a continuous variable. In contrast, other studies in the medical field that have achieved
superior results have not only incorporated binary variables but have also integrated
continuous variables obtained from laboratory tests and biometric measurements to assess
patients’ conditions [19,20,32,37]. An illustrative case from [21] involved the transformation
of continuous data into binary values, but this approach also yielded unsatisfactory results.
It is plausible that, in our case, the lack of relevant information and the use of subjective
values to evaluate the health status of patients may have led to weaker associations between
these characteristics and the occurrence of influenza.
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Figure 4. Results with test set using the four ML algorithms. The top scores are associated with
specificity for the four algorithms: RF (spec = 0.90), Bagging (spec = 0.87), DT (spec = 0.77), and
KNN (spec = 0.89). Conversely, the remaining metrics indicate the misclassification of positive
influenza cases.
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4. Discussion

The use of artificial intelligence techniques through ML has increased its possibility as
an alternative or powered tool in the diagnosis of infectious diseases [71–73]. With this idea,
in this work we searched for an ML method as an alternative to the PCR test to perform
diagnostics of influenza. Here, 19 category features and age were used, collected when
the patient arrived with symptoms of influenza. In order to eliminate the unbalanced data
between the positive and negative influenza cases of 15840 samples and to reduce the
skew, we applied a resampling technique, random over sampling to positives. With resam-
pling techniques, the Ensemble ML methods like Random Forest and Bagging could be
favored—RF with AUC = 0.94, Acc = 0.86, Spec = 0.88 and, sensibility = 0.91, and Bagging
with AUC = 0.93, Acc = 0.85, Spec = 0.87 and sensibility = 0.90—in the cross-validation. In
other works [74,75] RF and Bagging were also combined with resampling techniques and
showed good performance.

Nevertheless, it is important to note that these ML methods may serve as valuable
screening tools to assist medical practitioners in distinguishing between positive and
negative influenza cases, yielding promising results that could aid in decision making. This
is particularly relevant for scenarios where the RT-qPCR test results are expected to be
negative, potentially leading to reduced costs associated with testing.

Our research findings were based exclusively on data obtained from Mexican patients.
This approach was chosen due to the unique health conditions prevalent in Mexico, which
may differ significantly from those in other countries. It is important to consider that
COVID-19 has changed the patterns of respiratory diseases [76,77]. Even though vaccines
are applied every year, many people around the world are infected with influenza, causing
a large number of deaths [4,78,79].

The potential advantage highlighted in our study is the use of an alternative decision-
support tool, particularly relevant to regions where healthcare providers or patients, armed
solely with basic questioning information, can assess the necessity for treatment and the
conduction of PCR tests for the influenza disease.

4.1. Limitations of Work

Our results show problems in the prediction of positive influenza cases, maybe because
the data set is imbalanced, and the binary features lose representativeness of the patient’s
health status. ML techniques hold potential in diverse applications; however, it is crucial to
acknowledge that, in this study, these methods play a limited role as detection tools. They
should not be perceived as a complete substitute for clinical diagnosis. RT-qPCR tests retain
their indispensable status for precise influenza results, and therefore, machine learning
models should be considered as complementary rather than as a complete replacement for
conventional diagnostic approaches. Our findings indicate challenges in predicting positive
influenza cases, possibly due to data imbalance and the diminished representativeness of
binary features concerning a patients’ health status.
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It is possible that the low prediction values could be improved with our data set
through several avenues. One approach could involve grouping individuals according
to age, as symptoms may exhibit more pronounced patterns within specific age groups.
Exploring alternative machine learning models is also a worthwhile consideration in our
quest for improved predictions. Additionally, expanding the data set by including more
positive cases from different Mexican regions could enhance the models’ performance.

4.2. Future Work

This research has the potential for ongoing improvement and broader application.
Comprehensive ablation studies can provide deeper insights into the algorithm’s capabili-
ties, allowing for a clearer grasp of its strengths and weaknesses. These studies encompass
various facets, including feature selection, the incorporation of additional continuous
data to enhance patient health assessment, the adoption of class balancing techniques,
and the use of advanced machine learning models like convolutional neural networks to
handle larger data sets and continuous data. Furthermore, it is essential to explore the
creation of comprehensive models that effectively differentiate between COVID-19 and
influenza cases.

5. Conclusions

In this study, machine learning models showcased a notably higher specificity com-
pared to sensitivity, suggesting their potential utility in the identification of negative cases.
This capability could help minimize the number of unnecessary molecular tests for individ-
uals presenting with symptoms resembling influenza. This aspect is particularly pertinent
in Mexico, where, for epidemiological reasons, during the influenza season around 10% of
the population with symptoms resembling influenza are randomly selected for RT-qPCR
testing, with approximately 70% of those cases turning out to be negative. By incorpo-
rating a tool akin to the one outlined in this study, clinicians can make more informed
decisions about which patients require PCR testing, ultimately enhancing data quality for
national-level decision making. Furthermore, given the limited availability of RT-qPCR
testing facilities in certain areas, this tool can serve as valuable support for healthcare
practitioners, aiding them in determining the necessity of conducting tests. This approach
has the potential to reduce costs for patients and ease the burden on the healthcare sector.
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