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Abstract: Prostate cancer (PCa) is a widespread malignancy with global significance, which substan-
tially affects cancer-related mortality. Its spectrum varies widely, from slow-progressing cases to
aggressive or even lethal forms. Effective patient stratification into risk groups is crucial to thera-
peutic decisions and clinical trials. This review examines a wide range of diagnostic and prognostic
biomarkers, several of which are integrated into clinical guidelines, such as the PHI, the 4K score,
PCA3, Decipher, and Prolaris. It also explores the emergence of novel biomarkers supported by
robust preclinical evidence, including urinary miRNAs and isoprostanes. Genetic alterations fre-
quently identified in PCa, including BRCA1/BRCA2, ETS gene fusions, and AR changes, are also
discussed, offering insights into risk assessment and precision treatment strategies. By evaluating
the latest developments and applications of PCa biomarkers, this review contributes to an enhanced
understanding of their role in disease management.

Keywords: prostate cancer; biomarkers; PHI; 4K score; PCA3; Decipher; Prolaris; BRCA1/BRCA2;
ETS gene fusions; disease management; precision therapeutics

1. Introduction

Prostate cancer (PCa) is the second most prevalent cancer and the fifth leading cause
of cancer-related fatalities in men worldwide. In 2020, approximately 1,414,259 new cases
of PCa were reported worldwide, resulting in 375,304 PCa-related fatalities [1]. According
to recent data from the U.S. SEER database, the estimated new cases of PCa are 288,300 in
the United States in 2023, accounting for 14.7% of all newly identified cases during this
period. The estimated 5-year survival rate of these patients is 97.1% [2].

PCa is highly variable, with about 20% of cases being high-risk [3]. Tailored treatments
range from active surveillance to intensive therapies [4,5]. An accurate risk assessment is
critical for treatment decisions [6]. The diagnosis relies on methods such as a digital rectal
examination (DRE), a prostate-specific antigen (PSA) assessment, imaging, and a tissue
biopsy with Gleason grading [5]. Gleason scores of 1–5 usually indicate benign tumors;
scores of 6–7 indicate tumors that are manageable; and scores of 8–10 signal advanced
disease [7].

The current diagnostic methods for PCa have various limitations that can lead to over-
diagnoses and overtreatment [8]. For example, PSA testing, while aiding early detection,
lacks precision (20–40% accuracy), as non-malignant conditions can cause PSA elevation,
potentially resulting in false positives [9,10]. Conversely, slow-growing PCa with normal
PSA levels may be missed, increasing the mortality risk [11]. To address these issues, a
biopsy may be suggested when two abnormal PSA levels or a palpable abnormality are
present [12]. Low-risk individuals with Gleason scores of 6 or lower and PSA levels below
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10 µg/L may opt for active surveillance to avoid unnecessary treatment until the disease
progression necessitates intervention [13,14].

In recent years, the growing understanding of the malignant biological characteristics
of PCa and its molecular attributes has enabled the discovery of multiple biomarkers, which
have been integrated with current diagnostic methods, risk assessments, and treatment
selections. Biomarkers guide treatment decisions by identifying which therapies are most
likely to be effective for a specific patient. This prevents overtreatment and minimizes the
risk of adverse effects. A personalized treatment based on biomarker profiles can lead to
improved patient outcomes, including higher response rates, longer survival, and a better
quality of life. This review comprehensively explores biomarkers throughout the clinical
continuum of PCa, from diagnosis to treatment. It encompasses both well-established
clinical biomarkers and emerging ones that require further validation.

2. Biomarker for PCa Diagnosis

The specificity of using PSA as a screening tool for PCa has its limitations, especially
when the PSA levels are lower than 10 µg/L. This lack of specificity results in a substan-
tial proportion of men undergoing biopsies, either to confirm or rule out a malignancy,
unnecessarily. Remarkably, studies have shown that 65% to 75% of men with PSA levels
between 3/4 and 10 µg/L do not exhibit any signs of detectable PCa through a biopsy [15].
To improve precision and decrease the occurrence of unnecessary or repeated biopsies,
various supplementary tests such as the PHI, the 4K score, and PCA3 have been proposed.

The basis for the development of numerous tests is that PSA can manifest in various
forms [16,17]. Initial investigations revealed distinct PSA forms within blood, which
were mainly discovered in association with serum protease inhibitors—particularly α1-
antichymotrypsin—accounting for around 70% to 90% of its composition. Approximately
10% to 30% of PSA remains unbound [16,17]. This unbound PSA in serum contains three
principal forms: pro-PSA, BPSA, and intact PSA. Significantly, pro-PSA can manifest
in various ways, including the native proPSA form, which harbors a 7-amino-acid pro-
peptide leader [(−7) proPSA], along with versions presenting truncated pro-peptide leader
sequences. These truncated proPSA iterations include proPSA with a 5-amino-acid (−5)
proPSA, 4-amino-acid (−4) proPSA, or 2-amino-acid (−2) proPSA, among others [18,19].

2.1. The Prostate Health Index (PHI)

The calculation of the prostate health index (PHI) involves measuring −2proPSA,
the percentage of free PSA (fPSA), and the total PSA (tPSA). These values are combined
using the formula (−2 proPSA/fPSA) ×

√
tPSA provided by Beckman Coulter, Inc. (Brea,

CA, USA) [20]. The PHI has shown exceptional proficiency in the examination of PCa,
including more aggressive subtypes, surpassing both the total PSA and the percentage of
free PSA [20–23]. In a meta-analysis of 2919 patients across eight studies, the PHI exhibited
a combined sensitivity of 90% and a combined specificity of 31.6% with regard to PCa
detection [23]. The PHI consistently outperformed the total PSA and percentage of free PSA
in terms of accurate PCa detection, especially in men with PSA levels between 2 µg/L and
10 µg/L. Additionally, a 6-year follow-up study indicated that the initial PHI levels could
predict the 6-year risk of PCa, with a higher PHI (>35) indicating a greater risk that would
prompt closer monitoring [24]. Furthermore, combining the PHI with other diagnostic
methods, such as multiparametric magnetic resonance imaging (mpMRI), improved its
performance. In an Asian population, the combination of the PHI and mpMRI demon-
strated a higher accuracy in detecting clinically significant PCa (csPC) compared to the
PHI or mpMRI alone, with an AUC of 0.873 versus 0.735 (p = 0.002) and 0.873 versus 0.830
(p = 0.035), respectively [25].

In clinical settings, the PHI is primarily used to improve individual risk assessments
for early PCa detection [26] and reduce unnecessary biopsies in males with borderline PSA
levels, resulting in reductions that range from approximately 15% to 45%, depending on
the selected threshold [27]. Nevertheless, this evasion may result in a small percentage of
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overlooked cancers—typically less than 10% when the threshold is established at 25 [27].
The ideal pre-analytical treatment and storage conditions for PHI measurements have yet
to be determined. Further research is needed to ascertain whether plasma or serum is the
preferred matrix for precise measurements. A recent multicenter study also showed that
the PHI reference ranges need to be adjusted for different populations [28].

2.2. 4K Score

The 4K score tests include evaluating the levels of total PSA, free PSA, intact PSA (a
form of free PSA), and human kallikrein 2 (hK2) [29]. An algorithm combines the levels
of these biomarkers with the patient’s age, the results of a DRE, and any previous biopsy
outcomes to predict the probability of an individual having high-grade PCa. Numerous
studies have shown that, like the PHI, the 4K score is more accurate for diagnosing PCa
in general and high-grade PCa specifically, compared to PSA or the percentage of free
PSA [30–34]. For example, the AUC for the 4K score in the ProtecT trial, which included
4765 patients, was 0.719, whereas it was 0.634 for PSA in all cancers and 0.820 compared
to 0.738 for high-grade PCa [30]. A meta-analysis of published studies found that the 4K
score and the PHI showed a similar diagnostic accuracy for high-grade PCa [34]. Similar to
the percentage of free PSA and the PHI, the 4K score has a significant clinical benefit, as it
helps patients avoid unnecessary biopsies. Reported reductions in this magnitude have
been observed, varying between 41% and 57% depending on the selected threshold [27].
Like the PHI, this decrease in the 4K score might overlook a small proportion of clinically
significant PCa [35]. Another issue arises as a result of the variability in the cutoff values for
the 4K score across different studies, leading to heterogeneity in PCa diagnoses. A recent
meta-analysis suggested that a 4K score below 7.5% signifies a low risk, whereas cutoff
values from 7.5% to 10% provide a high level of accuracy for a high-grade PCa diagnosis.
Nevertheless, larger-scale studies are needed to confirm this finding [36].

2.3. PCA3

PCA3, also known as DD3, is a prostate-specific mRNA biomarker that has promising
potential for the detection of prostate cancer (PCa). Studies noted significantly higher
PCA3 levels (10 to 100 times) in 53 out of 56 PCa tissue samples compared to adjacent
non-cancerous prostate tissue. PCA3 was absent in non-prostatic tissues, but present in
normal prostates and benign prostate hypertrophy [37]. The Progensa PCA3 assay, which
detects both PCA3 and PSA mRNA in urine samples after a digital rectal examination, has
diagnostic potential [38]. The pooled data from 46 studies involving 12,295 individuals
showed a promising sensitivity (0.65) and specificity (0.73) for PCa diagnoses, with an AUC
of 0.75 [39].

Although PCA3 is not expected to replace PSA as the main indicator for PCa, the
combination of their measurements could greatly improve the accuracy of PCa diagnoses.
PCA3 testing could be especially beneficial for individuals with high PSA levels and
biopsies that show no abnormalities histologically [40]. In such cases, PCA3 can be used
to determine whether a repeat biopsy is necessary. The FDA approved the use of the
PROGENSA PCA3 test in 2012, in conjunction with other patient data, to help decide if
men aged ≥50 years, who have had one or more negative prostate biopsies in the past
and are recommended for a repeat biopsy by a urologist according to current practice
standards, actually need said biopsy. However, PCA3 has certain limitations. Firstly,
there is controversy surrounding the optimal thresholds for PCA3. Various studies have
employed different PCA3 score thresholds, with some utilizing a threshold of ≥35, while
others favor a threshold of <35. Recent investigations have indicated that a PCA3 score
of 35 strikes an optimal balance between sensitivity and specificity in diagnosing PCa,
whereas a PCA3 score lower than 25 may predict the presence of pathological indolent PCa.
Secondly, PCA3, as an mRNA, is inherently unstable, necessitating precise and accurate
handling and preservation methods [41].
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2.4. Mi-Prostate Score (MiPS)

The Mi-prostate score (MiPS) is a predictive algorithm that includes serum PSA and
the urinary biomarkers PCA3 and TMPRSS2:ERG. There is evidence suggesting that it
is markedly superior to PSA for diagnostic purposes [27,42]. Significantly, the MiPS has
demonstrated the capability not just of detecting the existence of PCa before a biopsy, result-
ing in a significant reduction of 35–47% in unnecessary biopsies and overdiagnoses, but also
of predicting high-grade PCa on a biopsy, making it a valuable instrument for estimating in-
dividual risk [43]. However, the MiPS has several obvious shortcomings: Firstly, it demands
a high level of technical expertise and platform capability for effective implementation.
Secondly, it presents an important limitation stemming from variations in the prevalence
of the TMPRSS2:ERG gene fusion among different racial groups. Research has demon-
strated substantial differences, with this fusion being present in 50% of Caucasians, 31.3%
of African Americans, and 15.9% of Japanese patients. The potential implications of this
variance with regard to the applicability of the MiPS in non-Western patient populations
remain uncertain and should be considered by healthcare providers [44].

2.5. Urinary miRNAs (umiRNAs)

Urinary miRNAs have emerged as promising biomarkers for detecting prostate can-
cer (PCa), offering valuable tools to distinguish between malignant and benign tumors.
Elevated levels of urinary miR-100 and miR-200b have been associated with advanced
PCa, while miR-196a-5p and miR-501-3p are downregulated in urinary exosomes, holding
promise as PCa biomarkers. Notably, the levels of miR-21, miR-141, and miR-375 were
significantly higher in the urinary samples of PCa patients compared to those of healthy in-
dividuals. Furthermore, an increased expression of miR-141 was observed in patients with
higher Gleason scores. The upregulation of miR-21-5p, miR-141-3p, and miR-205p in urine
samples exhibited a higher specificity for PCa detection compared to traditional PSA testing.
Conversely, miR-19b and miR-26a showed significant downregulation, while miR-320a
was upregulated in PCa patients, supporting their potential as valuable biomarkers.

Based on miRNA research, a ratio analysis was employed to enhance the diagnostic
accuracy. The urinary miR-1913 to miR-3659 ratio was found to be elevated in PCa patients,
particularly benefiting those with total serum PSA levels between 3 and 10 ng/mL. Ad-
ditionally, the expression ratio of urinary miR-H9 to miR-3659 was significantly higher
in the PCa group. While urinary miRNAs show promise as supplemental biomarkers to
complement PSA testing in PCa diagnoses, none have yet been officially recognized as
standalone diagnostic markers [45].

Table 1 lists additional reflex biomarkers that may aid in making informed decisions
about biopsies for men with borderline PSA levels.

Table 1. Advancements in the development of diagnostic models for PCa.

Detection
Assay Analytes Clinical Utility Limitations

4K score [35,46]
Serum tPSA, fPSA, HK2, and intact

PSA; a DRE; and a history of a
negative biopsy

Mainly used as a diagnostic marker;
the EAU guidelines recommend using

it for patients with PSA levels
between 2 and 10 ng/mL. The NCCN

guidelines recommend using it for
patients with negative biopsies. It is
used to diagnose PCa with a Gleason

score (GS) of ≥7, and some studies
have used it to predict the risk of a

distant metastasis.

The cutoff values in different
guidelines have not been

determined. It would miss a small
amount of csPCa.
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Table 1. Cont.

Detection
Assay Analytes Clinical Utility Limitations

PHI [47,48] −2 proPSA/fPSA ×
√

tPSA

Mainly used as a diagnostic
biomarker; the EAU guidelines

recommend stratifying patients with
PSA levels between 2 and 10 ng/mL

to reduce biopsies. The AUA
guidelines recommend it as a

second-line monitoring tool. The FDA
approved the PHI for the early

detection of Pca.

Occasionally leads to missed
cancers. Optimal pre-analytical
handling and sample storage

conditions have yet to be
determined.

SelectMDx [49,50]

mRNA expression of HOXC6,
DLX1, and KLK3 in urine samples

following a DRE, combined with the
family history, age, a DRE, and PSA

Mainly used as a diagnostic
biomarker; it assesses the associated

risk in patients with PCa and a
GS ≥ 7.

The clinical application of this test is
currently under evaluation by the

NCCN expert committee.

ConfirmMDx [51,52]
The epigenetic modifications of
three genes (GSTP1, APC, and

RASSF1) in prostate tissue

Can be applied in situations where
tumor tissue cannot be obtained

through a biopsy, as recommended by
NCCN and EAU guidelines.

The FDA has not yet approved it,
and large-scale clinical applications
have not been initiated or validated.

Progensa® PCA3 [37,41] PCA3 (non-coding RNA)

NCCN and EAU guidelines
recommend using it after confirmation
of negative biopsy results. In addition,

this score can predict patients with
PCa and a GS ≥ 7.

The thresholds remain controversial.
PCA3 is unstable and needs more

effort to capture and preserve.

Mi-prostate score [43,53] Serum PSA; urinary PCA3 and
TMPRSS2:ERG

Used for the early detection of
invasive PCa.

It requires a relatively high level of
technical platform.

The Stockholm3-test
(sthlm3

model) [54]

Clinical variables (age, family
history, and biopsy results), serum
markers (tPSA, fPSA, hK2, MIC1,

and MSMB), and 254
single-nucleotide polymorphisms

(SNPs) of the HOXB13 gene

It is used for detecting highly
malignant PCa (GS ≥ 7).

It is only applicable in Nordic
countries (Sweden, Norway,

Denmark, Finland, etc.). The scope
of SNP information is relatively
limited, and the population is

relatively homogeneous.

ExoDx prostate
IntelliScore [55]

Exosomal RNA levels of PCA3,
ERG, and SPDEF from non-DRE

urine

The NCCN guidelines recommend it
as the preferred option for initial or

repeat biopsies; used to detect
high-grade PCa (GS ≥ 7).

There is currently a lack of
standardized and executable

protocols for extracellular vesicle
isolation and detection.

ERSPC risk calculators
(RC) [56]

Family history, age, urinary system
symptoms, tPSA level, a DRE, the
prostate volume, multiparametric
MRI imaging data, and the biopsy

history

The EAU guidelines recommend it for
assessing the risk of PCa. -

3. Biomarker for PCa Risk Stratification (Prognosis)

Table 2 presents a variety of tissue biomarker assays that have emerged in the contem-
porary period to evaluate the severity and predict the outlook for individuals diagnosed
with PCa. Notably, certain tests are multi-analyte in nature, measuring various molecular
entities, particularly mRNAs. Decipher, Oncotype DX (Prostate), and Prolaris are the tests
with the highest level of substantiation among those listed in Table 2. The main purpose of
these tests is to provide information on tumor aggressiveness and patient outcomes, even
though they have been evaluated in various scenarios and used at different endpoints.

Table 2. Research progress on predictive models for PCa prognosis.

Detection
Assay Analytes Clinical Utility Limitations

Decipher genomic
classifier [57]

Assessing 22 lncRNAs in PCa tissue
specimens on a scale from 0 to 1 to

evaluate the risk.

NCCN guidelines recommend its use
for risk stratification after a radical

prostatectomy. It is also used to guide
postoperative radiation therapy and

ADT.

Comprehensive clinical
applications and long-term data

are still needed.
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Table 2. Cont.

Detection
Assay Analytes Clinical Utility Limitations

Prolaris (CCP score)
[58–60]

Detecting 31 cell-cycle-related genes
and 15 housekeeping genes in

prostate tissue.

NCCN guidelines recommend using it
to help assess the prognosis and risk

stratification in patients with or without
treatment. Some studies also use it to

identify indolent cancer.

The test was not trained for a
specific a priori endpoint. There

are currently no relevant
prospective randomized

controlled trials to validate the
efficacy of this model.

Oncotype DX® GPS [61]

Using PCa tissue samples to detect
the expression of 17 genes involving

4 pathways: stromal response,
androgen signaling, proliferation,

and cellular organization.

NCCN guidelines recommend its use to
help assess patients’ prognosis and risk
stratification. It has specific value in the
prediction of an adverse pathology after

an RP.

-

ProMark [62]

Using immunofluorescence to
detect the expression of 8 protein
molecules in PCa tissue, graded

from 0 to 1.

NCCN guidelines recommend its use
for prognostic risk stratification.

There are currently no relevant
prospective randomized

controlled trials to validate the
predictive power of this model.

ADT-RS [63]

Screening for 49 relevant genes from
the Decipher GRID database to

predict the response to ADT
(androgen deprivation therapy).

A higher ADT-RS (androgen
deprivation therapy response score)
indicates a greater benefit from ADT

treatment; patients with higher
ADT-RSs experienced a decrease in the

distant metastasis rate after ADT.

There is a lack of multicenter,
prospective data to confirm these

findings.

PAM50 [64,65]

By detecting the expression of 50
genes (PAM50) and 5 control genes

in surgical specimens, PCa is
classified into molecular subtypes:

Lum A, Lum B, or basal.

The luminal B subtype benefits from
postoperative ADT, while the benefits

for the other subtypes are not clear.
Recent studies have shown the potential
application of molecular subtyping for

patients with mCRPC (metastatic
castration-resistant PCa).

Its predictive efficacy has not been
confirmed in further clinical trials.

RSI [66]

A total of 11 relevant genes were
selected from the molecular

expression profiles of more than 60
irradiated cell strains.

It can predict the sensitivity of PCa
patients to radiation therapy, but cannot

predict the patient’s outcome after
radiation therapy.

Its efficacy lacks confirmation
from clinical trials.

3.1. Decipher

Decipher™, a genomic classifier developed collaboratively by GenomeDx Biosciences
based in Vancouver, BC, Canada, and Mayo Clinic, is designed to forecast the probability
of metastasis after a radical prostatectomy (RP). The foundation of this tool relies on the
examination of 1.4 million genetic markers, including coding and non-coding RNA. The
signature is formed by 22 RNA biomarkers that affect various biological signaling pathways
such as cell differentiation, proliferation, structure, adhesion, motility, immune response,
cell-cycle progression, and androgen signaling [57]. The test produces a genomic classifier
(GC) that assigns a continuous risk score between 0 and 1. The risk of metastasis within
5 years after surgery is indicated by each score, with a score of 1 representing the high-
est probability. Decipher™ has received approval in the United States for evaluating the
likelihood of experiencing biochemical recurrence (BCR) or clinical progression (e.g., metas-
tasis) in post-RP PCa patients with an adverse pathology (pT3 and/or positive margins or
biochemical failure) or PSA persistence or recurrence during the follow-up period.

The role of Decipher™ in the classification and personalized treatment of prostate
cancer has been demonstrated. A systemic review found that the GC is an independent
prognostic factor for various critical endpoints, including biochemical recurrence, metas-
tasis, and cancer-specific survival [67]. One of the most important utilities of the GC is
its ability to classify the high risk of aggressive disease in the patients who received an
RP. A prospective study revealed that, among high-risk GC patients, those who under-
went adjuvant RT(ART) had a lower 2-year PSA recurrence compared to those who did
not receive ART (3% vs. 25%, p = 0.013). However, no difference in PSA recurrence was
observed between ART and no ART in low-/intermediate-risk patients [68]. Furthermore,
in the ancillary study of the NRG/RTOG 9601, the GC score was associated with a distant
metastasis (DM) and prostate-cancer-specific mortality (PCSM) after a prostatectomy. For
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patients with low PSA (<0.7 ng/mL) and a low GC, there may be little clinical benefit
from adding bicalutamide to salvage radiotherapy [69]. Based on this evidence, the NCCN
guidelines strongly recommend that patients with a high Decipher score (GC > 0.6) receive
intensive treatment (EBRT + ADT) if adverse features or PSA persistence/recurrence are
detected after an RP [5].

However, to truly assess its value, it is important to incorporate extensive clinical
implementation and long-term data, despite the recommendations outlined in the National
Comprehensive Cancer Network (NCCN) guidelines for its use [5,70].

3.2. Prolaris

Prolaris®, a predictive examination model developed by Myriad Genetics (located
in Salt Lake City, UT, USA), employs the manifestation of 31 genes related to cell-cycle
progression (CCP) and 15 genes associated with housekeeping (shown in Table 2). This test
was initially developed as an expansion of their breast cancer trials. A CCP score [71] is
produced, indicating a proliferative index. This may improve predictive abilities compared
to the clinicopathological factor. Similar to other tests, this assessment predicts the prob-
ability of future occurrences, such as the BCR and mortality specific to PCa, rather than
precise treatment recommendations.

The CCP score has prognostic value in various clinical settings, as it can be tested
in diverse sample types such as biopsies, a transurethral resection of the prostate (TUR-
P), and RPs. A retrospective study found that the CCP score was useful for predicting
biochemical recurrence after a prostatectomy, as well as the time to PCa-related death after
a TUR-P [71]. In a conservative cohort of localized PCa patients diagnosed via a needle
biopsy, the CCP score remained a significant predictor (HR 1.76) independent of clinical
variables. Another validation cohort showed that a predefined CCP score could predict
10-year prostate-specific death and identify the low-risk group that did not require radical
treatment [72]. Many studies have utilized the CCP score to predict the aggressive potential
of PCa. A systemic review demonstrated that the CCP score could have an impact on
clinical decisions and reduce unnecessary surgeries for suitable low-risk patients [73]. This
tool is employed to help determine the optimal approach between immediate and delayed
(conservative management) treatment for males with indolent cancer.

In accordance with these findings, NCCN recommends utilizing CCP after a biopsy
for NCCN cases categorized as very low-, low-, or favorable–intermediate-risk PCa during
the diagnostic process for individuals with a projected lifespan of at least 10 years [5].

3.3. Oncotype DX®

Genomic Health (Redwood City, CA, USA) developed Oncotype DX®, a widely
recognized test that can predict and forecast outcomes in breast cancer patients. This
test has since been adapted for PCa. This test uses quantitative RT-PCR on FFPE tissue
obtained from needle biopsies to analyze the expression of 12 genes associated with cancer
across four biological pathways (stromal response, androgen signaling, proliferation, and
cellular organization), along with five reference genes. The GPS (genomic prostate score) is
calculated by algorithmically combining these components [61]. The primary purpose of
this tool is to help patients make informed decisions about the most appropriate treatment
approach (active monitoring versus treatment) after being diagnosed with low- or low–
intermediate-risk PCa. For these patients, a higher genomic prostate score (GPS) on a scale
from 0 to 100 corresponds to an increased likelihood of an adverse pathology during a
radical prostatectomy (RP).

The Oncotype DX® has demonstrated its specific predictive value and impact on
clinical decisions. In a diverse cohort of very low- to intermediate-risk PCa, the GPS was
found to be associated with the time to BCR, the time to metastasis, and the presence of
adverse pathological features (primary Gleason pattern 4 or any pattern 5 and/or pT3) after
adjusting the NCCN risk group. This association was the same for both African American
and Caucasian patients [74]. The information provided by the GPS may lead to an increased
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physician’s recommendation of active surveillance in very low- or low-risk groups [75].
Unlike other biomarkers that are only associated with long-term clinical outcomes, the GPS
may predict an adverse tumor pathology (AP) (extraprostatic extension, positive surgical
margin, and seminal vesicle invasion) after an RP [76]. Accordingly, the Oncotype DX®

GPS would provide valuable references for counseling patients about radical surgery or
other options. Furthermore, a recent study also showed that the GPS is an independent
prognostic factor for clinical outcomes in patients with localized PCa, similar to a radical
prostatectomy [77].

The NCCN guidelines specifically recommend using Oncotype DX® to make decisions
after a biopsy in cases of a localized disease at diagnosis, in patients with a life expectancy
of ≥10 years [5].

Although the current biomarkers for risk stratification in PCa are primarily identi-
fied in tissue samples obtained from surgical procedures or biopsies, emerging urinary
biomarkers also warrant attention. A study indicated that individuals with PCa exhibit
higher levels of urinary 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin
F2α (8-IsoF2α) than healthy subjects. However, a robot-assisted radical prostatectomy
(RARP) could normalize these oxidative stress markers [78]. The measurement of these
urinary biomarkers holds a potential role to assess the radicality of treatment and the
aggressive risk in PCa patients.

4. Genetic Biomarkers for PCa Treatment

The development of PCa is significantly influenced by familial history, which is a
firmly established risk factor. Some families exhibit such a strong genetic transmission that
the hereditary pattern emulates autosomal dominance traits [79]. Although there are sug-
gestions that environmental factors may contribute to an overestimation of the hereditary
influence in PCa, it is important to note that genetic predisposition plays a crucial role and
remains significant even when environmental factors are taken into account [80,81]. Ap-
proximately 100 susceptibility loci have been identified through genome-wide association
studies, which collectively contribute to approximately 39% of the familial risk associated
with the occurrence of PCa [79]. Examining genetic markers associated with these loci in
people with a familial background of PCa could not only assist with risk assessment and
stratification, but could also allow for earlier detection and timely medical interventions.

The most frequently identified genetic changes in PCa are as follows.

4.1. BRCA1/BRCA2

Mutations in the BRCA1 and BRCA2 genes [82–84] are the strongest indicators of
PCa. BRCA2 mutations have been strongly associated with an increased susceptibility to
developing PCa (2.5–8.6 times higher by age 65), as well as an earlier onset of the disease,
aggressive tumor growth, metastases, and lower survival rates [85–88]. mCRPC patients
with BRCA2 mutations have shown notable genomic instability in the MED12L/MED12
gene axis, which is closely related to metastatic disease. This explains the unique aggressive-
ness of tumors containing these genetic abnormalities [89]. Recently, PARP inhibitors such
as rucaparib and olaparib, which have been approved by the FDA, have proven capable of
hindering the DNA damage response in PCa with BRCA1 and/or BRCA2 mutations. This
effectively delays the progression of cancer in refractory or metastatic situations [90,91].

4.2. ETS Gene Fusions

Approximately 50% of PCa patients of Caucasian descent have detectable ETS gene
fusions [92,93]. The fusion of androgen-regulated transmembrane protease, serine 2 (TM-
PRSS2) with ERG (TMPRSS2:ERG) is the most frequently observed. The MiPS test includes
this unique PCa fusion, offering diagnostic, prognostic, and risk-assessment benefits, as
well as a possible therapeutic target [94–97]. More than 50% of PCa patients exhibit an
increase in ERG gene expression, predominantly characterized by the presence of TM-
PRSS2:ERG fusion or other TMPRSS2 fusion partners such as ETV1, ETV4, ETV5, and
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FLI1 [97,98]. Besides TMPRSS2, other androgen-responsive 5′ partners combined with
ERG consist of SLC45A3, HERPUD1, and NDRG1 [99–101]. It is believed that these com-
binations arise from continuously activated AR signaling, causing intronic AR binding.
This unites the translocation loci and triggers site-specific, double-stranded breaks through
genotoxic stress and specific stress-induced enzymatic processes [102]. Interestingly, the
occurrence of ERG fusion varies among different races: Caucasian Americans (CAs) exhibit
ERG expression nearly twice as frequently as African Americans (AAs) [103,104]. This
racial variation may have a substantial impact on precision therapeutic approaches, espe-
cially when considering the observed racial differences with regard to the effectiveness of
different PCa treatments [105].

4.3. Androgen Receptor (AR)

The AR is a transcription factor that controls the growth and development of the
prostate. Mutations in its ligand-binding domain contribute to hormone-sensitive PCa
(HSPC) and mCRPC, accompanied by other AR changes such as amplification and struc-
tural rearrangements [92,93]. Contrarily, hormone-naïve PCa rarely exhibits AR alter-
ations [106]. Intriguingly, AR mutations are clinically relevant in 34% of CRPC patients,
hinting at their potential responsiveness to AR-targeted therapies [107]. Nevertheless,
additional repetitive modifications may arise during the recurrence of CRPC, leading to
resistance against ADT. Examples include the FOXA1, SPOP, and IDH1 gene mutations, and
the NCOA2 gene gain [93,106,107]. The AR splice variant 7 (AR-V7) has a deletion in exon 7.
This deletion causes the ligand-binding domain to be absent, making it constitutively active
and causing AR resistance [108]. AR-V7 is linked to CRPC development and is associated
with reduced survival in enzalutamide- or abiraterone-treated patients [109,110]. Notably,
patients with a positive AR-V7 status who are undergoing taxane treatment demonstrate
improved survival, suggesting that AR-V7 has the potential to forecast the response to
therapy in mCRPC [111–113]. The guideline from AUA/ASTRO/SUO highlights AR-V7
as a potential indicator for forecasting various systemic treatment reactions and improving
long-term outcomes [114,115].

5. Conclusions

Multiple biomarkers have been identified as relevant to the diagnosis, risk prognosis,
and treatment selection of PCa. This review lists biomarkers that have been integrated
into relevant clinical guidelines. Most of these emerging biomarkers have demonstrable
value with regard to reducing overdiagnoses in indolent disease, identifying a high-risk-
of-aggressive group, and providing individual treatment to patients with a genetic pre-
disposition. Meanwhile, ongoing clinical trials continue to emphasize the importance of
carefully selecting suitable populations to provide more prospective data for the application
of these tools.

Although the presence of several biomarkers has provided more information beyond
regular clinical factors, identifying the optimal utility of PCa biomarkers remains chal-
lenging. Firstly, the procedure of identifying these molecular classification instruments
is intricate, necessitating an excellent sample quality. It is imperative to streamline the
processes of testing and decrease the expenses associated with testing. In addition, a
well-designed combination of approaches and endpoints during clinical trials may hold the
potential to achieve an accurate molecular risk stratification for PCa patients in the future.
Moreover, the quickly growing range of biomarkers accessible for therapeutic targeting
indicates the upcoming arrival of precision therapies that can help larger groups of patients.
The trajectory may lead to significant progress in the treatment of metastatic or refractory
conditions, leading to better outcomes and longer survival for heterogeneous groups of
PCa patients.
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